Table Of ContentEditedbyEvgenyKatz
ImplantableBioelectronics
RelatedTitles
Katz,E.(ed.) Cosnier,S.,Karyakin,A.(Eds.)
Biomolecular Information Electropolymerization
Processing
Concepts,MaterialsandApplications
FromLogicSystemstoSmartSensorsand
Actuators 2010
ISBN:978-3-527-32414-9
2012
ISBN:978-3-527-33228-1 Alkire,R.C.,Kolb,D.M.,Lipkowski,J.(Eds.)
Katz,E.(ed.) Bioelectrochemistry
Fundamentals,ApplicationsandRecent
MolecularandSupramolecular
Developments
InformationProcessing
FromMolecularSwitchestoLogicSystems 2012
ISBN:978-3-527-32885-7
2012
ISBN:978-3-527-33195-6 Kumar,C.S.(ed.)
Nanotechnologies fortheLife
Katz,E.(ed.)
Sciences
InformationProcessingSet
10VolumeSet
2Volumes
(consistingof‘‘BiomolecularInformation 2011
Processing’’and‘‘Molecularand PrintISBN:978-3-527-33114-7
SupramolecularInformationProcessing’’)
Waser,R.(ed.)
2012
Nanoelectronicsand
ISBN:978-3-527-33245-8
InformationTechnology
Wallace,G.G.,Moulton,S.,Kapsa,R.M.I.,
AdvancedElectronicMaterialsandNovel
Higgins,M.
Devices
Third,CompletelyRevisedandEnlarged
OrganicBionics
Edition
2012 2012
ISBN:978-3-527-32882-6 PrintISBN:978-3-527-40927-3
Edited by Evgeny Katz
Implantable Bioelectronics
TheEditor AllbookspublishedbyWiley-VCHare
carefullyproduced.Nevertheless,authors,
Prof.EvgenyKatz editors,andpublisherdonotwarrantthe
ClarksonUniversity informationcontainedinthesebooks,
DepartmentofChemistry includingthisbook,tobefreeoferrors.
ClarksonAvenue8 Readersareadvisedtokeepinmindthat
USA statements,data,illustrations,procedural
detailsorotheritemsmayinadvertentlybe
inaccurate.
LibraryofCongressCardNo.:appliedfor
BritishLibraryCataloguing-in-Publication
Data
Acataloguerecordforthisbookisavailable
fromtheBritishLibrary.
Bibliographicinformationpublishedbythe
DeutscheNationalbibliothek
TheDeutscheNationalbibliothek
liststhispublicationintheDeutsche
Nationalbibliografie;detailedbibliographic
dataareavailableontheInternetat
<http://dnb.d-nb.de>.
(cid:2)c 2014Wiley-VCHVerlagGmbH&Co.
KGaA,Boschstr.12,69469Weinheim,
Germany
Allrightsreserved(includingthoseof
translationintootherlanguages).Nopart
ofthisbookmaybereproducedinany
form–byphotoprinting,microfilm,orany
othermeans–nortransmittedortranslated
intoamachinelanguagewithoutwritten
permissionfromthepublishers.Registered
names,trademarks,etc.usedinthisbook,
evenwhennotspecificallymarkedassuch,
arenottobeconsideredunprotectedbylaw.
