Table Of Contentg
or
s.
c
a
bs. Interactions of Nanomaterials
u1
p0
p://w0
htt0.f with Emerging Environmental
er 19, 2014 | bk-2013-115 Contaminants
mb21/
e0
ept0.1
S1
on oi:
GO 3 | d
E1
DI20
N 9,
A2
A Sber
NIcto
RO
FOb):
LIWe
A
Ce (
F at
OD
V n
UNIcatio
d by Publi
e
d
a
o
nl
w
o
D
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
g
or
s.
c
a
s.
b
u1
p0
p://w0
htt0.f
er 19, 2014 | bk-2013-115
mb21/
e0
ept0.1
S1
on oi:
GO 3 | d
E1
DI20
N 9,
A2
A Sber
NIcto
RO
FOb):
LIWe
A
Ce (
F at
OD
V n
UNIcatio
d by Publi
e
d
a
o
nl
w
o
D
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
1150
ACS SYMPOSIUM SERIES
Interactions of Nanomaterials
with Emerging Environmental
Contaminants
g
or
s.
c
a
s.
b
u1
p0
p://w0 Ruey-an Doong, Editor
htt0.f
mber 19, 2014 | 21/bk-2013-115 ViNraetniodnaeHlrsTKisnicn.hgSu,hHTauaariwmUanani,veErdsiitytor
e0
ept0.1 Florida Institute of Technology
S1
on oi: Melbourne, Florida, United States
GO 3 | d
DIE201 Hyunook Kim, Editor
AN 29, University of Seoul
A Sber Seoul, Republic of Korea
NIcto
RO
FOb):
LIWe
A
Ce (
F at
OD
V n
UNIcatio Sponsored by the
d by Publi ACSDivisionofEnvironmentalChemistry
e
d
a
o
nl
w
o
D
AmericanChemicalSociety,Washington,DC
DistributedinprintbyOxfordUniversityPress
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
LibraryofCongressCataloging-in-PublicationData
Interactionsofnanomaterialswithemergingenvironmentalcontaminants/Ruey-anDoong,
g editor,NationalTsingHuaUniversity,Hsinchu,Taiwan,VirenderK.Sharma,editor,Florida
or InstituteofTechnology,Melbourne,Florida,UnitedStates,HyunookKim,
s.
ac editor,UniversityofSeoul,Seoul,RepublicofKorea;sponsoredbytheACSDivisionof
bs. EnvironmentalChemistry.
u1
p0 pagescm-- (ACSsymposiumseries;1150)
p://w0 Includesbibliographicalreferencesandindex.
er 19, 2014 | httbk-2013-1150.f mNR1Iua.aSnetBePyorNo-siaatlrlnl9uus.7t-cIi-8toIEu-.n0rnSe-cvhd8oia4rnmor1tmnra2omta-el2,ere9Vinqa1itlu6raseil--pn7-amIdsn(epaedrelnukcKts.-tts-.prM-Iia-aICpIal.etoaerKnp)rgpiiamrlliesc,s-aHs-teCiysoou.nnn5sgo.--roCePksoo.slneIlVgus.rt.ie2Aos.nsme-C-seCa.rti4oac.nlaygnNsrtCeassn-hs-oeeCsmsot.rinucIgca.rtlDeuSsrosoeoedcnsi.egt3,y..
mb21/ DivisionofEnvironmentalChemistry.
e0
ept0.1 TD192.3.I582013
GO on S3 | doi: 1 620.1’159--dc23 2013039591
E1
DI20
N 9,
A2
A Sber ThepaperusedinthispublicationmeetstheminimumrequirementsofAmericanNational
NIcto Standard for Information Sciences—Permanence of Paper for Printed Library Materials,
FORb): O ANSIZ39.48n1984.
ALIWe Copyright©2013AmericanChemicalSociety
Ce (
OF Dat DistributedinprintbyOxfordUniversityPress
V n
UNIcatio AllRightsReserved. ReprographiccopyingbeyondthatpermittedbySections107or108
d by Publi o$f40th.2e5Up.Slu.sC$o0p.y7r5igphetrApacgtiesiasllpoawidedtofothreinCteorpnyarliguhsetConlelya,rapnroceviCdeednttehra,tIancp.e,r2-2c2haRpotesrefweoeoodf
e
d Drive,Danvers,MA01923,USA.Republicationorreproductionforsaleofpagesinthis
a
o
nl bookispermittedonlyunderlicensefromACS.Directtheseandotherpermissionrequests
w toACSCopyrightOffice,PublicationsDivision,115516thStreet,N.W.,Washington,DC
o
D 20036.
