Table Of ContentEPIDEMIOLOGY AND SURVEILLANCE
crossm
Monitoring Antifungal Resistance in a
Global Collection of Invasive Yeasts and
Molds: Application of CLSI Epidemiological
Cutoff Values and Whole-Genome
Sequencing Analysis for Detection of
D
Azole Resistance in Candida albicans o
w
n
lo
MarianaCastanheira,aLalitagauriM.Deshpande,aAndrewP.Davis,a a
d
PaulR.Rhomberg,aMichaelA.Pfallera,b e
d
JMILaboratories,NorthLiberty,Iowa,USAa;UniversityofIowa,IowaCity,Iowa,USAb f
r
o
m
ABSTRACT The activity of 7 antifungal agents against 3,557 invasive yeasts and
molds collected in 29 countries worldwide in 2014 and 2015 was evaluated. Epide- Received2May2017 Returnedfor h
t
miological cutoff values (ECVs) published in the Clinical and Laboratory Standards In- modification23May2017 Accepted28July tp
2017 :
stitute (CLSI) M59 document were applied for species with no clinical breakpoints. //
Acceptedmanuscriptpostedonline7 a
Echinocandin susceptibility rates were 95.9% to 100.0% for the 5 most common August2017 a
c
Candida species, except for the rates for Candida parapsilosis to anidulafungin CitationCastanheiraM,DeshpandeLM,Davis .a
(88.7% susceptible, 100.0% wild type). Rates of fluconazole resistance ranged from AP,RhombergPR,PfallerMA.2017.Monitoring s
m
antifungalresistanceinaglobalcollectionof
8.0% for Candida glabrata to 0.4% for Candida albicans. Seven Candida species dis- invasiveyeastsandmolds:applicationofCLSI .o
played 100.0% wild-type amphotericin B MIC results, and Candida dubliniensis and epidemiologicalcutoffvaluesandwhole- rg
Candida lusitaniae exhibited wild-type echinocandin MIC results. The highest flu- genomesequencinganalysisfordetectionof /
azoleresistanceinCandidaalbicans. o
conazole, voriconazole, and posaconazole MIC values for Cryptococcus neoformans n
AntimicrobAgentsChemother61:e00906-17.
var. grubii were 8 (cid:2)g/ml, 0.12 (cid:2)g/ml, and 0.25 (cid:2)g/ml, respectively. Aspergillus fu- https://doi.org/10.1128/AAC.00906-17. A
p
migatus isolates were 100.0% wild type for caspofungin and amphotericin B, but 3 Copyright©2017AmericanSocietyfor r
Microbiology.AllRightsReserved. il
(0.8%) of these isolates were non-wild type to itraconazole (2 isolates) or voricona- 3
zole (1 isolate). Mutations in FKS hot spot (HS) regions were detected among 13/20 AddresscorrespondencetoMariana , 2
Castanheira,[email protected].
0
Candida isolates displaying echinocandin MICs greater than the ECV (16 of these 20 1
isolates were C. glabrata). Most isolates carrying mutations in FKS HS regions were 9
b
resistant to 2 or more echinocandins. Five fluconazole-nonsusceptible C. albicans iso- y
lates were submitted to whole-genome sequencing analysis. Gain-of-function, Erg11 g
u
heterozygous, and Erg3 homozygous mutations were observed in 1 isolate each. e
s
One isolate displayed MDR1 promoter allele alterations associated with azole resis- t
tance. Elevated levels of expression of MDR1 or CDR2 were observed in 3 isolates
and 1 isolate, respectively. Echinocandin and azole resistance is still uncommon
among contemporary fungal isolates; however, mechanisms of resistance to antifun-
gals were observed among Candida spp., showing that resistance can emerge and
monitoringiswarranted.
KEYWORDS azoles,echinocandins,resistance
Theburdenofinvasivefungalinfections(IFIs)forpatientsandhealthcaresystemsis
difficulttomeasure;however,itiswellrecognizedthatIFIsareassociatedwithhigh
morbidityandmortalityratesandelevatedhealthcarecosts.AhigherprevalenceofIFIs
hasbeenobservedinthelastfewdecadesduetotheincreasingsizeofthepopulation
of immunocompromised individuals, which includes individuals living with human
immunodeficiencyvirus,transplantrecipients,andcancerpatients(1,2).Additionally,
October2017 Volume61 Issue10 e00906-17 AntimicrobialAgentsandChemotherapy aac.asm.org 1
Castanheiraetal. AntimicrobialAgentsandChemotherapy
the increase in the numbers of individuals in the elderly, neonate, and patient popu-
lationsrequiringinvasivetherapiesalsocontributestothehigherratesofIFIs.
Candida and Aspergillus species are among the most frequent causes of IFIs, and
althoughisolatesdisplayingresistancetoclinicallyavailableantifungalagentsarestill
uncommon, these isolates are increasingly reported worldwide (3, 4). For this reason,
continuous monitoring of antifungal susceptibility patterns and mechanisms of resis-
tance to clinically used antifungal agents is of increased importance. The SENTRY
AntifungalSurveillanceProgramcollectsconsecutiveinvasivefungalisolatesfromover
60hospitalsinNorthAmerica,Europe,LatinAmerica,andtheAsia-Pacificregioneach
calendar year and evaluates these isolates for susceptibility to the various antifungal
agentsclinicallyusedtotreatIFIs(5).Inaddition,themechanismsofresistancetothe
echinocandins and azoles among isolates of Candida species displaying elevated MIC
valuesfortheseagentsarealsoinvestigated(6,7).
