Table Of ContentMaterials and Processes
for Photocatalytic and
(Photo)Electrocatalytic
Removal of Bio-Refractory
Pollutants and Emerging
Contaminants from Waters
Edited by
Annalisa Vacca
Printed Edition of the Special Issue Published in Catalysts
www.mdpi.com/journal/catalysts
Materials and Processes for
Photocatalytic and
(Photo)Electrocatalytic Removal of
Bio-Refractory Pollutants and
Emerging Contaminants from Waters
Materials and Processes for
Photocatalytic and
(Photo)Electrocatalytic Removal of
Bio-Refractory Pollutants and
Emerging Contaminants from Waters
Editor
AnnalisaVacca
MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin
Editor
AnnalisaVacca
Universita`diCagliari
Italy
EditorialOffice
MDPI
St.Alban-Anlage66
4052Basel,Switzerland
This is a reprint of articles from the Special Issue published online in the open access journal
Catalysts(ISSN2073-4344)(availableat: https://www.mdpi.com/journal/catalysts/specialissues/
Electrocatalytic(Photo)ElectrocatalyticRemovalPollutants).
Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas
indicatedbelow:
LastName,A.A.;LastName,B.B.;LastName,C.C.ArticleTitle. JournalNameYear,VolumeNumber,
PageRange.
ISBN978-3-0365-3559-3(Hbk)
ISBN978-3-0365-3560-9(PDF)
©2022bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum
disseminationandawiderimpactofourpublications.
ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons
licenseCCBY-NC-ND.
Contents
AbouttheEditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
AnnalisaVacca
Materials and Processes for Photocatalytic and (Photo)Electrocatalytic Removal of
Bio-RefractoryPollutantsandEmergingContaminantsfromWaters
Reprintedfrom:Catalysts2021,11,666,doi:10.3390/catal11060666 . . . . . . . . . . . . . . . . . . 1
Pedro Martins, Sandro Kappert, Hoai Nga Le, Victor Sebastian, Klaus Ku¨hn, Madalena
Alves, Luciana Pereira, Gianaurelio Cuniberti, Manuel Melle-Franco and Senentxu
Lanceros-Me´ndez
EnhancedPhotocatalyticActivityofAu/TiO2NanoparticlesagainstCiprofloxacin
Reprintedfrom:Catalysts2020,10,234,doi:10.3390/catal10020234 . . . . . . . . . . . . . . . . . 3
Samer Khalaf, Jawad H. Shoqeir, Filomena Lelario, Sabino A. Bufo, Rafik Karaman and
LauraScrano
TiO2andActiveCoatedGlassPhotodegradationofIbuprofen
Reprintedfrom:Catalysts2020,10,560,doi:10.3390/catal10050560 . . . . . . . . . . . . . . . . . . 23
CharlieM.Kgoetlana,SorayaP.MalingaandLangelihleN.Dlamini
PhotocatalyticDegradationofChlorpyrifoswithMn-WO3/SnS2Heterostructure
Reprintedfrom:Catalysts2020,10,699,doi:10.3390/catal10060699 . . . . . . . . . . . . . . . . . . 41
Ce´cileMachut,NicolasKania,BastienLe´ger,Fre´de´ricWyrwalski,Se´bastienNoe¨l,Ahmed
Addad,EricMonflierandAnnePonchel
Fast Microwave Synthesis of Gold-Doped TiO2 Assisted by Modified Cyclodextrins for
PhotocatalyticDegradationofDyeandHydrogenProduction
Reprintedfrom:Catalysts2020,10,801,doi:10.3390/catal10070801 . . . . . . . . . . . . . . . . . . 63
LauraMais,SimonettaPalmas,MicheleMasciaandAnnalisaVacca
EffectofPotentialandChloridesonPhotoelectrochemicalRemovalofDiethylPhthalatefrom
Water
Reprintedfrom:Catalysts2021,11,882,doi:10.3390/catal11080882 . . . . . . . . . . . . . . . . . . 79
AdeemGhaffarRanaandMirjanaMinceva
AnalysisofPhotocatalyticDegradationofPhenolwithExfoliatedGraphiticCarbonNitrideand
Light-EmittingDiodesUsingResponseSurfaceMethodology
