Table Of ContentDeepansh Sharma
Anita Saini
Lignocellulosic
Ethanol
Production from a
Biorefinery
Perspective
Sustainable Valorization of Waste
Lignocellulosic Ethanol Production from
a Biorefinery Perspective
(cid:129)
Deepansh Sharma Anita Saini
Lignocellulosic Ethanol
Production from
a Biorefinery Perspective
Sustainable Valorization of Waste
DeepanshSharma AnitaSaini
AmityInstituteofMicrobialTechnology DepartmentofMicrobiology
AmityUniversity ShooliniInstituteofLifeSciencesandBusiness
Jaipur,Rajasthan,India Management
Solan,HimachalPradesh,India
ISBN978-981-15-4572-6 ISBN978-981-15-4573-3 (eBook)
https://doi.org/10.1007/978-981-15-4573-3
#SpringerNatureSingaporePteLtd.2020
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe
materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this
bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor
theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany
errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional
claimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore
Contents
1 IntroductiontoLignocellulosicEthanol.. . . . .. . . . . .. . . . .. . . . .. 1
NeedforRenewableFuels/GeneralBackground. . . . . . . . . . . . . . . . . . 2
BioethanolasaFuel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
ClassificationofBioethanolFuel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
First-GenerationBioethanol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Second-GenerationBioethanol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Third-GenerationBioethanol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
WasteValorizationThroughCellulosicEthanolProduction. . . . . . . . . . 15
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 CellulosicEthanolFeedstock:DiversityandPotential. . . . . . . . . . . . 23
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Lignocellulose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Cellulose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Hemicellulose. . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . 28
Lignin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CellWallOrganization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
FeedstockforCellulosicEthanol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
AgriculturalWastesasBioethanolFeedstock. . . . . . . . . . . . . . . . . . . . 33
RiceFeedstockResidues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
WheatStraw. .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . 35
SugarcaneBagasse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
IndustrialWasteasBioethanolFeedstock. . . . . . . . . . . . . . . . . . . . . . . 42
ForestWasteasBioethanolFeedstock. . . . . . . . . . . . . . . . . . . . . . . . . 44
MunicipalSolidWasteasBioethanolFeedstock. . . . . . . . . . . . . . . . . . 45
DedicatedEnergyCropsasBioethanolFeedstock. . . . . . . . . . . . . . . . . 46
Switchgrass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Miscanthus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
NapierGrass(PennisetumPurpureum). . . . . . . . . . . . . . . . . . . . . . . . . 49
Others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
vv
vi Contents
WeedBiomassasBioethanolFeedstock. . . . . . . . . . . . . . . . . . . . . . . . 50
WaterHyacinth(EichhorniaCrassipes). . . . . . . . . . . . . . . . . . . . . . . . 50
PartheniumHysterophorus.. . . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. 52
Others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 PretreatmentTechnologiesforBiomassDeconstruction. . . . . . . . . . 65
NeedforBiomassPretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
MethodsforBiomassPretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PhysicalPretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
MechanicalComminution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Extrusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
MicrowaveIrradiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Ultrasonication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
ElectronBeamIrradiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
PhysicochemicalPretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
AlkaliPretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
AcidPretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
OrganosolvPretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
WetOxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
SteamExplosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
AmmoniaFiberExplosionMethod(AFEX). . . . . . . . . . . . . . . . . . . . . 91
SupercriticalCO (orCO Explosion). . . . . . . . . . . . . . . . . . . . . . . . . 92
2 2
SO Explosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2
AlkalinePeroxidePretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
IonicLiquids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
BiologicalPretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4 SaccharificationFermentationandProcessIntegration. . . . . . . . . . . 111
BiomassHydrolysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
AcidHydrolysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
EnzymaticHydrolysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
CostofCellulases:AnImpedimentinBioethanolProduction. . . . . . . . . 122
StrategiesforImprovingCellulases. . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Fermentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
MicrobesforEthanolFermentation. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
ModesofFermentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
FactorsAffectingFermentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
ProcessIntegrationforSecond-GenerationEthanol. . . . . . . . . . . . . . . . 132
SeparateHydrolysisandFermentation(SHF). . . . . . . . . . . . . . . . . . . . 134
SeparateHydrolysisandCo-Fermentation(SHCF). . . . . . . . . . . . . . . . 136
SimultaneousSaccharificationandFermentation(SSF). . . . . . . . . . . . . 138
SimultaneousSaccharificationandCo-Fermentation(SSCF). . . . . . . . . 143
ConsolidatedBioprocessing(CBP). . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Contents vii
EthanolProductionfromHighBiomassLoading. . . . . . . . . . . . . . . .. . 147
On-SiteCellulaseProductionforEnzymeCostReduction. . . . . . . . . . . 150
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5 MicrobialandPlantGeneticEngineeringforEfficient
Conversions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
EngineeredYeasttoProduceCellulosicBiofuels. . . . . . . . . . . . . . . . . 161
EngineeringofCellforEfficientConversions. . . . . . . . . . . . . . . . . . . . 161