Thecitationoftradenamesand/ornamesofmanufacturersinthispublicationisnottobe
construedasanendorsementorasapprovalbyACSofthecommercialproductsorservices
referenced herein; nor should the mere reference herein to any drawing, specification,
chemicalprocess, orotherdataberegardedasalicenseorasaconveyanceofanyright
or permission to the holder, reader, or any other person or corporation, to manufacture,
reproduce,use,orsellanypatentedinventionorcopyrightedworkthatmayinanywaybe
relatedthereto. Registerednames,trademarks,etc.,usedinthispublication,evenwithout
specificindicationthereof,arenottobeconsideredunprotectedbylaw.
PRINTEDINTHEUNITEDSTATESOFAMERICA
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
Foreword
The ACS Symposium Series was first published in 1974 to provide a
g mechanism for publishing symposia quickly in book form. The purpose of
or
s. the series is to publish timely, comprehensive books developed from the ACS
c
s.a sponsoredsymposiabasedoncurrentscientificresearch. Occasionally,booksare
b
pu01 developed from symposia sponsored by other organizations when the topic is of
p://w0 keeninteresttothechemistryaudience.
htt0.f
er 19, 2014 | bk-2013-115 fpoarpaepBrspermfoopareyriaabtgeereeaexnicdnlcguodtmeodpptruoebhbleiesnthsteiavrebfoococoukvs,etrthahegeepbaroonopdkof;sooerdtihnteatrebsrlemesotatfyocbtoheneateadnudtdesideisntocreepv.riSoeovwmieddee
mb21/ comprehensiveness. When appropriate, overview or introductory chapters are
e0
ept0.1 added. Draftsofchaptersarepeer-reviewedpriortofinalacceptanceorrejection,
on Soi: 1 andmanuscriptsarepreparedincamera-readyformat.
GO 3 | d As a rule, only original research papers and original review papers are
E1
DI20 included in the volumes. Verbatim reproductions of previous published papers
AN 29, arenotaccepted.
A Sber
NIcto
RO
LIFOWeb): ACSBooksDepartment
A
Ce (
F at
OD
V n
UNIcatio
d by Publi
e
d
a
o
nl
w
o
D
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
Preface
Emerging environmental contaminants are newly identified or previously
g unrecognized pollutants, which primarily include human and veterinary
or
s. pharmaceuticals and personal-care products, surfactants, plasticizers, flame
c
a
s. retardants, metals and metalloids, various industrial additives, pesticides, and
b
http://pu0.pr001 hpaesstbiceiednedmeemtaobnosltirtaetse.dTthoeinucsreeoafsenothveelrenmanoovmalaeteffiricailesnwcyithofuenmiqeuregicnhgarpaocltleurtiasntitcss,
014 | 3-115 cwohnitcahmpinroavnitds.esIanpardodmitiisoinng, nsatrnaotemgaytetoriaclosnatrlsooltchaendsisetrrvibeuatisonideoaflepnlvaitrfoonrmmesnftoarl
21
9, 20 precise and accurate detection and sensing of emerging contaminants in the
ber 11/bk- environmentandbiologicalfluids;thisisbecauseoftheirnovelcharacteristicson
m2 opticalandelectrochemicalproperties. Theinteractiveresearchofnanomaterials
Septe10.10 with emerging environmental contaminants will improve our understanding of
on oi: theimplicationandapplicationofnanomaterialsintheenvironment.