Echinocandin resistance among Candida isolates is caused by alterations in the D
o
target of these antifungal agents, 1,3-(cid:3)-D-glucan synthase, encoded by FKS (6). Muta- w
tions in 2 hot spot (HS) regions of FKS1 leading to amino acid substitutions are n
lo
responsibleforechinocandinresistanceamongthemajorityofCandidaspecies;how- a
d
ever,mutationsinHSregionsofFKS1andFKS2canleadtoresistanceamongCandida
e
glabrataisolates(8). d
f
AzoleresistanceamongCandidaandAspergillusisolatescanbeencodedbygenes r
o
withtargetalterationsandcausedbytheincreasedeffluxofantifungalmolecules(3,4, m
9).Targetalterationsintheergosterolsynthesispathway,mainlyinErg11(10)butalso h
t
in Erg3 (11), have been associated with azole resistance development in Candida tp
:
species.Additionally,alterationsinvarioustranscriptionfactorsthatregulatethegenes //
a
involvedinergosterolproductionandtheregulationofeffluxsystemscanalsoleadto a
c
azoleresistanceamongclinicalisolates(9).AzoleresistanceinAspergillusspp.(largely .
a
Aspergillusfumigatus)involvesavarietyofmutationsinCYP51anditspromoter(3,4). s
m
AswithCandidaspp.,effluxmechanismsmayalsocontributetoazoleresistanceinA. .
o
fumigatus(2–4). r
g
In this study, we evaluated the activity of 7 antifungal agents, tested using the /
o
Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution n
method, against 3,557 clinical fungal isolates collected during 2014 and 2015 in 29 A
p
countries. We applied species-specific breakpoints and the newly published epidemi- r
ological cutoff values (ECVs) listed in CLSI document M59 (12). Additionally, we used il 3
,
PCR methods and/or whole-genome sequencing analysis to investigate resistance
2
mechanisms among Candida isolates displaying non-wild-type MIC values for echino- 0
1
candins and among Candida albicans isolates displaying elevated fluconazole MIC 9
values. b
y
g
u
RESULTS
e
During 2014 and 2015, 3,557 fungal isolates were received and evaluated. These s
t
isolates consisted of the following: 2,809 (78.9%) Candida spp.; 152 (4.3%) yeasts
belongingtoothergenera,including89(2.5%)Cryptococcusneoformansisolates;511
(14.4%)Aspergillusisolates;and85(2.4%)othermolds.Table1summarizestheresults
oftheCLSIbrothmicrodilutionmethodforsusceptibilitytoechinocandins,azoles,and
amphotericin B for the species for which clinical breakpoints and/or ECVs have been
establishedinCLSIdocuments(12,13).
Anidulafungin, caspofungin, and micafungin displayed good activity against the 8
CandidaspecieslistedinTable1.Echinocandinresistancewasobservedamong0.2%of
the 1,310 C. albicans isolates tested. Two isolates belonging to this species displayed
MIC values for resistance to caspofungin and micafungin, but 1 isolate displayed a
susceptibleresultforanidulafungin(MIC,0.25(cid:2)g/ml).C.glabrataisolatesdisplayedthe
highest echinocandin resistance rates, which ranged from 2.3% (micafungin) to 2.5%
(anidulafungin and caspofungin), and 14/514 (2.7%) of the isolates tested displayed
resistancetoatleast1oftheechinocandinstested.AllCandidatropicalisandCandida
kruseiisolatestestedweresusceptibletotheclinicallyavailableechinocandins.Anidu-
October2017 Volume61 Issue10 e00906-17 aac.asm.org 2
MonitoringAntifungalResistance AntimicrobialAgentsandChemotherapy
TABLE1ActivityofantifungalagentstestedusingtheCLSIreferencebrothmicrodilution
methodagainstfungalorganismgroupsaccordingtoclinicalbreakpointsand/orECV
interpretativecriteriaa
%ofisolates
Organism(no.of
CLSImethod ECV
isolatestested)and MIC orMEC MIC orMEC
50 50 90 90
antifungalagent ((cid:2)g/ml) ((cid:2)g/ml) S R WT NWT
C.albicans(1,310)
Anidulafungin 0.015 0.03 99.9 0.0 99.8 0.2
Caspofungin 0.015 0.03 99.8 0.2
Micafungin 0.015 0.03 99.8 0.2 99.8 0.2
Fluconazole (cid:4)0.12 0.25 99.6 0.4
Voriconazole (cid:4)0.008 0.015 99.9 (cid:2)0.1
Posaconazole 0.03 0.06
AmphotericinB 1 1 100.0 0.0
D
C.glabrata(514)
o
Anidulafungin 0.06 0.12 95.9 2.5 97.5 2.5 w
Caspofungin 0.03 0.06 96.9 2.5 n
Micafungin 0.015 0.03 97.5 2.3 96.9 3.1 lo
a
Fluconazole 4 16 92.0b 8.0
d
Voriconazole 0.12 0.5 e
Posaconazole 0.5 1 d
AmphotericinB 1 1 100.0 0.0 fr
o
m
C.parapsilosis(417)
Anidulafungin 2 4 88.7 0.0 100.0 0.0 h
t
Caspofungin 0.25 0.5 100.0 0.0 t
p
Micafungin 1 2 100.0 0.0 100.0 0.0 :
/
Fluconazole 0.5 2 95.7 3.8 /a
Voriconazole 0.015 0.03 96.4 0.7 a
c
Posaconazole 0.06 0.12 .
