Table Of ContentBruce L. Kutter
Majid T. Manzari
Mourad Zeghal
Editors
Model Tests and
Numerical Simulations
of Liquefaction and
Lateral Spreading
LEAP-UCD-2017
Model Tests and Numerical Simulations
of Liquefaction and Lateral Spreading
(cid:129)
Bruce L. Kutter Majid T. Manzari
Mourad Zeghal
Editors
Model Tests and Numerical
Simulations of Liquefaction
and Lateral Spreading
LEAP-UCD-2017
Editors
BruceL.Kutter MajidT.Manzari
DepartmentofCivilandEnvironmental DepartmentofCivilandEnvironmental
Engineering Engineering
UniversityofCalifornia,Davis GeorgeWashingtonUniversity
Davis,CA,USA Washington,DC,USA
MouradZeghal
DepartmentofCivilandEnvironmental
Engineering
RensselaerPolytechnicInstitute
Troy,NY,USA
ISBN978-3-030-22817-0 ISBN978-3-030-22818-7 (eBook)
https://doi.org/10.1007/978-3-030-22818-7
Thisbookisanopenaccesspublication.
©TheEditor(s)(ifapplicable)andTheAuthor(s)2020
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicenseandindicate
ifchangesweremade.
Theimagesorotherthirdpartymaterialinthisbookareincludedinthebook’sCreativeCommonslicense,
unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthebook’sCreative
Commonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitted
use,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook
arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe
editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors
oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaims
inpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface
Liquefactionofsaturatedsandsduringearthquakesandassociatedgrounddeforma-
tions continue to be a major concern for engineers involved with design and
evaluation of civil infrastructure, such as buildings, transportation facilities (e.g.,
bridges, roads, and ports), and water systems (e.g., dams, levees, pipelines, and
aqueducts).Numerousconstitutivemodelsandnumericalsimulationplatformshave
beendevelopedandarebeingusedtopredictthebehaviorofsaturatedsandsduring
liquefaction.Thesesimulationtoolsarenowbeingusedinpracticetohelpevaluate
civilinfrastructureeventhoughthereisnocurrentlyviableformalprocessavailable
forvalidationofthesetools.
Liquefaction Experiments and Analysis Projects (LEAP) is a series of collabo-
rativeresearchprojectswiththemaingoalofproducingreliableexperimentaldatato
be used for the assessment, calibration, and validation of constitutive models and
numerical modeling techniques available for analysis of soil liquefaction and its
effects.LEAPwasinitiallyenvisionedasafollowonfromthepioneeringVELACS
(Verification of Liquefaction Analysis by Centrifuge Studies) project spearheaded
byK.ArulanandanandR.F.Scottinthe1990s.
This volume presents results from one LEAP project (LEAP-UCD-2017) that
culminated in a workshop at the UC Davis in December 2017. It was preceded by
LEAPprojectshostedbyProfessorIaiattheUniversityofKyotoandLEAP-GWU-
2015 hosted at the George Washington University and was followed in 2019 by
LEAP-ASIA,atKansaiUniversity,hostedbyProfessors TobitaandUeda.
LEAP-UCD-2017addressestherepeatability,variability,andsensitivityofcen-
trifuge tests in modeling lateral spreading of mildly sloping liquefiable soils. To
achieve this goal, 24 centrifuge tests were conducted at 9 different centrifuge
facilitiesaroundtheworld.Theresultsofthesecentrifugetestsallowedfordefining
aresponsesurfaceandenabledanassessmentofthesensitivityandvariabilityofthe
tests. For the first time, a sufficient number of experiments were conducted on the
same test configuration to enable the assessment of the test-to-test and facility-
facilityvariabilityofthecentrifugetestresults.
v
vi Preface
Theexperimental data obtained inthisprojectprovidedaunique opportunityto
assess the capabilities of a number of numerical modeling techniques currently
available for the analysis of soil liquefaction. Nine of the 24 centrifuge tests were
selected for a type B prediction exercise in which 12 numerical simulation teams
participated. To assist the numerical modeling effort, a large number of laboratory
testswereperformedtocharacterizethephysicalandmechanicalresponseofOttawa
F-65 Sand and to define the stress-strain-strength response of this soil in cyclic
loading. These tests along with other available experimental data on Ottawa sand
were used by the numerical simulation teams to calibrate the constitutive models
embedded in their numerical simulation software. The results of both the experi-
ments and numerical simulations were discussed in an international workshop that
washeldinDecember2017onthecampusoftheUniversityofCalifornia,Davis.
Thebackground,observations,andlessonslearnedinthecourseofLEAP-UCD-
2017projectaredescribedthroughoutthevolume,organizedinfourmainsections:
1. TheOverviewPaperssectionincludespapersthatdescribethespecificationsfor
experiments,materialpropertiesforthetestedsand,andcomparisonsbetweenall
oftheexperimentsandallofthesimulations.
2. TheCentrifugeExperimentPaperssectionincludesonepaperfromeachcentri-
fugeexperimentteam.
3. TheNumericalSimulationPaperssectionincludesonepaperfromeachteamthat
participatedintypeBandtypeCsimulations.