GO 3 | d This book is derived from the symposium “Interactions of Nanomaterials
DIE201 withEmergingEnvironmentalContaminants”atthe244thACSNationalMeeting
N 9, in Philadelphia during the fall of 2012 sponsored by the American Chemical
SAer 2 Society (ACS) Division of Environmental Chemistry. Many topics addressing
NIA ctob issues of interaction of emerging environmental pollutants with nanomaterials
LIFORWeb): O (inintchliusdsinygmppohsyisuimca,l,anpdhothtoecyhceomnisctaitlu,taentdhebmioaloingiccoanltienntteroafctthioisnsb)owoke.re presented
CAe ( This book contains 12 peer-reviewed chapters that cover various aspects of
OF Dat interaction of various nanomaterials with environmental contaminants. These
UNIV cation cwhiathptebrisomcaonlebceuolergsafnoirzebdioinsetonstwinogmanadjordseetecctitoionns:o(fI)cinotnetraamctiinoannotsfn(Canhoamptaetrer1i-a4ls)
by ubli and (II) interaction of nanomaterials with contaminants to enhance the removal
d P
de efficiency and rate of emerging pollutants (Chapter 5-12). Chapter 1 by Ren,
a
nlo Zang, Qie, and Baker provides an overview of the adjuvant effect of emerging
w
o nanomaterials. The nanoparticles can serve as drug delivery to deliver antigens
D
to species targets. In contrast, ambient nanoparticles exhibit adverse effect on
human and ecological health. To address the accurate and precise detection of
environmental contaminants in the environment (as well as in the human body),
Chapter 2 and Chapter 3 have developed photoluminescent gold nanomaterials
— including gold nanoparticles and gold nanodots — for the monitoring and
detection of metal ions, proteins, and bacteria in an aquatic ecosystem. In
Chapter 2, Unnikrishnan and Huang have synthesized luminescent core-shell
Au nanodots using different kinds of capping ligands (including alkanethiols,
proteins, DNA, thiol derived carbohydrates, and aptamers) as the shell layer for
detection and determination of mercury ions, proteins, and E. coli. Chang and
ix
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
histeam(Chapter3)havedevelopedseveralfunctionalAunanoparticlesandAu
nanodot-basedsensorsthatallowthesensitiveandselectivedetectionofmercury,
lead, and copper ions through analytes induced changes in colors, absorption,
and fluorescence. In addition, a biosensing system (AlGaN/GaN high electron
mobility transistors immobilized with antibodies) is developed by Wang and his
team (Chapter 4) to effectively detect a short peptide only containing 20 amino
acids,whichopensadoorforinvestigationintonanomaterialswithbiomolecules.
Theapplicationsofnanomaterialsforvariousreactions(includingadsorption,
photocatalytic degradation, and reductive dechlorination) are also addressed.
Huang,Padhye,andWang(Chapter5)describethegenerationofN-nitrosamines
g
or fromtransformationofaminescatalyzedbyactivatedcarbons. Thisinteractionis
s.
ac important because activated carbon and amine are often used in water treatment
s.
014 | http://pub3-1150.pr001 cappadrlaorsbnopotrrspan.ntionoIlannonlCobatehuthabatpehvtseeiortTro,6iO,HaD2du/swunogarabtneardnadniJndithneiglrsofaoeccxkoepllaleootanrgethuthteehesepm(hdCooyhtlnoeaaccpmautteliaarclry7atl)idecvscoeodrlme.pctbioIoinmnnepapodTrsdoiiiOcttiieo2osnnsanootdoff
21 bisphenol A, which is an endocrine disrupting chemical widely existing in the
9, 20
ber 11/bk- envirIoronnm-benast.ednanomaterialsareeffectivecatalystsfortheremovalofemerging
m2
EGO on Septe13 | doi: 10.10 rf(peoComrhllaeuepdtnatievanrtitirsoo8innn),mtahednneidstacelunsosvsriileromdtnheemecdoeiannatptti.aopmnlRiicena—nat,itoiHoninna.ncol,fuFAdeidlrnirAgfafnteearw,ezanif,tteeNrrriiartodternase,g-abotaamunsddeeand,Tt,ainOnagd2nr-oDocuominmoadntpwyeorsasiiatioetluesr
N DI9, 20 magnetic iron oxides are used for the removal of contaminants of emerging
SAer 2 pollutants. Inadditiontoironoxidecatalysts,zerovalentmetalsarealsocommon
A ob nanomaterials widely used for reduction of emerging pollutants. Su, Tso, Peng,
RNIOct andShih(Chapter9)haveusednanoscalezerovalentiron(nZVI)andbimetallic
FOb): Pd/Fe as the dual functional tools for adsorption and reduction of aromatic
F CALIate (We pcoennrtaamchilnoarnotpshe(ninocll,uadnidngCodnegcoabrreodm).inTahteedcodmipbhineantyiolneothfebri,olhoegxicaaclholorrsoebqeuneznetniael,
OD
UNIV cation Feveanltuoantetdreaintmtehnitsocnhathpeterm.ineInralCizhaatipotnero1f0s,omMecPemheerrsgoinn,gGcoonlttza,mainnadntAsgisraawlsaol
y bli summarizetheroleofpolyelectrolytestabilizationandcatalyticmetalmodification
bu
d P intheenhancedperformanceofnZVI.Theadditionofpolyelectrolytestabilizers
e
d
a to nZVI decreases particle agglomeration and reduces particle size — resulting
o
wnl in the increase in reactivity and transport in porous media. The modification of
o
D nZVI with Pd and Ni for the enhancement of reactivity is also summarized and
discussed. In addition, three field studies using Pd-nZVI for the remediation of
chlorinated compounds in groundwater are introduced. Sharma, Siskova, and
Zboril (Chapter 11) review the recent development of nanoscale zerovalent iron
andmagneticbimetallicFe/Agnanoparticleswithcore-shellstructures. Theyalso
show the usefulness of these nanomaterials on nutrient removal, transformation
of halogenated aromatic contaminants, and antimicrobial activity. In addition to
zerovalentiron,LeeandDoong(Chapter12)havedemonstratedthefeasibilityof
usinganotherenvironmentallyfriendlymetaltoremovechlorinatedcompounds.