a
AmphotericinB 1 1 100.0 0.0 s
m
C.tropicalis(264) .
o
Anidulafungin 0.015 0.03 100.0 0.0 100.0 0.0 r
g
Caspofungin 0.015 0.06 100.0 0.0
/
Micafungin 0.015 0.06 100.0 0.0 99.6 0.4 o
Fluconazole 0.25 0.5 96.2 2.7 96.2 3.8 n
Voriconazole 0.015 0.06 97.0 2.3 A
p
Posaconazole 0.03 0.12
r
AmphotericinB 1 1 100.0 0.0 il
3
,
C.krusei(93)
2
Anidulafungin 0.06 0.12 100.0 0.0 100.0 0.0 0
Caspofungin 0.12 0.25 100.0 0.0 1
9
Micafungin 0.06 0.12 100.0 0.0 100.0 0.0
b
Fluconazole 32 64 y
Voriconazole 0.25 0.5 100.0 0.0 g
Posaconazole 0.25 0.5 u
e
AmphotericinB 1 2 100.0 0.0 s
t
C.dubliniensis(58)
Anidulafungin 0.03 0.12 100.0 0.0
Caspofungin 0.03 0.06
Micafungin 0.03 0.06 100.0 0.0
Fluconazole (cid:4)0.12 0.25
Voriconazole (cid:4)0.008 0.015
Posaconazole 0.03 0.06
AmphotericinB 0.5 1
C.lusitaniae(39)
Anidulafungin 0.25 0.5 100.0 0.0
Caspofungin 0.12 0.25
Micafungin 0.12 0.25 100.0 0.0
Fluconazole 0.5 1
Voriconazole (cid:4)0.008 (cid:4)0.008
Posaconazole 0.06 0.12
AmphotericinB 0.5 1
(Continuedonnextpage)
October2017 Volume61 Issue10 e00906-17 aac.asm.org 3
Castanheiraetal. AntimicrobialAgentsandChemotherapy
TABLE1(Continued)
%ofisolates
Organism(no.of
CLSImethod ECV
isolatestested)and MIC orMEC MIC orMEC
50 50 90 90
antifungalagent ((cid:2)g/ml) ((cid:2)g/ml) S R WT NWT
C.guilliermondii(14)
Anidulafungin 2 4 92.9 0.0 100.0 0.0
Caspofungin 0.5 1 100.0 0.0
Micafungin 1 1 100.0 0.0 100.0 0.0
Fluconazole 2 64
Voriconazole 0.06 1
Posaconazole 0.5 (cid:3)8
AmphotericinB 0.25 1
A.fumigatus(391)
Anidulafungin (cid:4)0.008 0.03
D
Caspofungin 0.015 0.03 100.0 0.0
o
Micafungin (cid:4)0.008 0.015 w
Itraconazole 0.5 1 99.5 0.5 n
Voriconazole 0.5 0.5 99.7 0.3 lo
Posaconazole 0.25 0.5 a
d
AmphotericinB 1 2 100.0 0.0 e
d
A.niger(15) f
Anidulafungin (cid:4)0.008 0.03 ro
m
Caspofungin 0.015 0.03 100.0 0.0
Micafungin (cid:4)0.008 0.015 h
Itraconazole 0.5 1 100.0 0.0 tt
p
Voriconazole 0.5 0.5 100.0 0.0 :
/
Posaconazole 0.25 0.5 100.0 0.0 /a
AmphotericinB 1 2 100.0 0.0 a
c
.
A.terreus(12) a
Anidulafungin (cid:4)0.008 0.03 sm
Caspofungin 0.015 0.03 100.0 0.0 .
Micafungin (cid:4)0.008 0.015 or
Itraconazole 0.5 1 100.0 0.0 g
/
Voriconazole 0.5 0.5 100.0 0.0 o
Posaconazole 0.25 0.5 100.0 0.0 n
AmphotericinB 1 2 100.0 0.0 A
p
aMEC andMEC ,minimumeffectiveconcentrationsfor50%and90%ofisolates,respectively;CLSI,Clinical r
and5L0aboratory9S0tandardsInstitute;S,susceptible;R,resistant;ECV,epidemiologiccutoffvalue;WT,wild- il
3
type;NWT,non-wild-type. ,
bSusceptibledosedependent. 2
0
1
9
lafungin inhibited 88.7% and 92.9% of the Candida parapsilosis and Candida guillier- b
y
mondiiisolates,respectively,atthecurrentCLSIbreakpoint.Theseisolatesweresuscepti- g
u
ble/wild type to caspofungin and micafungin. Note that anidulafungin-intermediate C. e
parapsilosisandC.guilliermondiiisolates(MIC,4(cid:2)g/ml)werecategorizedaswildtypewhen s
t
theECVsrecentlypublishedbyCLSIwereapplied(12).