4. Finally, the Workshop Essays section includes short essays on topics related to
LEAPthatweresubmittedatthetimeoftheLEAP-UCD-2017workshop.
Thepapersinthisvolumecontainmanyconclusionsandimportantobservations.
Inthispreface,oneormoreoftheeditorswanttohighlightsomeimportantpoints:
1. ThedataproducedbyLEAP-UCD-2017isreadilyavailabletothegeneralpublic
through the NHERI Cyberinfrastructure Center’s DesignSafe at https://doi.org/
10.9517603/DS2N10S.Weenvisionthatthefutureresearcherscouldusethedata
and different metrics or techniques for type C simulations and as calibration/
validationbenchmarks.
2. The LEAP-UCD-2017 numerical simulation exercise demonstrated the role of
experience and careful peer review in achieving reasonable simulations. Mod-
elers with significant experience in numerical simulation of geotechnical engi-
neeringproblemspredictedsomekeyaspectsoftheresponse(e.g.,magnitudeof
lateralspreading)withreasonableaccuracies.Thiswasparticularlyinterestingas
theconstitutivemodelsusedbythesamemodelerswerenotnecessarilythemost
efficientincapturingthestress-strainresponseofthesoilinelementtests.
3. The results of centrifuge model tests are dependent on model initial conditions
and experimental setup. Replication and repeatability of the model tests are
essentialtointerpretthevariabilityinmeasurementsandobservations.
4. Theinterpretationofvariabilityoftheinitialstatewasimprovedsignificantlyby
usinganewlydesignedLEAPconepenetrationtestinalmostallofthecentrifuge
tests.Duetoerrorsassociatedwithdirectmeasurementofdensityfrommassand
Preface vii
volume,thedirectmeasurementofdensitybycurrentproceduresappearstobea
lessreliableindicatorofstatethantheconepenetrationresistance.
5. Therestillisasignificantscatterobservedinthemeasurementsofminimumand
maximum dry density for Ottawa F-65 sand; this scatter led to difficulty in the
properselectionofrelativedensitybythenumericalmodelers.
6. The use of high-speed cameras in LEAP-UCD-2017 for measuring the lateral
displacementsofgroundsurfaceduringlateralspreadingprovedtobeparticularly
valuableandcomplimentarytomeasurementstypicallymadeafterthetest.
7. Inadditiontotheresultsofmonotonicandcyclictriaxialanddirectsimpleshear
tests that were made available to the simulation teams in LEAP-2017 project, a
larger database of element tests that include other relevant stress paths (e.g.,
hollowcylindertorsionalshear)andcoverawiderrangeofstressstates(smaller
confining stresses that are comparable to average stresses in the centrifuge
specimen)willenhancetheabilityofthenumericalmodelerstofurthercalibrate
andfine-tunetheparametersoftheirconstitutivemodels.
8. Closecoordinationoftheexperimentaleffortsandcontinuouscommunicationof
the research teams was a key in obtaining high-quality and consistent results.
Numerous conference calls and web-based meeting with the participants across
the United States, Europe, and Asia were held to develop and disseminate
standards of practice regarding the method of sample preparation, density mea-
surement,conepenetrationtesting,anddisplacementmeasurement.
9. Althoughthereadersmaybegintodrawconclusionsregardingwhichsimulation
platformsandconstitutivemodelsarebestforagiventypeofanalysis,itisclear
thatdifferentindividualswillbeabletodrawdifferentconclusionsinthisendeavor.
Furthermore,acceptablenumericaltoolsmaybesensitivetoerrorsintheinputand
to theaccuracy ofthemodel calibration andcalibration data. Even oneindividual
could draw different conclusions regarding the acceptability of simulation tools
depending on the metrics used for assessment. The bases for assessment of
numerical models could involve multiple aspects of behavior such as:
(a) Ability to predict element test results, such as the effective stress friction
angleandliquefactiontriggeringcurves(e.g.,stressratiovs.numberofcycles
to3%strain)
(b) Ability to predict the shear modulus reduction and damping curves in labo-
ratoryelementtests
(c) Respectforperceivedfundamentalsofsoilbehavior,suchascriticalstatesoil
mechanicsandstress-dilatancyrelationships
(d) Ability to predict the ultimate residual displacement observed in a series of
centrifugemodeltests
(e) Ability to predict the cyclic strain amplitudes leading up to and following
“triggering”inthecentrifugetests
(f) Abilitytopredictthetimehistorytracesfromallofthenuancesporepressure
andaccelerationsensorsinthecentrifugetests
(g) Ability of the numerical tools to predict the evolution of density and soil
behaviorinaseriesofshakingevents
viii Preface
Someengineersmayconsideranumericaltooltobedisqualifiedifitcannotpass
stage (a) of validation. Others may focus only on the end result (e.g., item
(d) residual displacement). Others may put different weights on each of the
aboveitemsconsideredintheassessment.Itisclearthatsignificantworkremains
inestablishingaformalwidelyacceptedframeworkfortheassessmentoflique-
factionsimulationtools.
