Table Of ContentInternational Journal of Antennas and Propagation
MIMO Antenna Design and Channel
Modeling 2013
Guest Editors: Wenhua Chen, Manos M. Tentzeris, Yuan Yao,
Yan Zhang, and Li Yang
MIMO Antenna Design and Channel
Modeling 2013
International Journal of Antennas and Propagation
MIMO Antenna Design and Channel
Modeling 2013
GuestEditors:WenhuaChen,ManosM.Tentzeris,YuanYao,
Yan Zhang, and Li Yang
Copyright©2013HindawiPublishingCorporation.Allrightsreserved.
Thisisaspecialissuepublishedin“InternationalJournalofAntennasandPropagation.”Allarticlesareopenaccessarticlesdistributed
undertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,pro-
videdtheoriginalworkisproperlycited.
Editorial Board
M.Ali,USA Se-YunKim,RepublicofKorea MassimilianoPieraccini,Italy
CharlesBunting,USA AhmedA.Kishk,Canada SadasivaM.Rao,USA
FelipeCa´tedra,Spain SelvanT.Krishnasamy,India SembiamR.Rengarajan,USA
Dau-ChyrhChang,Taiwan TribikramKundu,USA AhmadSafaai-Jazi,USA
DebChatterjee,USA Ju-HongLee,Taiwan S.Safavi-Naeini,Canada
Z.N.Chen,Singapore ByungjeLee,RepublicofKorea M.Salazar-Palma,Spain
MichaelYanWahChia,Singapore L.Li,Singapore StefanoSelleri,Italy
Shyh-JongChung,Taiwan YilongLu,Singapore ZhongxiangShen,Singapore
LorenzoCrocco,Italy AtsushiMase,Japan JohnJ.Shynk,USA
TayebA.Denidni,Canada AndreaMassa,Italy Seong-YoupSuh,USA
AntonijeR.Djordjevic,Serbia GiuseppeMazzarella,Italy ParveenWahid,USA
KaruP.Esselle,Australia DerekMcNamara,Canada YuanxunEthanWang,USA
FranciscoFalcone,Spain C.F.Mecklenbra¨uker,Austria DanielS.Weile,USA
MiguelFerrando,Spain MicheleMidrio,Italy TatSoonYeo,Singapore
VincenzoGaldi,Italy MarkMirotznik,USA YoungJoongYoon,Korea
WeiHong,China A.SanagavarapuMohan,Australia Jong-WonYu,RepublicofKorea
HonTatHui,Singapore P.Mohanan,India WenhuaYu,USA
TamerS.Ibrahim,USA PavelNikitin,USA AnpingZhao,China
MandeepSinghJitSingh,Malaysia A.D.Panagopoulos,Greece
NemaiKarmakar,Australia MatteoPastorino,Italy
Contents
MIMOAntennaDesignandChannelModeling2013,WenhuaChen,ManosM.Tentzeris,YuanYao,
YanZhang,andLiYang
Volume2013,ArticleID596249,2pages
MIMOGeometryandAntennaDesignforHighCapacityandImprovedCoverageinmm-Wave
Systems,TommasoCella,Pa˚lOrten,andJensHjelmstad
Volume2013,ArticleID572830,9pages
MinimumRedundancyMIMOArraySynthesisbymeansofCyclicDifferenceSets,JianDong,
RonghuaShi,WentaiLei,andYingGuo
Volume2013,ArticleID323521,9pages
AModelofDouble-DirectionalIndoorChannelsforMultiterminalCommunications,
PujiHandayaniandGamantyoHendrantoro
Volume2013,ArticleID384173,18pages
AFastAdaptiveReceiveAntennaSelectionMethodinMIMOSystem,ChaoweiWang,WeidongWang,
ChengWang,ShuaiWang,andYangYu
Volume2013,ArticleID175783,8pages
MIMOExploitationof3DMultipathStatisticsinaHeterogeneousLTE-AdvancedNetwork,
ZuhanisMansor,EvangelosMellios,GeoffreyHilton,JoeMcGeehan,andAndrewNix
Volume2013,ArticleID931527,15pages
MIMOAntennaArrayDesignwithPolynomialFactorization,Wen-QinWang,HuaizongShao,
andJingyeCai
Volume2013,ArticleID358413,9pages
Measurement-BasedSpatialCorrelationandCapacityofIndoorDistributedMIMOSystem,YanZhang,
LiminXiao,ShidongZhou,andJingWang
Volume2013,ArticleID596347,7pages
ANewSVM-BasedModelingMethodofCabinPathLossPrediction,XiaonanZhao,ChunpingHou,
andQingWang
Volume2013,ArticleID279070,7pages
NewConfigurationofHandsetMIMOAntennaforLTE700BandApplications,ByeonggwiMun,