Resistancetofluconazolewasobservedamong0.4%oftheC.albicansisolates,3.8%
oftheC.parapsilosisisolates,and2.7%oftheC.tropicalisisolatestested.Asexpected,
theseresistancerateswerehigherthantheratesofresistancetovoriconazole,which
were(cid:2)0.1%forC.albicans,0.7%forC.parapsilosis,and2.3%forC.tropicalis.Atotalof
8.0%oftheC.glabrataisolatesdisplayedMICvaluesindicatingresistancetoflucona-
zole.
WhentherecentlypublishedECVsfortheCandidaspecies-antifungalcombinations
that do not have clinical breakpoints were applied (12), all Candida lusitaniae and
Candida dubliniensis isolates were considered wild type for anidulafungin and mica-
funginandallC.albicans,C.glabrata,C.parapsilosis,andC.tropicalisisolateswerewild
typeforamphotericinB(Table1).
ECVs were also recently published for various Aspergillus species (12), and we
applied these criteria for sensu stricto isolates of A. fumigatus, Aspergillus niger, Asper-
gillusterreusandforAspergillusflavusspeciescomplex(SC)isolates(Table1).
October2017 Volume61 Issue10 e00906-17 aac.asm.org 4
MonitoringAntifungalResistance AntimicrobialAgentsandChemotherapy
The echinocandins exhibited similar activities against A. fumigatus, and all isolates
were considered wild type for caspofungin. ECVs for itraconazole and voriconazole
identified 0.5% (2 isolates, 1 each from Italy and Thailand) and 0.3% (1 isolate from
Germany) of the isolates, respectively, to be non-wild type. All A. fumigatus isolates
were wild type for amphotericin B, and all A. niger, A. terreus, and A. flavus species
complex isolates were considered wild type for caspofungin, itraconazole, posacona-
zole,voriconazole,andamphotericinB.
ThedistributionsoftheMICsoftheechinocandinsandtriazolesforspeciesforwhich
there were (cid:5)3 isolates of uncommon species of Candida and Aspergillus, the non-
Candida yeasts, and non-Aspergillus molds are shown in Table 2. Given that these
speciesareuncommoninmostregionsoftheworldanddataconcerningtheirinvitro
susceptibility to most antifungals are lacking, we elected to display the results as the
numberofisolatesateachMICvaluesothattheseresultsmayeventuallybecombined
withsimilarlyderiveddatatoformamorerobustunderstandingoftheMICprofilesof D
o
theseunusualspecies. w
Amongthe100isolatesofthelesscommonspeciesofCandidaencounteredin2014 n
lo
and 2015, we identified 19 different species (8 with (cid:5)3 isolates; Table 2). Notable a
observations included elevated echinocandin MICs ((cid:3)0.5 (cid:2)g/ml) among Candida or- d
e
thopsilosis and Candida metapsilosis isolates (Table 2). The MIC values for the echino- d
candins against the very rare species of Candida were generally low ((cid:2)0.5 (cid:2)g/ml), fr
o
exceptforCandidalipolytica(Table2),Candidafermentati(1isolate;anidulafunginMIC, m
2 (cid:2)g/ml; data not shown), and Candida quercitrusa (1 isolate; anidulafungin MIC, 2 h
t
(cid:2)g/ml;datanotshown). tp
:
Elevated fluconazole MIC values (MIC, (cid:3)4 (cid:2)g/ml) were observed for isolates of C. //
a
orthopsilosis,Candidainconspicua,C.lipolytica,andCandidapelliculosa(Table2).Addi- a
c
tional species for which fluconazole MIC results appeared to be elevated (MIC, (cid:3)4 .
a
(cid:2)g/ml) included single isolates of Candida auris (MIC, 64 (cid:2)g/ml), Candida norvegensis s
m
(MIC,16(cid:2)g/ml),Candidapararugosa(MIC,32(cid:2)g/ml)andC.quercitrusa(MIC,16(cid:2)g/ml; .
