Table Of ContentEditedby
YanglongHou
DavidJ.Sellmyer
MagneticNanomaterials
Magnetic Nanomaterials
Fundamentals, Synthesis and Applications
Edited by Yanglong Hou and David J. Sellmyer
Editors AllbookspublishedbyWiley-VCHarecarefully
produced.Nevertheless,authors,editors,and
ProfessorYanglongHou publisherdonotwarranttheinformation
PekingUniversity containedinthesebooks,includingthisbook,tobe
DepartmentofMaterialsScience freeoferrors.Readersareadvisedtokeepinmind
andEng thatstatements,data,illustrations,procedural
100871Beijing detailsorotheritemsmayinadvertentlybe
China inaccurate.
ProfessorDavidJ.Sellmyer LibraryofCongressCardNo.:appliedfor
UniversityofNebraska-Lincoln
BritishLibraryCataloguing-in-PublicationData
NebraskaCenterf.Materials
855N.16thStreet,N201ANANO Acataloguerecordforthisbookisavailablefrom
NE theBritishLibrary.
UnitedStates
Bibliographicinformationpublishedbythe
DeutscheNationalbibliothek
Cover iStocksetixela
TheDeutscheNationalbibliothekliststhis
publicationintheDeutscheNationalbibliografie;
detailedbibliographicdataareavailableonthe
Internetat<http://dnb.d-nb.de>.
2017Wiley-VCHVerlagGmbH&Co.KGaA,
Boschstr.12,69469Weinheim,Germany
Allrightsreserved(includingthoseoftranslation
intootherlanguages).Nopartofthisbookmaybe
reproducedinanyform–byphotoprinting,
microfilm,oranyothermeans–nortransmittedor
translatedintoamachinelanguagewithoutwritten
permissionfromthepublishers.Registerednames,
trademarks,etc.usedinthisbook,evenwhennot
specificallymarkedassuch,arenottobe
consideredunprotectedbylaw.
PrintISBN:978-3-527-34134-4
ePDFISBN:978-3-527-80324-8
ePubISBN:978-3-527-80326-2
MobiISBN:978-3-527-80327-9
oBookISBN:978-3-527-80325-5
CoverDesign Wiley
Typesetting ThomsonDigital,Noida,India
PrintingandBinding MarkonoPrintMedia
PteLtd,Singapore
Printedonacid-freepaper
v
Contents
ListofContributors xvii
Preface xxiii
PartOne Fundamentals 1
1 OverviewofMagneticNanomaterials 3
ZiyuYang,ShuangQiao,ShouhengSun,andYanglongHou
1.1 Introduction 3
1.1.1 TypicalMagneticNanomaterials 4
1.1.1.1 MagneticNanomaterialsofMetal(Fe,Co,andNi) 4
1.1.1.2 MagneticNanomaterialsofMNAlloys(M=Fe,Co,andNi,N=Noble
Metal) 7
1.1.1.3 MagneticNanomaterialsofM M Alloys(M ,M =Fe,Co,andNi) 9
1 2 1 2
1.1.1.4 MagneticNanomaterialsofCarbidesandNitridesM–C/N(M=Fe,
Co,andNi) 10
1.1.1.5 MagneticNanomaterialsofMetalOxides 12
1.1.1.6 RareEarth-BasedPermanentMagnets 13
1.2 TypicalCharacterizationofMagneticNanomaterials 14
1.2.1 X-RayMagneticCircularDichroismSpectroscopy 14
1.2.2 LorentzTransmissionElectronMicroscope 15
1.2.3 MössbauerSpectroscopy 18
1.2.4 MagneticExtendedX-RayAbsorptionFineStructure 18
1.2.5 MagneticForceMicroscopy 19
1.2.6 MagneticAnalysis 21
1.3 Conclusions 22
References 22
2 MagnetismofNanomaterials 29
RalphSkomski,BalamuruganBalasubramanian,andDavidJ.Sellmyer
2.1 Introduction 29
2.1.1 FundamentalConsiderationsinMagnetism 32
2.1.2 Exchange 34
2.1.3 ItinerantMagnetism 35