Reprintedfrom:Catalysts2021,11,898,doi:10.3390/catal11080898 . . . . . . . . . . . . . . . . . . 91
Alicia L. Garcia-Costa, Andre Savall, Juan A. Zazo, Jose A. Casas and Karine Groenen
Serrano
OntheRoleoftheCathodefortheElectro-OxidationofPerfluorooctanoicAcid
Reprintedfrom:Catalysts2020,10,902,doi:10.3390/catal10080902 . . . . . . . . . . . . . . . . . . 107
FilomenaLelario,GiulianaBianco,SabinoAurelioBufoandLauraScrano
SimulatedAgeingofCrudeOilandAdvancedOxidationProcessesforWaterRemediationsince
CrudeOilPollution
Reprintedfrom:Catalysts2021,11,954,doi:10.3390/catal11080954 . . . . . . . . . . . . . . . . . . 121
PornnaphatWichannananon,ThawanratKobkeatthawinandSiwapornMeejooSmith
VisibleLightResponsiveStrontiumCarbonateCatalystDerivedfromSolvothermalSynthesis
Reprintedfrom:Catalysts2020,10,1069,doi:10.3390/catal10091069 . . . . . . . . . . . . . . . . . 143
v
About the Editor
AnnalisaVacca,agraduateinChemicalEngineeringandPhDinIndustrialEngineering,was
granted the position of full professor in the field of “Fundamentals of chemical technology” in
2022. She carries out didactic and scientific research in the Department of Mechanical, Chemical
andMaterialsEngineeringattheUniversityofCagliari. Herresearchactivitiesarefocusedonthe
fieldofelectrochemicalengineeringappliedtothestudyofprocessesforenvironmentalremediation
andenergyconversion. Inparticular,herstudiescoverkeyaspectssuchasthecatalyticactivityof
electrodematerialsandtheidentificationofreactionmechanisms,aswellaspracticalaspectssuchas
thedesignandcharacterizationofelectrochemicalreactors.
vii
catalysts
Editorial
Materials and Processes for Photocatalytic and
(Photo)Electrocatalytic Removal of Bio-Refractory Pollutants
and Emerging Contaminants from Waters
AnnalisaVacca
DipartimentodiIngegneriaMeccanica,ChimicaedeiMateriali,UniversitàdiCagliari,PiazzaD’armi,
09123Cagliari,Italy;[email protected]
Thisvolumeisfocusedonmaterialsandprocessesfortheelectro-andphotoelectro-
chemicalremovalofbiorefractorypollutantsandemergingcontaminantsfromwatersto
showtheimportanceofelectrochemistryandphotoelectrochemistryinofferingsolutions
tocurrentenvironmentalproblems.Inaddition,wehighlighttheirinterdisciplinarityand
emphasizethefundamentalandappliedaspectsofthesemethods.
Theresearchforinnovativemethodsforremovingpollutantsfromwaterhasgrown
alongwiththedetectionofnewcontaminantsinwaterbodies,theso-calledemerging
pollutants(EP),thatcanaffectbothfloraandfaunaandhumanhealth[1]:theyinclude
productsuseddailyinhouseholds,industry,pharmaceuticalsandpersonalcareproducts,
gasolineadditives,plasticizersandmicroplastics[2]. TwomainissuesofEParetheir
dynamiccharacter,whichisalsoconnectedtotheimprovementofdetectiontechniques,
andthedifficultyofremovalbyconventionalwastewatertreatmenttechnologies.Moreover,
emergingpollutantsconstituteathreat—evenatatracelevel—becausetheirrealimpacton
humanhealthisunknown.
Citation: Vacca,A.Materialsand AlthoughtherearenodischargelimitsformostEPuptonow,theEuropeanCommis-
ProcessesforPhotocatalyticand sionhasdrawnupandimplementedawatchlistcontainingseveralchemicalcontaminants
(Photo)ElectrocatalyticRemovalof
thatmustbemonitoredwiththeaimtogeneratehigh-qualitydataontheirconcentra-
Bio-RefractoryPollutantsand
tionsintheaquaticenvironmentandtosupporttheriskassessmentsthatunderpinthe
EmergingContaminantsfromWaters.
identificationofprioritysubstances[3].