o
data not shown). The MIC values for both voriconazole and posaconazole were (cid:2)1 r
g
(cid:2)g/mlforeachoftheserarespeciesexceptC.lipolytica(Table2). /
o
As expected, the echinocandins were inactive against many of the non-Candida n
yeasts(Table2).EchinocandinMICresultsof(cid:4)0.5(cid:2)g/mlwereobservedwithSaccha- A
p
romyces cerevisiae. Echinocandin MIC values were (cid:3)2 (cid:2)g/ml for Cryptococcus neofor- r
mans, Candida gattii (2 isolates; data not shown), Geotrichum clavatum, Geotrichum il 3
,
silvicola (1 isolate, data not shown), Magnusiomyces capitatus, Rhodotorula mucilagi-
2
nosa,Trichosporonasahii,andTrichosporonmycotoxinivorans(Table2).FluconazoleMIC 0
1
values were (cid:3)4 (cid:2)g/ml for G. clavatum, M. capitatus, R. mucilaginosa, S. cerevisiae, T. 9
asahii, and T. mycotoxinivorans (Table 2). In contrast, voriconazole and posaconazole b
y
showedgoodactivity(MIC,(cid:2)1(cid:2)g/ml)againstmostofthenon-Candidayeasts,withthe g
exception being Rhodotorula mucilaginosa. Fluconazole MIC values were (cid:2)8 (cid:2)g/ml ue
againstallspeciesofCryptococcus,whereastheechinocandinswereinactive(MIC,(cid:3)8 s
t
(cid:2)g/ml)againsttheseorganisms(Table2).
TheechinocandinswerehighlyactiveagainsttheuncommonspeciesofAspergillus
(Table 3); only 2 isolates of Aspergillus nidulans SC exhibited a minimum effective
concentration (MEC) of (cid:3)0.06 (cid:2)g/ml. MIC values for itraconazole, posaconazole, and
voriconazole were all (cid:2)1 (cid:2)g/ml against isolates of the A. nidulans species complex,
whereas1isolateeachofAspergilluslentulus,theAspergillusustusspeciescomplex,and
AspergillusversicolorshowedelevatedMICresultsforalltriazoles(datanotshown).
Amongthenon-Aspergillusmolds,onlyRasamsoniaargillaceaconsistentlyexhibited
echinocandinMECsof(cid:4)0.06(cid:2)g/ml(Table3).Notably,MECvaluesof(cid:5)8(cid:2)g/mlwere
observed for the majority of the Fusarium and Mucormycetes species. Similarly, the
triazolesshowedpooractivityagainstmanyoftheseraremolds.
Posaconazolestandsapartfromvoriconazole,inthatitappearstobeactiveagainst
some clinical isolates of the mucoraceous molds both in vitro and in vivo (14, 15).
Among the 13 isolates of the Rhizopus microsporus group (9 isolates) and Rhizopus
oryzaespeciescomplex(4)testedinthepresentstudy,thevoriconazoleMICswere
October2017 Volume61 Issue10 e00906-17 aac.asm.org 5
Castanheiraetal. AntimicrobialAgentsandChemotherapy
MIC90(cid:2)(g/ml) 0.120.0150.060.50.0150.251 extpage)
n
MIC50(cid:2)(g/ml) 0.12 0.060.121 0.015 0.06 2 0.250.120.2510.03 0.061 0.0150.0150.01540.060.51 0.0150.030.03160.250.250.5 0.06(cid:4)0.0080.030.25(cid:4)0.0080.061 nuedon
nti
o
>a (C
8
2
1
4
6
0) D
00. o
2 (1 w
3 1 n
lo
83.3) ad
16 5( e
d
0.0) fro
8 0( m
0) h
100. ttp
4 2( :/
/
a
00.0) 00.0) 00.0) 00.0) 3.3) 00.0) ac
2 2(1 3(1 1(1 1(1 1(3 1(1 .a
s
m
3isolates 1 1(50.0) 1(25.0) 1(87.5) 1(100.0)6(87.5) 6(100.0) 0(0.0) 3(100.0) 3(100.0) 1(100.0) 18(95.5) .org/
(cid:5)with 0.5 1(100.0) 1(25.0) 0(0.0) 2(75.0)1(100.0)3(87.5)1(12.5) 2(25.0) 2(100.0)0(0.0) 1(100.0)2(50.0) 8(95.5) 3(13.6) on A
p
es r
monyeastspeci (cid:2)g/ml):wingMIC( 0.120.25 2(50.0)1(75.0) 2(100.0)4(100.0)0(0.0) 2(100.0) 0(0.0)4(50.0)5(75.0)1(87.5)1(12.5)3(50.0)0(0.0)1(100.0) 0(87.5)1(100.0)0(0.0) 1(100.0)0(0.0)1(33.3) 1(100.0)1(100.0) 2(33.3)4(100.0)0(0.0)5(83.3)0(0.0)1(16.7) 8(100.0) 1(100.0)6(27.3)7(59.1) 5(81.8)4(100.0)0(0.0) il 3, 2019 b
stuncom atthefollo 0.06 0(0.0) 1(50.0)0(0.0) 2(50.0) 1(12.5)0(0.0) 0(87.5) 5(87.5) 1(66.7) 1(83.3)1(83.3) 0(0.0) 7(63.6) 9(95.5) 6(59.1) y gues
entstestedagain ates(cumulative%) 0.0150.03 0(0.0)1(25.0) 2(50.0)2(100.0) 0(0.0) 0(0.0) 3(37.5)4(87.5) 0(0.0)2(25.0) 3(100.0)3(100.0)2(66.7)1(100.0) 0(0.0)1(33.3) 2(66.7)2(100.0)2(33.3)2(66.7)0(33.3)2(66.7) 0(0.0)7(31.8)10(95.5)1(100.0)1(4.5)11(54.5) 7(100.0)4(18.2)3(31.8) t
ungalag No.ofisol <0.008 0(0.0) 0(0.0) 0(0.0)0(0.0)0(0.0) 2(33.3)0(0.0)2(33.3) 11(50.0)0(0.0) 15(68.2)0(0.0)
ntif p
a u
TABLE2Activityof Organism/organismgro(no.ofisolates) Candidahaemulonii(4)Anidulafungin CaspofunginMicafunginFluconazole Voriconazole Posaconazole AmphotericinB Candidametapsilosis(8)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazole PosaconazoleAmphotericinB Candidafabianii(3)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Candidainconspicua(6)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Candidakefyr(22)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB
October2017 Volume61 Issue10 e00906-17 aac.asm.org 6
MonitoringAntifungalResistance AntimicrobialAgentsandChemotherapy
MIC90(cid:2)(g/ml) 20.25140.120.121 (cid:3)8(cid:3)8(cid:3)840.060.251 extpage)
n
MIC50(cid:2)(g/ml) 0.250.250.520.030.251 10.120.50.50.030.120.5 (cid:4)0.008(cid:4)0.0080.01520.120.50.5 (cid:3)8(cid:3)8(cid:3)840.060.250.5 (cid:3)8(cid:3)8(cid:3)820.030.120.5 nuedon
>a 3(100.0)3(100.0)3(100.0) 72(100.0)69(100.0)75(100.0) (Conti
0)
0.