2.1.4 ClassesofMagneticMaterials 38
vi Contents
2.1.4.1 PermanentMagnets 39
2.1.4.2 OtherApplications 41
2.1.5 Finite-TemperatureMagnetism 42
2.1.6 MagneticAnisotropy 45
2.1.6.1 PhenomenologyofAnisotropy 45
2.1.6.2 MicroscopicOriginofAnisotropy 46
2.1.6.3 TemperatureDependenceofAnisotropy 48
2.2 NanomagneticPhenomenaofAtomicOrigin 48
2.2.1 RKKYExchange 48
2.2.2 NanoparticleMagnetization 49
2.2.3 Finite-SizeScaling 50
2.2.4 SurfaceandInterfaceAnisotropy 51
2.3 Micromagnetics 52
2.3.1 MicromagneticFreeEnergy 53
2.3.2 MicromagneticScaling 54
2.3.3 MagnetizationReversal 55
2.3.3.1 MagnetizationCurling 55
2.3.3.2 LocalizedNucleation 56
2.3.3.3 Pinning 57
2.3.4 NanogeometryandMicromagnetism 58
2.3.4.1 Hard-SoftTwo-PhaseNanostructures 58
2.3.4.2 Grain-BoundaryMicromagnetism 60
2.3.4.3 MicromagneticTopologicalProtection 61
2.3.5 MagnetizationDynamics 61
2.3.5.1 SpinWavesandFerromagneticResonance 62
2.3.5.2 NuclearMagneticResonance 63
2.3.5.3 MagneticViscosity 63
2.4 Spin-DependentTransport 64
2.4.1 Magnetoresistance 65
2.4.1.1 MetallicConductivity 65
2.4.1.2 MagnetoresistanceMechanisms 67
2.4.2 AnomalousHallEffect 67
2.4.3 TopologicalOrders 68
2.4.4 BerryPhase 68
Appendices 71
Appendix2.A:FunctionalDerivativesandMaterialsEquations 71
Appendix2.B:RelativisticPhysics 72
Appendix2.C:UnitConversioninMagnetism 74
Acknowledgments 74
References 74
PartTwo Synthesis 81
3 OverviewofSynthesisofMagneticNanomaterials 83
XinChuandYanglongHou
3.1 Introduction 83
Contents vii
3.2 GeneralSynthesisMechanismofMagneticNanoparticles 85
3.2.1 Top-DownApproaches 85
3.2.2 Bottom-UpApproaches 85
3.3 TypicalMethodsandEquipmentofMagneticNanomaterials
SyntheticTechniques:ChemicalApproaches 85
3.3.1 Coprecipitation 85
3.3.1.1 GeneralMechanismofCoprecipitationMethodforMagnetic
NanoparticlesSynthesis 85
3.3.1.2 TheProcessandInfluenceFactorsofCoprecipitationMethodfor
MagneticNanoparticleSynthesis 86
3.3.1.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
CoprecipitationMethod 87
3.3.2 HydrothermalandSolventThermalSynthesis 87
3.3.2.1 GeneralMechanismofHydrothermalandSolventThermalMethod
forMagneticNanoparticlesSynthesis 87
3.3.2.2 TheProcessandInfluenceFactorofSolventThermalSynthesisin
MagneticNanoparticleSynthesis 87
3.3.2.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
Hydrothermal 88
3.3.3 ThermalDecomposition 89
3.3.3.1 GeneralMechanismofThermalDecompositionMethodforMagnetic
NanoparticlesSynthesis 89
3.3.3.2 TheInfluenceFactorsofThermalDecompositionMethodfor
MagneticNanoparticleSynthesis 89
3.3.3.3 TheTypicalMagneticNanoparticlesSynthesizedwithThermal
Decomposition 91
3.3.4 Sol–GelMethod 91
3.3.4.1 GeneralMechanismofSol–GelMethodforMagneticNanoparticles
Synthesis 91
3.3.4.2 TheProcessandInfluenceFactorsofSol–GelMethodforMagnetic
NanoparticleSynthesis 92
3.3.4.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesized with
Sol–GelMethod 93
3.3.5 UltrasonicChemicalReactions 93