FrancesJ.Harackiewicz,ByeongkwanKim,HyunhoWi,JonghyunLee,Myun-JooPark,ChangwonJung,
andByungjeLee
Volume2013,ArticleID850489,6pages
AMultichannelTHzDetectorUsingIntegratedBow-TieAntennas,HairuiLiu,JunshengYu,
PeterHuggard,andByronAlderman
Volume2013,ArticleID417108,8pages
GenerationofOAMRadioWavesUsingCircularVivaldiAntennaArray,ChangjiangDeng,
WenhuaChen,ZhijunZhang,YueLi,andZhengheFeng
Volume2013,ArticleID847859,7pages
HindawiPublishingCorporation
InternationalJournalofAntennasandPropagation
Volume2013,ArticleID381081,2pages
http://dx.doi.org/10.1155/2013/381081
Editorial
MIMO Antenna Design and Channel Modeling 2013
WenhuaChen,1ManosM.Tentzeris,2YuanYao,3YanZhang,4andLiYang5
1DepartmentofElectronicEngineering,TsinghuaUniversity,Beijing100084,China
2TheSchoolofElectricalandComputerEngineering,GeorgiaInstituteofTechnology,Atlanta,GA30332-0250,USA
3SchoolofElectronicEngineering,BeijingUniversityofPostsandTelecommunications,Beijing100876,China
4BeijingInstituteofTechnology,Beijing100081,China
5TexasInstruments,Dallas,TX75266-0199,USA
CorrespondenceshouldbeaddressedtoWenhuaChen;[email protected]
Received30September2013;Accepted30September2013
Copyright©2013WenhuaChenetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,
whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Withthefastevolutionofwirelesscommunicationstandards radio waves with traditional MIMO communication meth-
suchasLTE-A,thefifthgeneration(5G)mobileandwireless ods.Simulationsshowedthat,forcertainarrayconfigurations
communication technologies are emerging into research infreespace,traditionalMIMOtheoryleadstoeigenmodes
fields. Based on the Internet Protocol architecture of 4G identical to the OAM states. According to this result, they
communication systems, unprecedented numbers of smart concluded that communicating over the subchannels given
and heterogeneous wireless devices will be accessing future byOAMstatesisasubsetofthesolutionsofferedbyMIMO.
5Gmobileandwirelesscommunicationsystemswithacon- Intheforeseeablefuture,thediscussionabouttheOAMand
tinuinggrowthofInternettraffic.Therefore,comparedwith MIMOwillbethekeyfocusareas.
4G communication systems, significantly higher wireless In this special issue, we have received 17 paper submis-
transmission rates are expected in 5G communication sys- sionsandaccepted11onesfinallyaccordingtothereviewers’
tems,suchas10Gbpspeakdatarateswith8–10bps/Hz/cell. comment and associate editors’ suggestion. These accepted
Moreover,energyefficiencyconceptswillbefullyintegrated papersincludeMIMOantennadesign,MIMOchannelmod-
into future wireless communication systems to protect the eling,massiveMIMO,andOAMtechnologies.
environment.Tomeettheabovechallenges,5Gmobileand Dr. B. Mun from Kwangwoon University of Korea pro-
wireless communication systems will require a mix of new posed a compact handset multiple-input-multiple-output
systemconceptstoboostspectralefficiency,energyefficiency, (MIMO)antennaforLongTermEvolution(LTE)700band
andthenetworkdesign,suchasmassiveMIMOtechnologies, (746–787MHz) applications. Dr. W.-Q. Wang from UESTC
green communications, cooperative communications, and of China designed the MIMO antenna array with the poly-
heterogeneous wireless networks. From this perspective, nomialfactorizationmethod.