In this chapter, the authors review and discuss the reductive dechlorination of
chlorinated hydrocarbons and emerging pollutants by zerovalent silicon and
x
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
bimetallic Fe/Si and Ni/Si. More importantly, they demonstrate the synergistic
effectofnickelionsandpolyethyleneglycolonthedechlorinationrate.
The understanding of interaction of emerging contaminant with various
nanomaterialsisessentialtoexploringtheapplicationsofnanotechnologyinthe
environment. We hope that this collection will benefit graduate students who
areengagedinresearchanddevelopmentintheadvancementofnanotechnology
and environmental science and technology. We wish to thank Anne Brenner
and Timothy Marney of the editorial department of ACS for their assistance in
preparingthisvolumeandforkeepingusonschedule.
g
or
s.
ac Ruey-anDoong
s.
http://pub0.pr001 D1N0ea1pti,aoSrntemacl.eTn2st,inoKgfuBHaniuogamFUeudniRicvoaelarsdEitnygineeringandEnvironmentalSciences
014 | 3-115 Hsinchu, 30013, Taiwan
21 [email protected](e-mail)
9, 20
ber 11/bk-
m2
EGO on Septe13 | doi: 10.10 VCF15lhior0eremiWndidaesetsIrrtnysUKtDin.teuiSvpteeharraostrmiftmyTeeanBctohunloelvoagryd
N DI9, 20 Melbourne,Florida32901,UnitedStates
SAer 2 [email protected](e-mail)
A ob
NIct
RO
FOb): HyunookKim
F CALIate (We DUenpivaertrmsiteyntooffSEeonuvlironmentalEngineering
OD
UNIV cation hS_ekoiuml,@Ruepous.balcic.korf(eK-moraeial)
y bli
bu
d P
e
d
a
o
nl
w
o
D
xi
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
Chapter 1
The Adjuvant Effect of Emerging
Nanomaterials: A Double-Edged Sword
g
or
s.
ac Hong Ren,1,2 Quanxuan Zhang,*,3 Liangyi Qie,4
s.
b and Gregory L. Baker3,†
http://pu0.ch001 1AthinoulaA.MartinosCenter,DepartmentofRadiology,Massachusetts
014 | 3-115 GeneralHospital,HarvardMedicalSchool,Charlestown,
21 Massachusetts02129,U.S.A.
9, 20
mber 121/bk- 2DepartmentofCCamhebmriidstgrey,aMnadssCahcehmusiectatlsB0i2o1lo3g8y,,UH.Sa.rAv.ardUniversity,
epte0.10 3DepartmentofChemistry, MichiganStateUniversity, EastLansing,
S1 Michigan48824,U.S.A.
GO on 3 | doi: 4DepartmSehnatnodfoGngerPiartorviicnsc,eK,eQyilLuaHboorsaptiotarlyooffSChaarnddioovnagsUcunliavrerPsriotyte,omicsof
E1
DI20 Jinan250012,China
N 9,
A SAober 2 †Thismanuscriptisin*Em-emmaoilr:[email protected],Dr. GregoryL.
RNIOct Bakerwhopassedawayunexpectedlywhilethispaperwasbeingwritten.
FOb):
LIWe
CAe (
F at
OD
V n Nanoparticleshavegrowingapplicationsinindustry,consumer
UNIcatio products, biology and medicine. One of those applications
d by Publi cinovmoplvoensentthse. iTnhteerancatinoonpabrteitcwleesencannaancotpaasrtiacnletisgeanndcairmriemrsuntoe
e
d
a deliverandreleaseantigenstospecifictargets,andenhancethe
o
wnl immune response against a variety of antigens as adjuvants.
o
D The adjuvant effects of nanoparticle size, shape, surface
charge,linkagemethodontheimmunologicalresponsearealso
discussed. In contrast, as-prepared nanomaterials and ambient
particulate matter (PM) from air pollution exhibit adverse
adjuvant effect in vitro and in vivo, and recent advances to
address their potential risk on human health are also included
inthisreview.