Davis,CA,USA BruceL.Kutter
Washington,DC,USA MajidT.Manzari
Troy,NY,USA MouradZeghal
ParticipantsintheLEAP-UCD-2017Workshop
Preface ix
Attendee Affiliation
TarekAbdoun RensselaerPolytechnicInstitute
PedroArduino UniversityofWashington
RichardArmstrong CaliforniaStateUniversity,Sacramento
ArulArulmoli EarthMechanics,Inc.
AndresBarrero TheUniversityofBritishColumbia
MichaelBeaty BeatyEngineering,Portland,Oregon
EmilioBilotta UniversityofNaplesFedericoII
RossBoulanger UniversityofCaliforniaatDavis
JonathanBray UniversityofCalifornia,Berkeley
TrevorCarey UniversityofCaliforniaatDavis
LongChen UniversityofWashington
ZhaoCheng ItascaConsultingGroup,Inc.
YannisDafalias UniversityofCaliforniaatDavis
KathleenDarby UniversityofCaliforniaatDavis
ShidehDashti UniversityofColorado,Boulder
JasonDeJong UniversityofCaliforniaatDavis
RicardoDobry RensselaerPolytechnicInstitute
MayaElKortbawi UniversityofCaliforniaatDavis
MohamedElGhoraiby GeorgeWashingtonUniversity
RichardFragaszy US,NationalScienceFoundation
DavidFrost GeorgiaInstituteofTechnology
KiyoshiFukutake ShimizuCorporation
AndreasGavras UniversityofCaliforniaatDavis
AlborzGhofrani UniversityofWashington
NithyagopalGoswami RensselaerPolytechnicInstitute
Jeong-GonHa KAIST(KoreaAdvancedInstituteofScienceandTechnology)
StuartHaigh CambridgeUniversity
TimothyHaynes UniversityofCaliforniaatDavis
GabbyHernandez UniversityofCaliforniaatDavis
FranciscoHumire UniversityofCaliforniaatDavis
SusumuIai FLIPConsortium
KojiIchii KansaiUniversity
BorisJeremic UniversityofCaliforniaatDavisandLBNL
AliKhosravi UniversityofCaliforniaatDavis
MohammadKhosravi UniversityofCaliforniaatDavis
DongsooKim KAIST(KoreaAdvancedInstituteofScienceandTechnology)
SeongnamKim KAIST(KoreaAdvancedInstituteofScienceandTechnology)
TakatoshiKiriyama ShimizuCorporation
EvangeliaKorre RensselaerPolytechnicInstitute
SteveKramer UniversityofWashington
KevinKuei UniversityofCaliforniaatDavis
BruceL.Kutter UniversityofCaliforniaatDavis
HoeLing ColumbiaUniversity
KaiLiu ZhejiangUniversity
JorgeMacedo UniversityofCalifornia,Berkeley
(continued)
x Preface
GopalSPMadabhushi UniversityofCambridge
SrikanthSCMadabhushi UniversityofCambridge
AndrewMakdisi UniversityofWashington
IanMaki CaliforniaDivisionofSafetyofDams
ErikMalvick CaliforniaDivisionofSafetyofDams
MajidT.Manzari TheGeorgeWashingtonUniversity
AlejandroMartinez UniversityofCaliforniaatDavis
FrankMcKenna UniversityofCalifornia,Berkeley
LelioMejia GeosyntecConsultants,Inc.
JackMontgomery AuburnUniversity
TylerOathes UniversityofCaliforniaatDavis
KyleO'Hara UniversityofCaliforniaatDavis
MitsuOkamura EhimeUniversity
OsamuOzutsumi MeisoshaCorporation
DongSoonPark K-waterResearchInstitute
NicholasPaull UniversityofCaliforniaatDavis
RenminPretell UniversityofCaliforniaatDavis
AdamPrice UniversityofCaliforniaatDavis
ZhijianQiu UniversityofCalifornia,SanDiego
EllenRathje UniversityofTexas
InthuornSasanakul UniversityofSouthCarolina
SumeetKumarSinha UniversityofCaliforniaatDavis
AsriNuraniSjafruddin EhimeUniversity
NicholasStone UniversityofCaliforniaatDavis
AlexSturm UniversityofCaliforniaatDavis
MahdiTaiebat TheUniversityofBritishColumbia
JiroTakemura TokyoInstituteofTechnology
LiaoTing-Wei NationalCentralUniversity,Taiwan
TetsuoTobita KansaiUniversity
DimitraTsiaousi Fugro,WalnutCreek,California
KyoheiUeda KyotoUniversity
JoseUgalde Fugro,WalnutCreek,California
RyosukeUzuoka KyotoUniversity
RubenRodrigoVargasTapia KyotoUniversity
TomaWada KyotoUniversity
RuiWang TsinghuaUniversity
HungWen-Yi NationalCentralUniversity,Taiwan
DanWilson UniversityofCaliforniaatDavis
TianlongXu GeorgiaInstituteofTechnology
MingYang TheUniversityofBritishColumbia
MouradZeghal RensselaerPolytechnicInstitute
BarryZheng UniversityofCaliforniaatDavis
YanguoZhou ZhejiangUniversity
KaterinaZiotopoulou UniversityofCaliforniaatDavis