EngineeringofSubstrateUtilization. . . . . . . . . . . . . . . . . . . . . . . . . . . 163
ToleranceAgainstInhibitors,Temperature,andSolvents. . . . . . . . . . . . 166
GeneticModificationofPlantsforBioethanolProduction. . . . . . . . . . . 167
ReductionandModificationofLignin. . . . . . . . . . . . . . . . . . . . . . . . . 168
IncreaseinCelluloseContent.. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. 169
IncreaseinBiomassContent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
SynthesisofCellWallHydrolyticEnzymesbyTransgenicPlants. . . . . 170
DecreaseinCelluloseCrystallinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6 Bioethanol:ProductSeparationMethods. . . . . . . . . . . . . . . . . . . . . 177
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Membrane-BasedApproaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
PervaporationMethod.. . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . 178
ReverseOsmosisBasedSeparations. . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Liquid–LiquidSeparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
VaporPermeationApproach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
AdsorptionMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
ExtractionMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Distillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
ExtractiveDistillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Pressure-SwingDistillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
AzeotropicDistillationSeparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Adsorption–Distillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7 LignocellulosicWasteValorizationandBiorefineriesConcept. . . . . 195
BackgroundandIntroduction. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 196
LignocellulosicBiomassValorization. . . . . . . . . . . .. . . . . . . . . . . .. . 197
BiorefineryConcept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
UtilityofaLignocellulosicSubstrates. . . . . . . . . . . . . . . . . . . . . . . . . 200
BiorefineryofLignocellulosicBiomass. . . . . . . . . . . . . . . . . . . . . . . . 201
SustainabilityAssessmentofBiorefineries. . . . . . . . . . . . . . . . . . . . . . 203
BiorefineryLifeCycleAssessment.. . . . . . . . .. . . . . . . .. . . . . . . .. . 204
TechnologyandSocioeconomicAnalysisofBiorefinery(TEA). . . . . . . 206
RegulationsforForthcomingBiorefineries. . . . . . . . . . . . . . . . . . . . . . 207
viii Contents
CaseStudies:LignocellulosicValorizationThroughBiorefinery. . . . . . 210
ConclusionandFuturePerspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . 211
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8 FermentationEconomicsandFutureProspects. . . .. . . . . . . . . . . .. 217
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
FactorsAffectingFermentationEconomics. . . . . . . . . . . . . . . . . . . . . . 219
MarketPotential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
FermentationandProductRecoveryCosts. . . . . . . . . . . . . . . . . . . . 220
ProcessAssessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
CaseStudies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
StrategiestoImproveFermentationEconomicsofBioethanol. . . . . . . . 226
FutureProspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
About the Authors
Deepansh Sharma is working as an Assistant Professor (Microbiology) at Amity
InstituteofMicrobial Technology,AmityUniversity,Rajasthan.Hehasstartedhis
academiccareerasanAssistantProfessor(Microbiology)attheSchoolofBiotech-
nologyandBio-engineering,LovelyProfessionalUniversity,Punjab,India.Hehas
extensiveteachingandresearchexperienceinthefieldofFermentationTechnology,
Food Microbiology, Industrial Microbiology, and Microbial Technology. Previ-
ously, he has been selected for the Short-term scholarship (DAAD, Germany-
2012) to work as an international visiting researcher at Technical Biology Branch
II,KarlsruheInstituteofTechnology,Germany.Furthermore,heisanactivemem-
ber of many scientific societies and organizations, including the Association of
Microbiologistsof India, American Society of Microbiology, European Federation
of Biotechnology, and International Scientific Association for Prebiotics and
Probiotics.Tillnow,hehaspublishedmorethan35peer-reviewedresearcharticles,
5 books on microbial biosurfactants and applied microbiology and authored/co-
authoredchaptersinvariouseditedbooks.
Anita Saini is working as an Assistant Professor of Microbiology at Shoolini
Institute of Life Sciences and Business Management, Solan, Himachal Pradesh,
India. Her research expertise involves microbial bioprospecting, production of
lignocellulolytic and esterases enzymes, biomass pretreatment, and second-
generation ethanol production. Till now, she has published more than 10 research
andreviewarticlesinvariouspeer-reviewednational/internationaljournalsandhas
authored/co-authoredchaptersinvariouseditedbooks.
iixx
1
Introduction to Lignocellulosic Ethanol
Abstract
The current human population growth worldwide, tied with industrial advance-
ment and urbanization, has led to the grave concern about energy security to
future generations. Approximately 86% of the primary energy demands of the
world are being met by fossil fuels. The rise in population and the increasing
economic growth of nations will cause an exponential rise in fossil fuels’
demands in near future. The atmospheric pollution can lead to more serious
problems such as acid rain, which is more prevalent in industrial areas with
highconsumptionrateoffossilfuels.Theuseofbiofuelsisencouragedbecause
of their potential for contributing in reduced dependence on fossil fuels and
mitigating atmospheric pollution by lowering the level of CO emissions. One
2
promising waste valorization strategy is energy recovery from lignocellulosic
biomass. The estimates show that the biomass can contribute to 20–90% of the
energy demands of the world. Several countries have already started taking
initiatives for commercializing cellulosic ethanol production and studying their
feasibilityforfuturedevelopments.In2016,38millionlitersofthetotal58billion
liters ofbioethanol inthe USA, and six million liters of total 25 billion liters of
bioethanolinBrazil,werecellulosicethanol.Thetechnologicaladvancementsto
reducetheproductioncostcanenhancetheproductionlevelssignificantly,which
suggeststhatthissectorcanbetappedformeetingfutureenergydemandsofthe
world.
Keywords
Biofuel·Fermentation·Lignocellulosicwaste·WasteValorization·Yeast
#SpringerNatureSingaporePteLtd.2020 1
D.Sharma,A.Saini,LignocellulosicEthanolProductionfromaBiorefinery
Perspective,https://doi.org/10.1007/978-981-15-4573-3_1