3.3.5.1 GeneralMechanismofUltrasonicChemicalReactionsforMagnetic
NanoparticlesSynthesis 93
3.3.5.2 TheProcessandInfluenceFactorsofUltrasonicChemicalReactions
forMagneticNanoparticleSynthesis 93
3.3.5.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
UltrasonicChemicalReaction 94
3.3.6 ChemicalReduction 94
3.3.6.1 GeneralMechanismofChemicalReductionMethodforMagnetic
NanoparticlesSynthesis 94
3.3.6.2 TheTypicalReductiveAgentsUsedinChemicalReduction
Method 95
3.3.6.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
ChemicalReduction 95
viii Contents
3.3.7 MicroemulsionReactions 97
3.3.7.1 GeneralMechanismofMicroemulsionReactionsforMagnetic
NanoparticlesSynthesis 97
3.3.7.2 TheProcessandInfluenceFactorsofMicroemulsionReactionsfor
MagneticNanoparticleSynthesis 97
3.3.7.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
MicroemulsionReactions 99
3.3.8 Microwave-AssistedSynthesis 100
3.3.8.1 GeneralMechanismofMicrowave-AssistedSynthesisforMagnetic
NanoparticlesSynthesis 100
3.3.8.2 TheProcessandInfluenceFactorsofMicrowave-AssistedSynthesis
forMagneticNanoparticleSynthesis 100
3.3.8.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
Microwave-AssistedSynthesis 101
3.3.9 ChemicalDeposition 102
3.3.9.1 GeneralMechanismofChemicalDepositionMethodforMagnetic
NanoparticlesSynthesis 102
3.3.9.2 TheProcessandInfluenceFactorsofChemicalDepositionSynthesis
forMagneticNanoparticleSynthesis 102
3.3.9.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
ChemicalDepositionSynthesis 102
3.4 TypicalMethodsandEquipmentofMagneticNanomaterialsSynthetic
Techniques:PhysicalApproaches 104
3.4.1 MetalEvaporationMethod 104
3.4.1.1 GeneralMechanismofMetalEvaporationMethodforMagnetic
NanoparticlesSynthesis 104
3.4.1.2 TheProcessandInfluenceFactorsofMetalEvaporationSynthesisfor
MagneticNanoparticleSynthesis 104
3.4.1.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
MetalEvaporationSynthesis 105
3.4.1.4 TheLimitationofMetalEvaporationSynthesisinMagnetic
NanoparticleSynthesis 107
3.4.2 High-EnergyBallMillingMethod 108
3.4.2.1 GeneralMechanismofHigh-EnergyBallMillingMethodforMagnetic
NanoparticlesSynthesis 108
3.4.2.2 TheProcessandInfluenceFactorsofHigh-EnergyBallMilling
MethodforMagneticNanoparticlesSynthesis 108
3.4.2.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
High-EnergyBallMillingMethod 108
3.4.2.4 TheLimitationofHigh-EnergyBallMillingMethodinMagnetic
NanoparticleSynthesis 108
3.4.3 PlasmaMethod 109
3.4.3.1 GeneralMechanismofPlasmaMethodforMagneticNanoparticles
Synthesis 109
3.4.3.2 TheProcessandInfluenceFactorsofPlasmaMethodforMagnetic
NanoparticleSynthesis 109
Contents ix
3.4.3.3 CharacteristicsofTypicalMagneticNanoparticlesSynthesizedwith
PlasmaMethod 110
3.4.3.4 TheLimitationofPlasmaMethodinMagneticNanoparticle
Synthesis 113
3.4.4 OtherMethods 113
3.5 ConclusionsandPerspectives 113
References 114
4 SynthesisofSoftMagneticNanomaterialsandAlloys 121
SongLanandMatthewA.Willard
