Table Of ContentJan Beran
Mathematical
Foundations
of Time Series
Analysis
A Concise Introduction
Mathematical Foundations of Time Series Analysis
Jan Beran
Mathematical Foundations
of Time Series Analysis
A Concise Introduction
123
JanBeran
DepartmentofMathematicsandStatistics
UniversityofKonstanz
Konstanz,Germany
ISBN978-3-319-74378-3 ISBN978-3-319-74380-6 (eBook)
https://doi.org/10.1007/978-3-319-74380-6
LibraryofCongressControlNumber:2018930982
MathematicsSubjectClassification(2010):62Mxx,62M10
©SpringerInternationalPublishingAG,partofSpringerNature2017
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook
arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor
theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany
errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional
claimsinpublishedmapsandinstitutionalaffiliations.
Printedonacid-freepaper
ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart
ofSpringerNature.
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface
The historical development of time series analysis can be traced back to many
applied sciences, including economics, meteorology, physics or communications
engineering.Theoreticaldevelopmentsofthesubjectarecloselylinkedtoprogress
in the mathematical theory of stochastic processes and mathematical statistics.
Thereareanumberofexcellentbooksontimeseriesanalysis,includingGrenander
andRosenblatt(1957),BoxandJenkins(1970),Hannan(1970),Anderson(1971),
Koopmans (1974), Fuller (1976), Priestley (1981), Brockwell and Davis (1991),
Hamilton (1994), Diggle (1996), Brillinger (2001), Chatfield (2003), Lütkepohl
(2006),DurbinandKoopmann(2012),Woodwardetal.(2016),andShumwayand
Stoffer(2017).
Timeseriesanalysisisnowawell-establishedscientificdisciplinewithrigorous
mathematicalfoundations.On the other hand,it is a verybroad subjectarea, and,
due to the diverse sciences that contributed to its development, the time series
vocabulary is permeated with terminology reflecting the diversity of applications
(cf.Priestley1981,Prefacep.vii).Thisbookisanattempttosummarizesomeofthe
mainprinciplesoftimeseriesanalysis,withthehopethattheconcisepresentationis
helpfulforteachingstudentswithamathematicalbackground.Thebookgrewout
of lectures taught to students of mathematics, mathematical finance, physics and
economicsattheUniversityofKonstanz.
I would like to thank Martin Schützner, Mark Heiler, Dieter Schell, Evgeni
Shumm, Nadja Schumm, Arno Weiershäuser, Dirk Ocker, Karim Djaidja, Haiyan
Liu,BrittaSteffens,KlausTelkmann,YuanhuaFeng,PhilippSibbertsen,Bikramjit
Das,RafalKulik,LiudasGiraitis,SucharitaGhoshandothercolleaguesforfruitful
collaboration;andto Volker Bürkelforreadingpartsof a preliminarymanuscript.
Thanks go also to the University of Konstanz for granting me a sabbatical with
the purpose of working on this book. Most importantly,I would like to thank my
family,Céline,SucharitaandSirHastings—ourCotondeTuléar—forkeepingme
motivated.