Catalysts2021,11,666. https://
Duringrecentyears,electro-andphotoelectrochemicalprocesseshavedemonstrated
doi.org/10.3390/catal11060666
theircapacitytoefficientlyoxidizemanyofthesecompounds.Startingfromtheearly1980s,
researchontheelectrochemicalmethodsfortreatedwastewaterhasgrownsignificantly,
Received:28April2021
andthousandsofpapersnowappearintheliterature.Althoughseveraltestsdemonstrate
Accepted:21May2021
Published:24May2021 theeffectivenessofpollutantremovalfromsyntheticandrealmatrices,thistechnology
isstillfarfromfull-scaleapplications.ItsTRL(technologyreadinesslevel)isbetween4
Publisher’sNote:MDPIstaysneutral (technologyvalidatedinthelab)and5(technologyvalidatedinarelevantenvironment)[4].
withregardtojurisdictionalclaimsin Morerecently,photoelectrochemicalprocessesinwhichelectrochemicalandphoto-
publishedmapsandinstitutionalaffil- chemicalprocessesarecombinedhasattractedincreasinginterest,thankstothesynergyof
iations. thetwoprocesses:theapplicationofabiaspotentialimprovesthephotochemicalprocess
andtheelectrochemicalprocessismoreefficientsincethephoto-potentialgeneratedonthe
semiconductorallowsforthedepolarizingofthecell.Thisiswhy,inthelasttwodecades,
thenumberofarticlesonphotochemicalwastewatertreatmenthasquicklyincreased,and
thepublicationofthesearticlesinspecificjournalsindicatesthatthetechnologyismoving
Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland. fromthefundamentalstorealapplications[5]. Nevertheless,theTRLofthephotoelec-
Thisarticleisanopenaccessarticle trochemicaltreatmentofwastewaterisstillatthelabscale,andmuchmoreeffortsare
distributed under the terms and requiredtopushthistechnologytowardapplicationsinthefield.
conditionsoftheCreativeCommons Thus,thisspecialissuecontributestothiscontext,addressingthesynthesis,character-
Attribution(CCBY)license(https:// ization,andapplicationofnewmaterials,aswellasthestudyofcatalyticprocessesand
creativecommons.org/licenses/by/ reactionkinetics.
4.0/).
1
Catalysts2021,11,666.https://doi.org/10.3390/catal11060666 https://www.mdpi.com/journal/catalysts
Catalysts2021,11,666
IthankalloftheauthorsfortheirvaluablecontributiontothisSpecialIssueandthe
editorialteamatCatalystfortheirkindnessandconstantsupport.
Funding:Thisresearchreceivednoexternalfunding.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Vasilachi,I.C.;Asiminicesei,D.M.;Fertu,D.I.;Gavrilescu,M.OccurrenceandFateofEmergingPollutantsinWaterEnvironment
andOptionsforTheirRemoval.Water2021,13,181.[CrossRef]
2. Murgolo,S.;DeCeglie,C.;DiIaconi,C.;Mascolo,G.NovelTiO2-basedcatalystsemployedinphotocatalysisandphotoelectro-
catalysisforeffectivedegradationofpharmaceuticals(PhACs)inwater:Ashortreview.Curr.Opin.GreenSustain.Chem.2021,30,
100473.[CrossRef]
3. EC(2018)CommissionImplementingDecision(EU)2018/840of5June2018establishingawatchlistofsubstancesforUnion-wide
monitoringinthefieldofwaterpolicypursuanttoDirective2008/105/ECoftheEuropeanParliamentandoftheCouncil
andrepealingCommissionImplementingDecision(EU)2015/495. Off. J.Eur. Union2018,L141,9–12. Availableonline:
https://eur-lex.europa.eu/eli/dec_impl/2018/840/oj(accessedon28April2021).
4. Lacasa,E.;Cotillas,S.;Saez,C.;Lobato,J.;Cañizares,P.;Rodrigo,M.A.Environmentalapplicationsofelectrochemicaltechnology.
Whatisneededtoenablefull-scaleapplications?Curr.Opin.Electrochem.2019,16,149–156.[CrossRef]
5. Palmas,S.;Mais,L.;Mascia,M.;Vacca,A.TrendinusingTiO2nanotubesasphotoelectrodesinPECprocessesforwastewater
treatment.Curr.Opin.Electrochem.2021,28,100699.[CrossRef]
2
catalysts
Article
/
Enhanced Photocatalytic Activity of Au TiO
2
Nanoparticles against Ciprofloxacin
PedroMartins1,2,*,SandroKappert3,HoaiNgaLe3,4,VictorSebastian5,6,KlausKühn3,
MadalenaAlves1,LucianaPereira1,GianaurelioCuniberti3,7,8,ManuelMelle-Franco9and
SenentxuLanceros-Méndez1,10,11,*
1 DepartmentofPhysics/CentreofBiologicalEngineering,UniversityofMinho,4710-057Braga,Portugal;
[email protected](M.A.);[email protected](L.P.)