MIMOtechnologywillcontinuetoplayanimportantrolein
Dr. P. Handayani from Institut Teknologi Sepuluh
theupcoming5Gsystems.
Nopember of Indonesia proposed a model of double-
Electromagnetic (EM) fields can carry not only energy directional indoor non-line-of-sight (NLOS) channels for
but also angular momentum. The angular momentum is multiterminal communications and completed their model
composed of spin angular momentum (SAM) and orbital bycharacterizingtheparametersofdouble-directionalchan-
angularmomentum(OAM)describingitspolarizationstate nel impulse response of such channels through measure-
and the phase structure distribution, respectively. Recently, ments in indoor environment using 3D synthetic array
more and more attention has been paid to OAM in both antennaat2.5GHzband.Dr.Z.MansorfromBristolUniver-
opticalandradiodomain.Itisworthytobementionedthat sityofUnitedKingdomanalyzedtheimpactof3Dmultipath
Edforsetal.comparedthetechniqueofusingOAMstatesof inanLTE-advancedheterogeneousnetwork.
2 InternationalJournalofAntennasandPropagation
Dr. Deng from Tsinghua University of China gave a
feasible and simple solution of generating OAM-carrying
radio beams and proposed an OAM antenna system which
isconsistedof8-Vivaldiconnectedantennaelementssequen-
tiallyandfoldedintoahollowcylinder.
Wesincerelyhopethatthisspecialissuecanfurtherhelp
thereaderstounderstandMIMOdesignandMIMOchannel
modelingandexplorethefuture5GMIMOinthesubsequent
developmentofthesystem.
WenhuaChen
ManosM.Tentzeris
YuanYao
YanZhang
LiYang
HindawiPublishingCorporation
InternationalJournalofAntennasandPropagation
Volume2013,ArticleID572830,9pages
http://dx.doi.org/10.1155/2013/572830
Research Article
MIMO Geometry and Antenna Design for High Capacity and
Improved Coverage in mm-Wave Systems
TommasoCella,1PålOrten,2andJensHjelmstad3
1NTNUandUniK,7491Trondheim,Norway
2ABBandUniK,1396Billingstad,Norway
3NTNU,7491Trondheim,Norway
CorrespondenceshouldbeaddressedtoTommasoCella;[email protected]
Received28February2013;Accepted11September2013
AcademicEditor:YuanYao
Copyright©2013TommasoCellaetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,
whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
WeshowawaytooptimizethecapacityandatthesametimeachievehighcoverageinLOSforamm-wavesystemindoor.We
optimizeMIMOwithregardtomaximumShannoncapacityforapureLOSchannel.Wedescribethegeneralprocedureinorder
tomaximizethecapacityforourconsideredgeometry,whichconsistsofacirculararcarrayatthetransmitterandauniform
lineararray(ULA)atthereceiver.Themethodisbasedontheoptimizationoftheinterelementdistancesatthetransmitterand
thereceiver.Highcoverageisobtainedwiththeuseofthecirculargeometryandbeamforming.Weproposeanexamplemm-wave
systeminthe70GHzportionoftheE-band(71–76)GHz.Theresultsshowthattheproposedsystemisabletoachievefullcoverage
inLOSaswellashighcapacity,withpracticaldimensions.