PrintISBN:978-3-527-33525-1
ePDFISBN:978-3-527-67317-9
ePubISBN:978-3-527-67316-2
MobiISBN:978-3-527-67315-5
oBookISBN:978-3-527-67314-8
CoverDesign BlueseaDesign,McLeese
Lake,Canada
Typesetting LaserwordsPrivateLtd.,
Chennai,India
PrintingandBinding MarkonoPrintMedia
PteLtd,Singapore
Printedonacid-freepaper
V
Contents
Preface XV
ListofContributors XVII
1 ImplantableBioelectronics–EditorialIntroduction 1
EvgenyKatz
References 5
2 MagneticallyFunctionalizedCells:Fabrication,Characterization,
andBiomedicalApplications 7
EkaterinaA.Naumenko,MariaR.Dzamukova,andRawilF.Fakhrullin
2.1 Introduction 7
2.2 MagneticMicrobialCells 8
2.2.1 DirectDepositionofMNPsontoMicrobialCells 8
2.2.2 Polymer-MediatedDepositionofMNPsontoMicrobialCells 9
2.2.2.1 Layer-by-LayerMagneticFunctionalizationofMicrobialCells 9
2.2.2.2 Single-stepPolymer-mediatedMagneticFunctionalizationof
MicrobialCells 11
2.2.3 ApplicationsofMagneticallyModifiedMicrobialCells 15
2.2.3.1 BiosorbentsandBiocatalysts 15
2.2.3.2 Whole-CellBiosensorsandMicrofluidicDevices 15
2.2.3.3 RemotelyControlledOrganisms 16
2.3 MagneticLabelingofMammal(Human)Cells 18
2.3.1 IntracellularLabelingofCells 18
2.3.1.1 LabelingwithAnionicMagneticNanoparticles 18
2.3.1.2 LabelingwithCationicMagneticNanoparticles 19
2.3.2 ExtracellularLabelingofCells 20
2.3.3 ApplicationsofMagneticallyLabeledCellsinBiomedicine 20
2.3.3.1 MRIImagingofMNPs-LabeledCells 21
2.3.3.2 MNPs-MediatedCellDeliveryandTissueEngineering 21
VI Contents
2.4 Conclusion 23
Acknowledgment 23
References 23
3 UntetheredInsectInterfaces 27
AmolJadhav,MichelM.Maharbiz,andHirotakaSato
3.1 Introduction 27
3.2 SystemsforTetherlessInsectFlightControl 30
3.2.1 VariousApproachestoTetherlessFlightControl 30
3.2.2 NeurostimulationforInitiationofWingOscillations 30
3.2.3 ExtracellularStimulationoftheMusclestoElicitTurns 32
3.3 ImplantableBioelectronicsinInsects 33
3.3.1 Example:InsertionofFlexibleSubstratesintotheDevelopingEye 33
3.4 Conclusions 39
References 39
4 MiniaturizedBiomedicalImplantableDevices 45
AdaS.Y.Poon
4.1 Introduction 45
4.2 EnergyHarvestingasaPathwaytoMiniaturization 47
4.3 ImplementationofImplantableDevices 48
4.3.1 RFPowerHarvesting 49
4.3.1.1 MatchingNetwork 49
4.3.1.2 Rectifier 49
4.3.1.3 RegulatorandBandgapReference 50
4.3.1.4 Low-PowerControllerandAuxiliaryCircuitsintheImplant
FunctionalBlock 50
4.3.2 WirelessCommunicationLink 51
4.3.2.1 ForwardDataLink 51
4.3.2.2 ReverseDataLink 54
4.3.3 PayloadandApplications:LocomotiveImplantandImplantable
CardiacProbe 56
4.3.3.1 ActuationforTherapeutics:Millimeter-SizedWirelesslyPoweredand
RemotelyControlledLocomotiveImplant 56
4.3.3.2 Low-PowerSensingforDiagnostics:ImplantableIntracardiac
Probe 59
4.4 Conclusion 62
References 62
5 Cross-HierarchyDesignExplorationforImplantableElectronics 65
MrigankSharadandKaushikRoy
5.1 Introduction 65
5.2 SystemOverviewofaGenericBioelectronicImplant 65
5.3 CircuitDesignforLow-PowerSignalProcessing 67
5.3.1 DesignChallengesforLow-PowerBioelectronicSensorInterface 67
Contents VII
5.3.2 AnalogSignalProcessingUsingSubthresholdCircuits 68
5.3.3 Analog-to-DigitalConversion 69
5.3.4 Low-PowerDigitalSignalProcessing 71
5.3.4.1 V ScalingandParallelProcessing 71