4.1 Introduction 121
4.2 Nanoparticles 123
4.3 Nanorods 127
4.4 ThinFilms 134
4.5 Ribbons 136
4.5.1 RapidSolidification 136
4.5.2 Crystallization 137
4.6 Conclusions 140
References 141
5 SynthesisofNanostructuredRare-EarthPermanentMagnets 147
MingYueandGeorgeC.Hadjipanayis
5.1 Introduction 147
5.1.1 DevelopmentofNanostructuredRare-EarthPermanentMagnets 147
5.1.2 TechniquesforPreparingNanostructuredREPM 149
5.1.2.1 NanostructuredPowdersandLow-DimensionalMaterials 149
5.1.2.2 BulkFullyDenseMagnets 152
5.2 RCox-Based(R=Sm,Pr,Y,La)NanostructuredMagnets 155
5.2.1 RCox-BasedSingle-PhaseMagnets 155
5.2.1.1 MagneticallyIsotropicMagnets 155
5.2.1.2 MagneticallyAnisotropicMagnets 156
5.2.2 RCox-BasedNanocompositeMagnets 158
5.2.2.1 MagneticallyIsotropicMagnets 158
5.2.2.2 MagneticallyAnisotropicMagnets 160
5.3 R Fe B-Based(R=Pr,Nd,Tb,Dy)Magnets 161
2 14
5.3.1 R Fe B-BasedSingle-PhaseMagnets 161
2 14
5.3.1.1 MagneticallyIsotropicMagnets 161
5.3.1.2 MagneticallyAnisotropicMagnets 162
5.3.2 R Fe B-BasedNanocompositeMagnets 163
2 14
5.3.2.1 MagneticallyIsotropicMagnets 163
5.3.2.2 MagneticallyAnisotropicMagnets 164
5.4 ConclusionsandPerspectives 166
References 166
6 SynthesisofRareEarthFreePermanentMagnets 175
ShenqiangRenandJinboYang
6.1 Introduction 175
x Contents
6.2 TetragonalL1 FeCo 175
0
6.3 MnBiLow-TemperaturePhase 179
6.4 ConclusionsandPerspective 186
Acknowledgment 187
References 187
7 SynthesisandPropertiesofMagneticChalcogenide
Nanostructures 191
KarthikRamasamy,SoubantikaPalchoudhury,andArunavaGupta
7.1 Introduction 191
7.2 SynthesisMethodsofBinaryMagneticChalcogenide
Nanostructures 192
7.2.1 IronSulfideNanocrystals 192
7.2.2 IronSelenideNanocrystals 195
7.2.3 EuropiumChalcogenideNanocrystals 196
7.3 SynthesisMethodsofTernaryandHigherOrderMagnetic
ChalcogenidesNanostructures 201
7.4 StructuralandMagneticCharacterizationsofMagneticChalcogenide
Nanostructures 206
7.5 PotentialApplicationsofMagneticChalcogenide
Nanostructures 208
7.5.1 SpintronicsApplications 208
7.5.2 MagnetocaloricApplications 209
7.5.3 Magneto-OpticApplications 210
7.5.4 BiomedicalApplications 210
7.6 ConclusionsandPerspectives 211
Acknowledgments 212
References 212
8 MagneticMulticomponentHeterostructuredNanocrystals 217
P.DavideCozzoli,ConcettaNobile,RiccardoScarfiello,AngelaFiore,and
LuigiCarbone
8.1 Introduction 217
8.2 SynthesisofHeterostructuredNanocrystals:BasicConceptsand
GuidingCriteria 219
8.2.1 SynthesisofSingle-MaterialNanocrystals 219
8.2.2 ThermodynamicsUnderlyingHeterostructureFormation 220
8.2.3 Liquid-PhaseEpitaxyviaSeededGrowth 222
8.3 HeterostructureswithCore/ShellGeometries 223
8.3.1 DirectHeterogeneousDeposition 224
8.3.1.1 All-MetalAssociations 226
8.3.1.2 Semiconductor/Transition-MetalAssociations 231
8.3.1.3 MetalOxide-BasedAssociations 231
8.3.2 SilicaCoating 235
8.3.3 ShellFormationbyRedoxReplacementorConversionReactions 237
8.3.4 ShellTransformationviaCation-ExchangeReactions 240