Konstanz,Germany JanBeran
November2017
v
Contents
1 Introduction................................................................. 1
1.1 WhatIsaTimeSeries?............................................... 1
1.2 TimeSeriesVersusiidData.......................................... 2
2 TypicalAssumptions ....................................................... 5
2.1 FundamentalProperties.............................................. 5
2.1.1 ErgodicPropertywithaConstantLimit.................... 5
2.1.2 StrictStationarity ............................................ 7
2.1.3 WeakStationarity............................................ 8
2.1.4 WeakStationarityandHilbertSpaces....................... 11
2.1.5 ErgodicProcesses............................................ 32
2.1.6 SufficientConditionsforthea.s.ErgodicProperty
withaConstantLimit........................................ 34
2.1.7 SufficientConditionsfortheL2-ErgodicProperty
withaConstantLimit........................................ 35
2.2 SpecificAssumptions ................................................ 39
2.2.1 GaussianProcesses .......................................... 39
2.2.2 LinearProcessesinL2.˝/................................... 40
2.2.3 LinearProcesseswithE.X2/D1.......................... 44
t
2.2.4 MultivariateLinearProcesses............................... 48
2.2.5 Invertibility................................................... 49
2.2.6 RestrictionsontheDependenceStructure.................. 63
3 DefiningProbabilityMeasuresforTimeSeries ......................... 69
3.1 FiniteDimensionalDistributions.................................... 69
3.2 TransformationsandEquations...................................... 70
3.3 ConditionsontheExpectedValue................................... 71
3.4 ConditionsontheAutocovarianceFunction........................ 73
3.4.1 PositiveSemidefiniteFunctions............................. 73
3.4.2 SpectralDistribution......................................... 77
3.4.3 CalculationandPropertiesofFandf....................... 86
vii
viii Contents
4 SpectralRepresentationofUnivariateTimeSeries..................... 101
4.1 Motivation............................................................ 101
4.2 HarmonicProcesses.................................................. 102
4.3 ExtensiontoGeneralProcesses...................................... 105
4.3.1 StochasticIntegralswithRespecttoZ...................... 105
4.3.2 ExistenceandDefinitionofZ ............................... 112
4.3.3 InterpretationoftheSpectralRepresentation............... 122
4.4 FurtherProperties .................................................... 122
4.4.1 RelationshipBetweenRe ZandIm Z...................... 122
4.4.2 Frequency .................................................... 123
4.4.3 Overtones..................................................... 124
4.4.4 WhyAreFrequenciesRestrictedtotheRangeŒ(cid:2)(cid:2);(cid:2)(cid:3)?... 125
4.5 LinearFiltersandtheSpectralRepresentation...................... 129
4.5.1 EffectontheSpectralRepresentation....................... 129
4.5.2 EliminationofFrequencyBands............................ 134
5 SpectralRepresentationofRealValuedVectorTimeSeries........... 137
5.1 Cross-SpectrumandSpectralRepresentation....................... 137
5.2 CoherenceandPhase................................................. 146
6 UnivariateARMAProcesses .............................................. 161
6.1 Definition............................................................. 161
6.2 StationarySolution................................................... 161
6.3 CausalStationarySolution........................................... 166
6.4 CausalInvertibleStationarySolution ............................... 169
6.5 AutocovariancesofARMAProcesses .............................. 170
6.5.1 CalculationbyIntegration................................... 170
6.5.2 CalculationUsingtheAutocovarianceGenerating
Function...................................................... 170
6.5.3 CalculationUsingtheWoldRepresentation................ 175
6.5.4 RecursiveCalculation........................................ 176
6.5.5 AsymptoticDecay ........................................... 177
6.6 Integrated,SeasonalandFractionalARMAandARIMA
Processes.............................................................. 185
6.6.1 IntegratedProcesses ......................................... 185
6.6.2 SeasonalARMAProcesses.................................. 186
6.6.3 FractionalARIMAProcesses ............................... 187
6.7 UnitRoots,SpuriousCorrelation,Cointegration................... 200
7 GeneralizedAutoregressiveProcesses.................................... 203
7.1 DefinitionofGeneralizedAutoregressiveProcesses ............... 203
7.2 StationarySolutionofGeneralizedAutoregressiveEquations..... 204
7.3 DefinitionofVARMAProcesses.................................... 209
7.4 StationarySolutionofVARMAEquations ......................... 211
7.5 DefinitionofGARCHProcesses .................................... 213
7.6 StationarySolutionofGARCHEquations.......................... 214
Contents ix
7.7 DefinitionofARCH(1)Processes.................................. 219
7.8 StationarySolutionofARCH(1)Equations....................... 220
8 Prediction.................................................................... 223
8.1 BestLinearPredictionGivenanInfinitePast....................... 223
8.2 Predictability ......................................................... 225
8.3 ConstructionoftheWoldDecompositionfromf................... 230
8.4 BestLinearPredictionGivenaFinitePast.......................... 235
9 Inferencefor(cid:2),(cid:3) andF................................................... 241
9.1 LocationEstimation.................................................. 241
9.2 LinearRegression.................................................... 244
9.3 NonparametricEstimationof(cid:4)...................................... 253
9.4 NonparametricEstimationoff ...................................... 262
10 ParametricEstimation..................................................... 281
10.1 GaussianandQuasiMaximumLikelihoodEstimation............. 281
10.2 WhittleApproximation .............................................. 284
10.3 AutoregressiveApproximation...................................... 287
10.4 ModelChoice......................................................... 289
References......................................................................... 293
AuthorIndex...................................................................... 299
SubjectIndex..................................................................... 303