DD
5.3.4.2 DynamicVoltageandFrequencyScaling 72
5.3.4.3 StandbyModePowerReduction 73
5.3.4.4 MinimumEnergySubthresholdOperation 73
5.3.5 FinFETsforUltralowVoltageSubthresholdCircuits 74
5.4 Architecture-LevelOptimizationsforLow-PowerDataProcessing 76
5.4.1 OptimalApportioningofComputationTasktoAnalogandDigital
Blocks 76
5.4.2 ApproximateComputingforLowPower 78
5.5 DesignofEnergy-EfficientMemory 79
5.5.1 DesignChallengeswithSubthresholdSRAM 79
5.5.1.1 On-CurrenttoOff-CurrentRatio 79
5.5.1.2 SizingConstraints 79
5.5.1.3 Variability 80
5.5.2 SpinTransferTorqueMRAM(STT-MRAM)forEnergy-Efficient
MemoryDesign 80
5.6 WirelessCommunicationPowerDelivery 81
5.6.1 Near-FieldElectromagneticWirelessCommunication 82
5.6.2 Far-FieldElectromagneticWirelessCommunication 82
5.6.3 WirelessEnergyTransfer 83
5.7 Conclusion 83
References 84
6 NeuralInterfaces:fromHumanNervestoElectronics 87
JessicaD.Falcone,JoavBirjiniuk,RobertKretschmar,
andRaviV.Bellamkonda
6.1 Introduction 87
6.2 FusingRoboticswiththeHumanBody:Interfacingwiththe
PeripheralNervousSystem 87
6.2.1 TheAnatomyofPeripheralNerves 88
6.2.1.1 GlialCellsofthePeripheralNervousSystem 88
6.2.1.2 FunctionalAfferentandEfferentPathways 88
6.2.2 InterfacingwiththePeripheryforRecordingandStimulation 89
6.2.2.1 NoninvasiveElectrodes 89
6.2.2.2 ExtraneuralElectrodes 90
6.2.2.3 IntrafascicularElectrodes 91
6.2.2.4 Regeneration-BasedElectrodes 92
6.2.2.5 ResearchDesignsandChallenges 92
6.3 ListeningtotheBrain:InterfacingwiththeCentralNervous
System 93
6.3.1 GlialCellsoftheCentralNervousSystem 93
6.3.1.1 Microglia–SentinelsoftheBrain 93
VIII Contents
6.3.1.2 Astrocytes–CellularSupportforNeurons 94
6.3.2 InterfacingwiththeBrainforRecordings 94
6.3.2.1 NoninvasiveElectrodes 94
6.3.2.2 ExtracorticalElectrodes 95
6.3.2.3 InvasiveIntracorticalElectrodes 95
6.3.2.4 ResearchDesignsandChallenges 97
6.4 ElectricalModulationoftheHumanNervousSystem:Stimulation
andClinicalApplications 99
6.4.1 DeepBrainStimulation 100
6.4.1.1 BiologicalMechanisms 100
6.4.1.2 ElectrodeDesignandStimulation 100
6.4.1.3 ResearchDesignsandChallenges 101
6.4.2 ElectricalModulationofNerveRegeneration 101
6.4.2.1 BiologicalMechanisms 102
6.4.2.2 ElectrodeStimulation 102
6.4.3 PainModulation 102
6.4.3.1 BiologicalMechanisms 102
6.4.3.2 ClinicalOutcomes 103
6.4.4 ElectricalModulationofInflammation 103
6.4.4.1 TheVagusNerveandStimulation 103
6.4.4.2 CholinergicAnti-InflammatoryPathway 104
6.5 FutureDirectionsforNeuralInterfacing 105
References 106
7 Cyborgs–theNeuro-TechVersion 115
KevinWarwick
7.1 Introduction 115
7.2 BiologicalBrainsinaRobotBody 116
7.3 DeepBrainStimulation 120
7.4 GeneralPurposeBrainImplants 123
7.5 NoninvasiveBrain-ComputerInterfaces 126
7.6 SubdermalMagneticImplants 127
7.7 RFIDImplants 128
7.8 Conclusions 130
References 131
8 InteractionwithImplantedDevicesthroughImplantedUser
Interfaces 133
ChristianHolz,ToviGrossman,GeorgeFitzmaurice,andAnneAgur
8.1 ImplantedUserInterfaces 135
8.1.1 DesignConsiderations 136
8.1.1.1 InputthroughImplantedInterfaces 136
8.1.1.2 OutputthroughImplantedInterfaces 136
8.1.1.3 CommunicationandSynchronization 137
8.1.1.4 PowerSupplythroughImplantedInterfaces 137