2 IB-S—InstituteforResearchandInnovationonBio-Sustainability,UniversityofMinho,
4710-057Braga,Portugal
3 InstituteforMaterialsScienceandMaxBergmannCenterofBiomaterials,TechnischeUniversitätDresden
Dresden,01062Dresden,Germany;[email protected](S.K.);[email protected](H.N.L.);
[email protected](K.K.);[email protected](G.C.)
4 DepartmentofChemicalEngineering,HanoiUniversityofScienceandTechnology,Hanoi10000,Vietnam
5 DepartmentofChemicalEngineering,AragonInstituteofNanoscience(INA),UniversityofZaragoza,
CampusRíoEbro-EdificioI+D,C/PoetaMarianoEsquillorS/N,50018Zaragoza,Spain;[email protected]
6 NetworkingResearchCentreonBioengineering,BiomaterialsandNanomedicine,CentrodeInvestigacion
BiomédicaenRed—Bioengenharía,BiomaterialeseNanomedicina,28029Madrid,Spain
7 DresdenCenterforComputationalMaterialsScience,TechnischeUniversitätDresdenDresden,
01062Dresden,Germany
8 CenterforAdvancingElectronicsDresden,TechnischeUniversitätDresdenDresden,
01062Dresden,Germany
9 CentrodeInvestigaçãoemMateriaisCerâmicoseCompósitos,AveiroInstituteofMaterials,Departmentof
Chemistry,UniversityofAveiro,3810-193Aveiro,Portugal;[email protected]
10 BCMaterials,BasqueCenterforMaterials,Applications,andNanostructures,UniversidaddelPaís
Basco—EuskalHerrikoUnibertsitatea,SciencePark,48940Leioa,Spain
11 IKERBASQUE,BasqueFoundationforScience,48013Bilbao,Spain
* Correspondence:pamartins@fisica.uminho.pt(P.M.);[email protected](S.L.-M.)
Received:14January2020;Accepted:11February2020;Published:15February2020
Abstract:Inthelastdecades,photocatalysishasarisenasasolutiontodegradeemergingpollutants
suchasantibiotics.However,thereducedphotoactivationofTiO2undervisibleradiationconstitutes
amajordrawbackbecause95%ofsunlightradiationisnotbeingusedinthisprocess. Thus,itis
criticaltomodifyTiO2nanoparticlestoimprovetheabilitytoabsorbvisibleradiationfromsunlight.
ThisworkreportsonthesynthesisofTiO2nanoparticlesdecoratedwithgold(Au)nanoparticlesby
deposition-precipitationmethodforenhancedphotocatalyticactivity.Theproducednanocomposites
absorb40%to55%moreradiationinthevisiblerangethanpristineTiO2,thebestresultsbeing
◦
obtainedforthesynthesisperformedat25 CandwithAuloadingof0.05to0.1wt.%.Experimental
testsyieldedahigherphotocatalyticdegradationof91%and49%ofciprofloxacin(5mg/L)under
UVandvisibleradiation,correspondingly. Computationalmodelingsupportstheexperimental
results,showingtheabilityofAutobindTiO2anatasesurfaces,therelevantroleofAutransferring
electrons,andthehighaffinityofciprofloxacintobothAuandTiO2surfaces. Hence,thepresent
workrepresentsareliableapproachtoproduceefficientphotocatalyticmaterialsandanoverall
contributioninthedevelopmentofhigh-performanceAu/TiO2photocatalyticnanostructuresthrough
theoptimizationofthesynthesisparameters,photocatalyticconditions,andcomputationalmodeling.
Keywords:Au-TiO2;antibiotics;emergentcontaminants;nanocatalyst;photocatalysis;GFN-xTB
Catalysts2020,10,234;doi:10.3390/catal10020234 3 www.mdpi.com/journal/catalysts
Catalysts2020,10,234
1.Introduction
Theresilienceofspecificemergingpollutantssuchaspharmaceuticalstothetraditionalwastewater
treatmentsmakesthemspreadinvariableconcentrationsinsurfaceandgroundwater[1].Dissemination
ofantibioticsinnatureisoneofthemostsignificantenvironmentalconcernsastheyaffectbiological
metabolism and induce the presence of bacterial resistance among drinking water sources [2].
Photocatalysishasreceivedconsiderableattentionfromthescientificcommunityasapossiblesolution
todegradethesecompounds[3,4].