Chapter 1
Introduction
1.1 WhatIs a TimeSeries?
Definition1.1 Letk 2N,T (cid:3)R.Afunction
xWT !Rk,t!x
t
or,equivalently,asetofindexedelementsofRk,
˚ (cid:2)
xjx 2Rk;t2T
t t
iscalledanobservedtimeseries.Wealsowrite
x (t2T)or .x/ :
t t t2T
Definition1.2 Letk 2N,T (cid:3)R,
(cid:3) (cid:4)
˝ D Rk T DspaceoffunctionsX WT !Rk;
F D(cid:5)-algebraon˝;
PDprobabilitymeasureon .˝;F/:
The probability space .˝;F;P/, or equivalently the set of indexed random
variables
˚ (cid:2)
XjX 2Rk;t2T , .X/ (cid:4)P
t t t t2T
©SpringerInternationalPublishingAG,partofSpringerNature2017 1
J.Beran,MathematicalFoundationsofTimeSeriesAnalysis,
https://doi.org/10.1007/978-3-319-74380-6_1
2 1 Introduction
Table1.1 TypesoftimeseriesX 2Rk(t2T)
t
Property Terminology
kD1 Univariatetimeseries
k(cid:2)2 Multivariatetimeseries
Tcountable,8a<b2RW T\Œa;b(cid:3)finite Discretetime
Tdiscrete,9u2RCs.t.tjC1(cid:3)tjDu Equidistanttime
T DŒa;b(cid:3)(a<b2R),TDRCorTDR Continuoustime
iscalledatimeseries,ortimeseriesmodel.Insteadof.˝;F;P/wealsowrite
X (t2T)or .X/ :
t t t2T
Moreover,foraspecificrealization! 2˝,wewriteX.!/and
t
.x/ D.X .!// Dsamplepathof .X/ ;
t t2T t t2T t t2T
.x / D.X .!// DfinitesamplepathofX:
ti iD1;:::;n ti iD1;:::;n t
Remark1.1 ˝ maybemoregeneralthaninDefinition1.2.Similarly,theindexset
T maybemoregeneralthanasubsetofR,butitmustbeorderedandmetric.Thus,
.X/ isastochasticprocesswithanorderedmetricindexsetT:
t t2T
Remark1.2 AnoverviewofthemostcommontypesoftimeseriesX 2Rk (t2T,
t
T ¤;)isgiveninTable1.1.
Remark1.3 IfX Dequidistanttimeseries,thenwemaysetw.l.o.g.T (cid:3)Z.
t
1.2 TimeSeries Versus iidData
What distinguishes statistical analysis of iid data from time series analysis? We
illustratethequestionbyconsideringthecaseofequidistantunivariaterealvalued
timeseriesX 2R(t2Z).
t
Problem1.1 IsconsistentestimationofPpossible?
Solution1.1 The answer depends on available a priori information and assump-
tionsoneiswillingtomake.Thisisillustratedinthefollowing.
Description:This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential