Table Of Contentlectures on the Theory of
Group Properties of
Differential Equations
微分方程群性质理论讲义
Edited by N. H. Ibragimov
也 1lt奇'J:P.ι~l
HIGHEREOυCAτlONPRESS
•
NONLINEAR PHYSICAL SCIENCE
(cid:154)(cid:130)5(cid:212)n(cid:137)˘
This page intentionally left blank
NONLINEAR PHYSICAL SCIENCE
NonlinearPhysicalSciencefocusesonrecentadvancesoffundamentaltheoriesand
principles,analyticalandsymbolicapproaches,aswellascomputationaltechniques
innonlinearphysicalscienceandnonlinearmathematicswithengineeringapplica-
tions.
TopicsofinterestinNonlinearPhysicalScienceincludebutarenotlimitedto:
-Newfindingsanddiscoveriesinnonlinearphysicsandmathematics
-Nonlinearity,complexityandmathematicalstructuresinnonlinearphysics
-Nonlinearphenomenaandobservationsinnatureandengineering
-Computationalmethodsandtheoriesincomplexsystems
-Liegroupanalysis,newtheoriesandprinciplesinmathematicalmodeling
-Stability,bifurcation,chaosandfractalsinphysicalscienceandengineering
-Nonlinearchemicalandbiologicalphysics
-Discontinuity,synchronizationandnaturalcomplexityinthephysicalsciences
SERIES EDITORS
AlbertC.J.Luo NailH.Ibragimov
Department of Mechanical and Industrial DepartmentofMathematicsandScience
Engineering BlekingeInstituteofTechnology
SouthernIllinoisUniversityEdwardsville S-37179Karlskrona,Sweden
Edwardsville,IL62026-1805,USA Email:[email protected]
Email:[email protected]
INTERNATIONAL ADVISORY BOARD
PingAo,UniversityofWashington,USA;Email:[email protected]
JanAwrejcewicz,TheTechnicalUniversityofLodz,Poland;Email:[email protected]
EugeneBenilov,UniversityofLimerick,Ireland;Email;[email protected]
EshelBen-Jacob,TelAvivUniversity,Israel;Email:[email protected]
MauriceCourbage,Universite´Paris7,France;Email:[email protected]
MarianGidea,NortheasternIllinoisUniversity,USA;Email:[email protected]
JamesA.Glazier,IndianaUniversity,USA;Email:[email protected]
ShijunLiao,ShanghaiJiaotongUniversity,China;Email:[email protected]
JoseAntonioTenreiroMachado,ISEP-InstituteofEngineeringofPorto,Portugal;Email:[email protected]
NikolaiA.Magnitskii,RussianAcademyofSciences,Russia;Email:[email protected]
JosepJ.Masdemont,UniversitatPolitecnicadeCatalunya(UPC),Spain;Email:[email protected]
DmitryE.Pelinovsky,McMasterUniversity,Canada;Email:[email protected]
SergeyPrants,V.I.Il’ichevPacificOceanologicalInstituteoftheRussianAcademyofSciences.Russia;
Email:[email protected]
VictorI.Shrira,KeeleUniversity,UK;Email:[email protected]
JianQiaoSun,UniversityofCalifornia,USA;Email:[email protected]
Abdul-MajidWazwaz,SaintXavierUniversity,USA;Email:[email protected]
PeiYu,TheUniversityofWesternOntario,Canada;Email:[email protected]
L.y. Ovsyannikov
Lectures on the Theory of
Group Properties of
Differential Equations
微分方程群'性质理论讲义
Weifen Fangcheng Qunxingzhi Lilun Jiangyi
Edited by N.H. Ibragimov
Translated by E.D. Avdonina, N.H. Ibragimov
·北京
剧盹
Aωh(Jr E"it(J~
LV Ov<ya盯nikov \lail H. Ihrdgimo飞
Couocilor ofRussian Acadcrηy nfScicnce< Dcpartmcnt of Mnthcrnatics and 只~'Pnt'.
Lavrcntyc\' lns{itu{c of Hydr 、d,叫到m,~< Blckingc InSlilutc ofTcchnol,唱、
Lavrentyev ?叫 15 371 79 Karlskron~. <:"'edcn
Novosibirsk, 63∞ 90. Rω"" E-mail' nih(i毛hlh ~旷
F-m~il' ovs(a)hytlro.MC.nI
,
,
俨 2013 Highcr Edu陀alion f>r陀ss Lim ted Comp3ny. 4 Dewai Dajie. 1阳。120. R~;i;η~. l' R \'j,,"
图书在版捕目 (C f P )数据
微甘方程前性顶用ìt讲义== Lecturt's on the theory of
grO\lp pr叩ertl<"::龟 o(di卧陀nti31 叫ll"UOn、英文 ! (俄罗斯)
跑走斯币尼科J王若 北京高耳教育出版祉 2013.4
(非战忡物坪科学/罗明位 f 瑞典丁伊布柿韭'"失
丰蝙)
ISDN 9ï8 ï 04 036944 1
①橄 U. ,:1)现 rn ①微分方程研究英文
'2'本群 研究英立 [\' ~.v OlïS 字。 1:;2 5
小罔版术闯卡11'\ (":IP 数据枯宁( :!Ol飞)寄; 029566 号
司E划l编幌子'.RF.浮 ,陪任编指 手华英 树面设计均TJ新 I<i式1号计字..灯
白阿侄核对 陈烟野 哥哥{圣即制桥创
出胶好?于 2写写数育出版社 咨淘司且活 ~OO-810-0598
垃 址 北京市西城l主ll!外大街 4 哥 同 址 htrp:ltw飞.vw.hep,edu.rn
;Ij(\~偏码 100120 http;//飞飞飞V飞v.hcp.com.cn
日j 自由 原4钊币犀间四月11苟明公司 网上订购 http://w飞V咽..,I~ndr且C(),COl11
开 '" 787n,,"" \(192111'" \ 11 (, 11Itp://ww飞,v.landmço.com ffl
印 ?长 <).75 版 次 20\3年 4 月革 l 版
字 数 2\0干宇 印 次 20\3埠 4 同事 1 府阳回|
晌书热钱 。\0-585日111冉
本?主如有缺页 倒!lî、树荫锋精俗J♂锁 1窗咧日开耐图书销笛苦恼叮联系1湖法
版权所有慢权必究
?匆料号 3的料 ω
Editor’s preface
WhenIstudiedatNovosibirskStateUniversity(Russian)Iwasluckytohavesuch
brilliantteachersinmathematicsas M.A.Lavrentyev,S.L.Sobolev,A.I.Mal’tsev,
Yu.G.Reshetnyakandothers.ButitwereL.V.Ovsyannikov’slecturesinOrdinary
differentialequations,Partialdifferentialequations,GasdynamicsandGroupprop-
erties ofdifferentialequationsthat wereofthemostbenefitforme.I attendedhis
course“Grouppropertiesofdifferentialequations”whenIwasathird-yearstudent.
His lectures provided a clear introduction to Lie group methods for determining
symmetries of differentialequations and a variety of their applications in gas dy-
namicsandothernonlinearmodelsaswellasOvsyannikov’sremarkablecontribu-
tiontothisclassicalsubject.Hislectureswerespectacularnotonlyduetothebril-
liantpresentationofthematerialbutalsoduetoabsolutelynewdiscoveriesforus.I
rememberoneofourmostemotionalstudent’srepeatedexclamationslike“Wonder-
ful,...Incredible!”everytimewhenOvsyannikovrevealedmostunusualproperties
ofsymmetriesorunexpectedmethods.
His lecture notes of this course were published in 1966 with the print of 300
copiesonly.SincethentheNoteswereneitherreprintednortranslatedintoEnglish,
thoughtheycontainthematerialthatisusefulforstudentsandteachersbutcannotbe
foundinmoderntexts.Forexample,theoryofpartiallyinvariantsolutionsdeveloped
byOvsyannikovandpresentedinx3.5,x3.6isusefulforinvestigatingmathematical
models described bysystems ofnonlineardifferentialequations.Itis importantto
makethisclassicaltextavailabletoeveryoneinterestedinmoderngroupanalysis.
In order to adapt the text for modern students I made several minor changes
intheEnglishtranslation.Inparticular,sectionshavebeendividedintosubsections
andfewmisprintshavebeencorrected.Partoftheproblemsformulatedin x3.7have
beencompletelyorpartiallysolvedsince1966.Butwedidnotmakeanycomments
onthismatterinthepresenttranslation.
January2013 NailH.Ibragimov
Preface
Thetheoryofdifferentialequationshastwoaspectsofinvestigation,namelylocal
andglobal,nomatterwhethertheequationsarisefromappliedproblemsofphysics
and mechanics or from abstract speculations (which is rather frequent in modern
mathematics).Thelocalaspectischaracterizedbydealingwiththeinnerstructure
of a familyofsolutionsandits investigationina neighborhoodof acertainpoint.
Theglobalapproachdealswithsolutionsdefinedinsomedomainandhavingagiven
behavioronitsboundary.
It would certainlybe erroneousto opposethese directionsto each other. How-
ever,it is nogoodtoignorethedifferencesinapproacheseither.Whiletheglobal
approachnecessitatesthefunctionalanalyticapparatus,thelocalviewpointallows
onetogetalongwithalgebraicmeansonly.Abrilliantexampleofaprofoundlo-
cal consideration is the famous Cauchy-Kovalevskaya theorem which is, in fact,
an algebraic statement. Moreover,it is an easy matter to notice that the theory of
boundary valueproblemsalso makes an essential applicationof various algebraic
propertiesofthewholefamilyofsolutions.Therefore,thelocalaspectofthealge-
braictheoryofdifferentialequationsisquitevital.
Thetheoryof grouppropertiesof differentialequationsdescriedin the present
lecturenotesisatypicalexampleofalocaltheory.Itisespeciallyvaluableininves-
tigatingnonlineardifferentialequations,foritsalgorithmsacthereasreliablyasfor
linearcases.
Inspiteofthefactthatthefundamentalsofthetheoryofgrouppropertieswere
elaboratedinworksoftheNorwegianmathematicianSophusLiemorethanahun-
dredyearsago,itsdevelopmentisdesirablenowadaysaswell.
Methodologicalpeculiarityofthepresenttextisthatitsfirstchapterusesonlythe
simplestalgebraicapparatusofone-parametergroups,whichisespeciallyadvisable
forresearchersengagedinappliedfields. This allowsoneto solvethe problemof
findingagroupadmittedbyagivensystemofdifferentialequationscompletely.The
secondchapteristailoredtoprovideadeeperinsightintothesubjectresultingfrom
solvingdeterminingequations.Thegroupstructureofthefamilyofsolutionsitself
is discussed in the third chapter, which also suggests some new elements for the
theory.Thelatterarerelatedtothenotionsofapartiallyinvariantmanifoldofthe
viii Preface
group,its defectof invariance,and the problemof reductionof partiallyinvariant
solutions.Thefinalsection x3.7suggestsaqualitativeformulationofseveralprob-
lemsdemonstratingpossibilitiesforfurtherdevelopmentofthetheorywithnoclaim
tobecomplete.
Thepresentlecturenotesarewrittenhotonthetracesofaspecialcoursegiven
bytheauthorinNovosibirskStateUniversityduringthe1965/1966academicyear.
Suchapromptdecisionwasmadetohavethelecturenotespublishedbythespring
examinations.Therefore,thelecturesmayappeartobe“raw”tomanyextent,and
theauthorisreadytobecompletelyresponsibleforthat.
Thequickreleaseofthelecturenoteswouldbeimpossiblewithoutthesupportof
administrationoftheuniversity.Amajortechnicalworkinpreparingthemanuscript
was done by the students V.G. Firsov,E.Z. Borovskaya,T.E. Kuzmina,N.I. Nau-
menko, M.L. Kochubievskaya and others. The author is sincerely grateful to all
thesepeople.
Novosibirsk,Russia,May1966 L.V.Ovsyannikov
Contents
Editor’spreface .................................................... v
Preface............................................................ vii
1 One-parametercontinuoustransformationgroupsadmittedby
differentialequations ........................................... 1
1.1 One-parametercontinuoustransformationgroup................. 1
1.1.1 Definition.......................................... 1
1.1.2 Canonicalparameter ................................. 3
1.1.3 Examples........................................... 4
1.1.4 Auxiliaryfunctionsofgroups.......................... 5
1.2 Infinitesimaloperatorofthegroup ............................ 7
1.2.1 Definitionandexamples .............................. 7
1.2.2 Transformationoffunctions ........................... 9
1.2.3 Changeofcoordinates ................................ 10
1.3 Invariantsandinvariantmanifolds............................. 12
1.3.1 Invariants........................................... 12
1.3.2 Invariantmanifolds................................... 14
1.3.3 Invarianceofregularlydefinedmanifolds ................ 15
1.4 Theoryofprolongation...................................... 17
1.4.1 Prolongationofthespace ............................. 17
1.4.2 Prolongedgroup..................................... 18
1.4.3 Firstprolongationofthegroupoperator ................. 19
1.4.4 Secondprolongationofthegroupoperator ............... 22
1.4.5 Propertiesofprolongationsofoperators ................. 24
1.5 Groupsadmittedbydifferentialequations....................... 28
1.5.1 Determiningequations................................ 28
1.5.2 First-orderordinarydifferentialequations................ 30
1.5.3 Second-orderordinarydifferentialequations ............. 32
1.5.4 Heatequation ....................................... 34
1.5.5 Gasdynamicequations................................ 42