Typically,thephotocatalyticprocesstakesplacewhenacatalystisUVirradiatedandelectron-hole
−
pairsarecreatedthatwillreactwithH2O,OH ,andO2togenerateoxidizingspeciessuchasthe
hydroxylradical(OH•),superoxideradicalanions(O2•−),andhydrogenperoxide(H2O2). These
specieswillinitiateaseriesofreactionsthatwilldegradepollutantsintoharmlesscompounds(e.g.,
CO2andH2O).
Photocatalysispresentsseveraladvantageswhencomparedwithothermethods,suchasthelow
cost,andtheeco-friendlyandstraightforwardprocessingconditions[5,6].Manyphotocatalystshave
beenreportedinthelastdecades[7,8]. Amongthem,titaniumdioxide(TiO2)isthemoststudied
andappliedinphotocatalysis,mainlybecauseofitsremarkableopticalandoxidizingproperties,
superhydrophilicity,chemicalstability,anddurability[9,10].Despitethecompellingadvantagesof
TiO2,therearealsosomedrawbacks.OneofthemainhurdlesisthelowspectralactivationofTiO2,
causedbyitswidebandgap(3.0–3.2eV)excitationthatonlyoccursunderradiationintheUVornear
theUVregion(410–387nm)[11].
Forthisreason,solarradiationcannotbeefficientlyusedbecauseonlylessthan5%ofthisradiation
correspondstoUV[3]. Additionally,theprocessbecomeslesscosteffectiveastheUVlampsare
requiredtoprovidetheradiation. Anotherlimitationistheelectron-holepairrecombinationthat
decreasesthephotocatalyticefficiency[12,13].
Theresearchdevelopedinthelastdecadeshasbeenmainlydevotedtosurpassingthoselimitations
byproducingnewandmoreefficientphotocatalyticmaterials.Strategiesformetallicandnonmetallic
doping,co-doping[14,15],dyesensitization,semiconductorcombination,co-catalystloading,and
nanocompositematerials[16,17]havebeenusedandtested.Theseapproachesallowustoreducethe
electron-holerecombinationrateandenhancetheabsorptionofvisibleradiationofTiO2byintroducing
intermediateenergylevelsinsidethebandgap[18]. Inthisscope,severalworkshavereportedthe
functionalizationofTiO2nanoparticlessurfaceswithmetalssuchasAu[19],Cu[20],Co[21],and
Ag[22]. Whenirradiated,noblemetalsnanoparticlesattheTiO2surfacecanreceiveelectronsand
preventtherecombinationofthephoto-generatedelectron-holepairs[23,24].
MetalssuchasAuandAgcanincreasevisiblelightabsorptionduetothesurfaceplasmon
resonanceeffect[25,26].Gold(Au)nanoparticleshaveattractedconsiderableattention,mainlybecause
theypossessexceptionalstability,nontoxicity,andbiocompatibility[3]. Theirpropertiesarehighly
dependentonthesizeandshapeofthenanoparticles,allowingabroadrangeofapplications[27,28].
Forinstance,theliteratureshowsthatgoldnanoparticlesintherangeof5to10nmpresentanenhanced
catalyticactivity[29,30].Inthissense,someworksfocusedonthephotocatalyticactivityofAu/TiO2
nanocompositehavebeenpublished,includinginterestingreviewarticles[3,29,31].
Differentphysical-chemicaltechniqueshavebeenexploitedtoproduceAu/TiO2nanocomposites
withenhancedcatalyticproperties.Forinstance,chemicalvapordeposition[32],sol-gel[33],spray
pyrolysis[34],electrophoreticapproach[35],deposition-precipitation(DP)[36],deposition-precipitation
usingurea[37], impregnation[38], hybridization[39], andsurfacefunctionalization[40], among
others[41,42].However,manyofthesetechniquesaretime-consuming,andfewofthemhavefocused
ontheoptimizationofthenanocompositeandthecomputationalmodelingofitsnanostructure.Thus,
thisworkfocusedontheoptimizationofaDP,convertingtheAu/TiO2nanocompositeproduction
intoacost-effectiveandstraightforwardtechnique,withenhancedphotocatalyticactivity,underUV
andvisibleradiation.Themethodoptimizationaimsforcostreduction,usingthelowestAuloading
thatendowsvisiblespectraphotocatalyticactivitytothenanocomposite.Thecomputationalstudies
4