©2013AmericanChemicalSociety
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.
Introduction
Nanomaterials are characterized by their sizes which are in the range of
severalnanometerstoseveralhundredsofnanometers,wellbelowthemicrometer
range. Because of their nanoscale dimensions and hence large specific surface
area, nanomaterials exhibit remarkable physicochemical properties, such as
optical property (1), catalytic property (2), mechanical property (3) and drug
delivery property (4), which are usually not active for their bulk materials. Due
to these specific properties, research and development of new nanomaterials
have steadily increased, which can be reflected by the increasing number
g
or of publications on nanomaterials research, from about 110 publications in
s.
ac 1990 to 4200 publications in 2000 followed by a burst to more than 77900
s.
http://pub0.ch001 rpaenusdbullictc,oamtniaopnnoossmitienatm2er0ai1ate3lsr,i(aklresa,ypiawdrleoyrmdi:notrrneoadnaunocd,eIdmSIoinrwetoepbereloesfcetknrntooninwiclweddoegrvkeip,cle0as5c,/e2cs0oa1ns3s)twr.uecAltlisoanas
014 | 3-115 consumerproductssincelarge-scaleproducing,handlingandprocessingfacilities
21 ofnanomaterialsareeasilyavailable.
9, 20
mber 121/bk- viewApoltihnot,utghheypraolpsoerrtiaeisseosfanfeatnyomcoantecreiranlssoafreniamnopmreastseivriealfsr.omOnpehmysaijcoorchcoemnciecranl
epte0.10 isthatnanomaterialsmayleadtopotentialtoxiceffectonenvironmentorhuman
S1 health,becausenanomaterialsreadilypenetratecellmembranes,travelthroughout
GO on 3 | doi: rthesepobnosdeys, (a5n,d6)d.eIpnosrietceinnttyaregaerst,onragnaontso.xicTohloegreyfohraes,bietcmomaye otrnieggoefrthinejumriaojuosr
E1
DI20 researchfocusesinnanoscience. Whilethenumberofpublicationsdealingwith
N 9,
A SAober 2 nraapniodtloyxjiucmitypesdtutdoymwoarseatbhoaunt81230500iinn22000103,(tkheisyiwncorredass:edpatroti5c5le0/0toixnic2i0ty1,0I,StIhewneibt
RNIOct of knowledge, 05/2013). These clearly indicate that nano toxicology has been
FOb): widelyrecognizedandgainedmoreandmoreattention. Thesestudieswouldhelp
F CALIate (We etonvdiertoenrmmeinnetawnhdethhuemraanndbetoinwgsh,aatnedxtgeunitdtehaepseplpicroatpieorntsieosfmnaaynopmreasteenritaalsthinredaatitloy
OD
V n life as well (7). Among several mechanisms proposed to explain the adverse
UNIcatio effect of nanomaterials, generation of reactive oxygen species and oxidative
d by Publi scthraersgsehaansdreacgegirveegdattihoenmofosntaantotemnatitoenria(l8s).arDeirmeleantesdiotno,tshuerifranceancohteomxiicsittryy,(5su).rfIatcies
e
d
a difficulttoidentifythehealthriskofeachnewnanomaterialsbecauseallmaterial
o
wnl propertiesneedtobetakenintoaccountduringthetoxicitystudy.
o
D Despite safety concerns that nanomaterials could present adverse effect on
humanbeings,ithasbeenreportedthatnanomaterialsservingaseffectivevaccine/
drug carriers could improve and/or facilitate the extended release of antigens,
and hence enhance the immune response level and quality of antigens (9, 10).
Thishasdrawnmoreandmoreresearchfocusesworldwideinnanomedicinefield,
especially in vaccine immunology, and nanomaterial has been referred as nano
adjuvanttoenhancetheimmunogenicityofspecificvaccineorantigen. FromISI
webofknowledge(keywords: particle/adjuvant, 05/2013), therewereonly380
publicationsonnano-adjuvantresearchin2000anditincreasedtomorethan1350
in2010,andthenrapidlyjumpedtomorethan1800publicationsin2013.
4
In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2013.