8 10
2 (
1 1
1)
7.
9
4 (
6 0
D
00.0) 7.1) ow
1 9
2 ( ( n
3 2 1
lo
0.0) 4.1) ad
6 (6 (9 e
1 0 1 d
60.0) 91.2) 100.0) 0.0)0.0)0.0) 7.7)11.5)3.8)100.0) from
( ( ( ((( ((((
8 0 0 1 000 5821
h
60.0) 91.2) 80.0) 100.0) 1.3)1.3)1.3)(98.7) ttp:
( ( ( ( (((5 /
4 0 1 1 2 0103 /
a
(60.0) (100.0) (100.0) (88.2) (60.0) (33.3) (1.3)(0.0)(1.3)4(53.8) ac.a
2 2 1 5 4 3 1 1013 s
m
(100.0)(20.0)(100.0)(80.0)(100.0) 5(85.3) (100.0)(76.5)(100.0) 5(100.0) (0.0) (100.0) (0.0) (0.0) (0.0)(10.3) 1(100.0) .org
1 11214 1 491 1 0 1 0 0 07 3 /
0.5 1(100.0) 3(80.0)0(0.0)0(60.0)0(60.0)1(20.0) 9(41.2)3(100.0)17(88.2)13(50.0)2(97.1)1(100.0)19(55.9) 2(80.0)4(100.0) 3(100.0) 1(1.3) 46(60.3) on Ap
r
(cid:2)g/ml):C( 0.25 4(80.0)3(100.0)1(20.0) 0(60.0)3(60.0)0(0.0) 5(14.7)11(91.2)10(38.2)3(11.8)0(91.2)2(97.1)0(0.0) 1(100.0)1(40.0)1(20.0) 3(100.0)0(0.0) 0(0.0) 30(100.0)1(1.3) il 3, 20
owingMI 0.12 0(0.0)2(40.0)0(0.0) 0(60.0)0(0.0) 0(0.0)15(58.8)3(8.8)1(2.9)2(91.2)15(91.2) 2(80.0)1(20.0)0(0.0) 0(0.0) 1(100.0)32(61.5)0(0.0) 19 by
atthefoll 0.06 0(0.0) 0(60.0) 5(14.7)0(0.0) 4(85.3)8(47.1) 2(40.0)0(0.0) 2(100.0) 36(98.7)13(20.5) gues
ulative%) 0.03 1(60.0) 0(0.0) 9(73.5)8(23.5) 2(100.0)1(100.0) 0(0.0) 1(33.3) 37(52.6)3(3.8) t
m
ates(cu 0.015 2(40.0) 10(47.1)0(0.0) 1(100.0)0(60.0)2(80.0) 0(0.0) 4(5.1)0(0.0)
ol
No.ofis <0.008 0(0.0) 6(17.6) 4(80.0)3(60.0)2(40.0) 0(0.0)
p
TABLE2(Continued) Organism/organismgrou(no.ofisolates) Candidalipolytica(5)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Candidaorthopsilosis(34)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Candidapelliculosa(5)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Cryptococcusneoformans(3)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Cryptococcusneoformansvar.grubii(78)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB
October2017 Volume61 Issue10 e00906-17 aac.asm.org 7
Castanheiraetal. AntimicrobialAgentsandChemotherapy
MIC90(cid:2)(g/ml) 0.50.250.580.1211 extpage)
n
MIC50(cid:2)(g/ml) (cid:3)88(cid:3)810.030.120.5 48280.120.51 4(cid:3)8(cid:3)880.250.251 (cid:3)8(cid:3)8(cid:3)8(cid:3)128411 0.120.120.1220.060.251 nuedon
0)0)0) 0) 0)0) 0)0)0)0) 0) nti
>a 5(100.2(100.5(100. 2(100. 4(100.4(100. 6(100.4(100.6(100.5(100. 1(100. (Co
7)
8 16.