1.Introduction use of MIMO [2]. With the use of MIMO, communication
links take advantage of multiplexing gain, because different
During the last years, there has been an increased interest information streams are sent from different transmitters
in mm-wave communications. The demand for fast data towardsdifferentreceiversatthesamefrequency.Inorderto
rate had a crucial role, and communication systems in the getspatialmultiplexingatlowerfrequencies,richmultipath
mm-wave bands have been intensively investigated [1, 2]. is needed. The main advantage of using MIMO at mm-
Althoughmm-waveextendsfrom30GHzto300GHz,with wave bands is that by having a proper interelement spac-
a resultant wavelength from 10mm to 1mm, we commonly ing between transmitting and receiving antennas, multiple
refer to fewer bandwidths, which include the V-band (57– streams,andthushighcapacity,canbeobtained,eveninLOS
66GHz), the E-band (71–76GHz and 81–86GHz), and the [6].ThecapacityofLOSMIMOchannelshasbeenstudiedby
W-band(92–95GHz).Millimeter-wavewirelesstechnologies several authors [7, 8]. Different prototypes using mm-wave
providehigherdatarateswhicharecomparabletothatoffiber LOS MIMO were already developed [9, 10]. Indoor MIMO
opticsbutarelesscostlyandeasytosetup.Thepropagation channelsat5GHzand60GHzweremodeledandcompared
characteristicsatthosefrequenciesaredifferentcomparedto [11,12].Afurtheradvantageofmm-waveMIMOsystemsat
the lower ones, both in indoor and outdoor environments. those bandwidths is that highly directive transmission and
While outdoor, the main sources of attenuation are due to receptionwithelectronicallysteerablebeamscanbeachieved,
atmosphericoxygen,humidity,fog,andrain[3];indoorthe usingcompactantennaarrays.Beamformingisthenanother
signal experiences very high wall attenuation. In previous practicalwaytoimprovetheperformance.
studies, in fact, it was shown that communications at mm- Our work is focused on guaranteeing two important
wave bands are mainly LOS [4, 5]. This is due not only to requirements for mm-wave wireless communications: pro-
high attenuation, but also typically narrow antenna beams. vide high capacity and full LOS coverage, and we consider
Awell-knownmethodtoimprovethesystemcapacityisthe anindoorscenario.Asmentionedbefore,awaytomaximize
2 InternationalJournalofAntennasandPropagation
thecapacityinMIMOsystemsistoadjusttheinterelement Inthefollowing,wealsoassumethatallreceiverantennas
distancesatthetransmitterandthereceiver.Aclosed-form experience the same average received power. This average
expressionforthegeometrymaximizingcapacitywasfound received power, 𝑃𝑅, is a functionof the transmit power, 𝑃𝑇,
forthecaseoftwouniformlineararrays(ULAs)in[6].We thepathloss,andtheshadowing.Theaveragereceivedsignal-
consideraslightlydifferentgeometry,wherethetransmitter to-noise ratio (SNR) at one receive antenna then becomes
is a circular arc array, while the receiver is a ULA [13]. The 𝛾=𝑃𝑅/𝜎𝑛2.Intheremainderofthispaper,Histakentobethe
rationaleforthisgeometrywillbeexplainedlater.Anexpres- normalizedchannelmatrix,whichimpliesthateachelement
siondescribingthegeometrywhichmaximizesthecapacity inHhasunitaveragepower.Byrequiringthisnormalization
inthiscaseisderivedinSection3ofthispaper.Applyingthis wemaketheaverageSNRindependentofH.
configuration,togetherwiththeuseofbeamforming,makes Forconvenience,wedefinethevariables𝑈=min(𝑀,𝑁)
itpossibleforthereceivertobereachedeverywhereinLOS and 𝑉 = max(𝑀,𝑁) for use in the rest of the paper. By
indoor.ThiswouldnotbepossibleforthecaseoftwoULAs, doinganeigenvaluedecompositionandusingthepreviously
aswillbedescribedlaterinthepaper.Inourproposal,each mentioned expression for average received SNR, (2) can be
MIMOelementatthetransmitterisitselfasubarray,which writtenas[16].
can electronically scan the beam towards the receiver. The
transmitter can then be considered an array of subarrays, 𝑈 𝛾
inwhicheachsubarrayrepresentsanelementoftheMIMO 𝐶=∑log2(1+ 𝑁𝜆𝑖)bits/s/Hz. (3)
𝑖=1
system.Theconceptofarrayofsubarrayswasalreadyinves-
tigatedconsideringoutdoormm-wavelinks[14]. Here,𝜆𝑖isthe𝑖theigenvalueofW,whichisdefinedas
Therestofthepaperisorganizedasfollows:inSection2
the capacity of MIMO systems is described; Section3 is HH𝐻, 𝑀≤𝑁
dedicatedtotheMIMOchannelmodelandwillfocusonthe W={H𝐻H, 𝑀≥𝑁. (4)
geometryweintroduce.InSection4,anexamplemm-wave
system is presented, while simulation results are shown in
Equation (3) shows that a MIMO system can be viewed
Section5.Finally,thepaperisconcluded.
as consisting of 𝑈 parallel single-input-single-output (SISO)
channels,whereeachchannelhasgain𝜆𝑖,andanaverageSNR
2.CapacityofMIMOSystems
downscaledwiththenumberoftransmitterscomparedtoa
SISOsystemwiththesametotaltransmitpower.