2 (
1 1
0)
0.
4 (
6 0
D
o
w
2 n
3
lo
0) a
00. d
6 (1 e
1 1 d
(37.5)(75.0)(37.5) (60.0) (80.0) (42.9)(42.9)(100.0) (0.0)(33.3)(0.0) (100.0)(83.3) (100.0) from
8 262 1 3 225 020 20 3
h
12.5)0.0)12.5)100.0) 100.0)40.0)100.0)20.0) 100.0)14.3)14.3)28.6) 0.0) 66.7)83.3) 84.2) ttp:
(((( (((( (((( ( (( ( /
4 0001 4211 6101 0 30 6 /
a
a
(12.5) (12.5)(87.5) (20.0)(0.0)(80.0)(0.0) (14.3)(0.0)(14.3)(14.3) (16.7)(83.3) (52.6) c.a
2 1 02 1030 1000 02 4 s
m
(0.0) (12.5)(62.5) (0.0) (20.0) (100.0) (0.0) (14.3)(14.3) (100.0) (16.7)(50.0)(100.0) (31.6) (100.0)4(100.0) .org
1 0 14 0 0 3 0 10 7 134 4 31 /
0.5 0(0.0)1(12.5) 7(100.0) 1(20.0) 1(100.0)3(100.0)2(40.0) 0(0.0)1(14.3)1(100.0)3(100.0)0(0.0) 0(0.0)0(0.0)2(33.3) 2(100.0)1(100.0)2(100.0)2(10.5) 5(84.2)5(26.3) on Ap
r
(cid:2)g/ml):C( 0.25 0(0.0) 1(100.0)1(12.5) 0(0.0) 0(80.0)2(40.0)0(0.0) 0(0.0)4(85.7)2(57.1) 0(0.0) 7(89.5)5(94.7)3(89.5)0(0.0)1(100.0)8(57.9)0(0.0) il 3, 20
owingMI 0.12 4(87.5)0(0.0) 4(80.0)0(0.0) 1(28.6)1(28.6) 6(52.6)6(68.4)11(73.7) 5(94.7)3(15.8) 19 by
atthefoll 0.06 1(100.0)3(37.5) 0(0.0) 0(14.3)0(14.3) 4(21.1)5(36.8)3(15.8) 5(68.4)0(0.0) gues
%) t
ulative 0.03 5(87.5)0(0.0) 1(14.3)1(14.3) 0(0.0)2(10.5)0(0.0) 7(42.1)
m
ates(cu 0.015 2(25.0) 0(0.0)0(0.0) 0(0.0) 1(5.3)
ol
is 8
No.of <0.00 0(0.0) 0(0.0)
p
TABLE2(Continued) Organism/organismgrou(no.ofisolates) Cryptococcusneoformansvar.neoformans(8)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Geotrichumclavatum(5)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Magnusiomycescapitatus(7)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Rhodotorulamucilaginosa(6)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB Saccharomycescerevisiae(19)AnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB
October2017 Volume61 Issue10 e00906-17 aac.asm.org 8
MonitoringAntifungalResistance AntimicrobialAgentsandChemotherapy
MIC90(cid:2)(g/ml) (cid:3)8(cid:3)8(cid:3)8160.2511
MIC50(cid:2)(g/ml) (cid:3)8(cid:3)8(cid:3)840.120.251 (cid:3)8(cid:3)8(cid:3)840.120.251
00.0)00.0)00.0) 0.0)0.0)0.0)
111 000
>a 12(12(14( 3(12(12(1
8
2
1
0)
0.
0
1
4 (
6 1
D
9) o
2. w
9
2 ( n
3 0
lo
2.9) ad
6 (9 e
1 3 d
f
14.3)14.3)0.0)71.4) 0.0)33.3)33.3) rom
(((( (((
8 2201 010
h
0.0)0.0) 64.3) 0.0)33.3)100.0) ttp:
(( ( ((( /
4 00 8 012 /
a
a
(7.1) (0.0)(33.3) c.a
2 0 01 s
m
(7.1)(100.0)(100.0)3(100.0) (0.0) (100.0) .org
1 1121 0 3 /
0.5 0(0.0)0(92.9)4(85.7)1(7.1) 1(100.0)0(0.0) on Ap
r
(cid:2)g/ml):C( 0.25 4(92.9)7(57.1)0(0.0) 2(66.7) il 3, 20
owingMI 0.12 3(64.3)1(7.1) 3(100.0)0(0.0) 19 by
oll g
atthef 0.06 5(42.9)0(0.0) 0(0.0) ested. ues
%) nt t
o
mulative 0.03 1(7.1) estdiluti
olates(cu 0.015 0(0.0) nthehigh
is 8 ha
No.of <0.00 eatert
gr
nued) mgroup (14) ans(3) dilution
TABLE2(Conti Organism/organis(no.ofisolates) TrichosporonasahiiAnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB TrichosporonmycotoxinivorAnidulafunginCaspofunginMicafunginFluconazoleVoriconazolePosaconazoleAmphotericinB (cid:3)representsthea
October2017 Volume61 Issue10 e00906-17 aac.asm.org 9
Castanheiraetal. AntimicrobialAgentsandChemotherapy
MIC90(cid:2)(g/ml) (cid:3)8(cid:3)8(cid:3)8(cid:3)88(cid:3)82 4(cid:3)8(cid:3)8411(cid:3)2 wingpage)
o
MIC50(cid:2)(g/ml) 0.0150.030.0150.50.120.252 0.0150.0150.0150.50.120.252 0.0150.0150.030.50.250.52 (cid:3)8(cid:3)8(cid:3)8(cid:3)88(cid:3)82 420.510.512 edonfoll
u
n
100.0)100.0)100.0)100.0)00.0)100.0)00.0) 00.0)00.0) 00.0) (Conti
a 5(5(5(5((15((1 (1(1 (1
1111111 42 4
> (0.0)(0.0)(0.0)(0.0)0(93.3)(0.0) (63.6)(81.8)
8 000010 00
D
6.7) 00.0)3.6)1.8)00.0) ow
2 1681
( (((( n
4 4 9104 lo
(100.0) (100.0) (100.0) (100.0) (100.0)(100.0) (100.0) (0.0) 0(93.3) (18.2)(54.5)(81.8)(63.6) (100.0)(63.6) aded
2 2 5 2 5 11 4 0 1 1200 14
f
r
o
77.8) 44.4) 75.0) 37.5) 75.0)75.0)100.0)0.0) 26.7) 9.1)36.4)81.8)63.6)100.0)90.9)27.3) hm
1 0( 4( 0( 3( 0(0(1(0( 4( 0(3(2(4(4(5(2( tt
p
ml): 0.5 0(77.8) 7(100.0) 3(100.0)0(0.0) 0(75.0) 7(100.0) 3(100.0)0(0.0) 3(75.0)1(75.0)3(75.0) 0(0.0) 0(9.1)0(9.1)6(63.6)2(27.3)3(63.6)4(45.5)0(9.1) ://aac.a
olates (cid:2)g/MEC( 0.25 0(77.8) 1(22.2)2(100.0)5(66.7) 0(75.0) 1(12.5)2(100.0)5(62.5) 0(0.0)2(50.0)0(0.0) 0(9.1)0(9.1)0(9.1)1(9.1)2(36.4)0(9.1)1(9.1) sm.or
(cid:5)with3is owingMIC/ 0.12 1(100.0)2(77.8) 1(11.1)6(77.8)1(11.1) 1(100.0)1(75.0) 0(0.0)6(75.0)0(0.0) 0(0.0) 0(9.1)0(9.1)0(9.1)0(0.0)1(18.2)1(9.1)0(0.0) on Apg/
moldspecies %)atthefoll 0.06 1(88.9)0(55.6)2(100.0)0(0.0)1(11.1)0(0.0) 0(87.5)0(62.5)2(100.0) 0(0.0) 1(100.0)1(100.0)1(100.0) 1(9.1)0(9.1)1(9.1) 0(9.1)0(0.0) ril 3, 201
ommon mulative 0.03 2(77.8)1(55.6)2(77.8) 0(0.0) 2(87.5)1(62.5)2(75.0) 1(75.0)1(75.0)3(75.0) 0(0.0)1(9.1)0(0.0) 1(9.1) 9 by g
estedagainstunc No.ofisolates(cu <0.0080.015 0(0.0)5(55.6)3(33.3)1(44.4)3(33.3)2(55.6) 0(0.0)5(62.5)3(37.5)1(50.0)3(37.5)1(50.0) 0(0.0)2(50.0)0(0.0)2(50.0)0(0.0) 0(0.0) 0(0.0) uest
t
s
agent of boydii
al o. m
g n u
un p( ori
TABLE3Activityofantif Organism/organismgrouisolates) AspergillusnidulansSC(9)AnidulafunginCaspofunginMicafunginItraconazoleVoriconazolePosaconazoleAmphotericinB Aspergillusnidulans(8)AnidulafunginCaspofunginMicafunginItraconazoleVoriconazolePosaconazoleAmphotericinB Aspergillusversicolor(4)AnidulafunginCaspofunginMicafunginItraconazoleVoriconazolePosaconazoleAmphotericinB FusariumsolaniSC(15)AnidulafunginCaspofunginMicafunginItraconazoleVoriconazolePosaconazoleAmphotericinB Scedosporiumapiospermum/Scedosp(11)AnidulafunginCaspofunginMicafunginItraconazoleVoriconazolePosaconazoleAmphotericinB
October2017 Volume61 Issue10 e00906-17 aac.asm.org 10
Description:guided assembly in DNAStar SeqMan NGen (v.14.0) software (Madison, WI, USA). The sequences of Erg11, Pharmaceuticals, Inc.; Duke; Entasis Therapeutics, Inc.; Fortress Biotech; Fox Chase. Chemical Diversity Center, Inc.;