AMIMOtransmissionsystememploysanumberoftransmit
and receive antennas to transmit data over a channel. We
denote the number of transmit antennas by 𝑁 and the 3.MIMOChannelModel
numberofreceiveantennasby𝑀.Assumingslowlyvarying
Itiscommonpracticetomodelthechannelmatrixasasumof
andfrequencyflatfadingchannels,wecanmodeltheMIMO
twocomponents,aLOScomponentandaNLOScomponent.
transmissionincomplexbasebandas[15]
The mm-wave system analyzed in this paper focuses
r=Hs+n, (1) only on the LOS channel because of the frequency band
applied,asexplainedintheintroduction.Theentriesinthe
whereristhe𝑀×1receivedcomplex-valuatedsignalvector,
LOS component matrix are discussed in more detail in the
s is the 𝑁 × 1 transmitted complex-valued signal vector,
followingsection.
H is the 𝑀 × 𝑁 complex-valued channel matrix, and n is
the 𝑀 × 1 complex-valued additive white Gaussian noise
3.1.LOSChannel:RayTracing. WefocusontheLOSChan-
(AWGN)vector.
nel, and it has previously been demonstrated that, in order
The additive noise vector contains i.i.d. circularly sym-
to optimize the MIMO capacity, the antennas must be
metric complex Gaussian elements with zero mean and
variance𝜎2,denotedCN(0,𝜎2). properly spaced [6]. This is because a proper positioning
𝑛 𝑛
of the antennas leads to a high-rank LOS channel matrix,
Wedenotethecovariancematrixofthetransmittedsignal
byQ=𝐸[ss𝐻].Inpracticalsystems,weusuallyneedtofulfill corresponding to many nonzero eigenvalues 𝜆𝑖. A closed
form for two ULAs with arbitrary orientation was already
anaveragetransmitpowerconstraintoverthearray.
Ifthetotalaveragetransmitpowerislimitedto𝑃𝑇,then found [6]. We derive an expression for the case when the
trace (Q) ⩽ 𝑃𝑇 must be fulfilled. In the remainder of this transmitterconsistsofacirculararcarray,whilethereceiveris
aULA,asinFigure1.ThedesigncriteriatoimprovetheLOS
paper,wewilllookatuncorrelatedbranchsourceswithequal
power;thatis,Q = (𝑃𝑇/𝑁)I𝑁.Thisisoptimalwithregardto capacitywillfocusontheantennaseparationatthereceiver,
capacity when H is unknown at the transmitter [2]. When whilethetransmitterisfixed.Withthisgeometry,aswillbe
shownlaterinthispaper,itispossibletoachievefullcoverage
such sources are used, the channel capacity of a MIMO
inLOS.
systemdescribedby(1)becomes[6]
Referring to Figure1, the transmitting antenna consists
𝐶=log2[det(I𝑀+ 𝑁𝑃𝜎𝑇2HH𝐻)]bits/s/Hz, (2) oapfeerqtuuarellyeqspuaacletdoe2l𝛼em. ThentesrpelcaecievderoinsaacUirLcAul.arThaercinotfetroatna-l
𝑛 tenna distances 𝑑𝑡 and 𝑑𝑟, at the transmitter and receiver,
whereH𝐻istheHermitiantransposeoftheHmatrix. respectively,areconstant.InFigure1,the𝑥-axistakentobe
Description:Sep 30, 2013 Yuanxun Ethan Wang, USA Limin Xiao, Shidong Zhou, and Jing Wang 5G
mobile and wireless communication systems with a con-.