Table Of ContentAPRIL2009 VOLUME57 NUMBER4 IETMAB (ISSN0018-9480)
PART I OF TWO PARTS
PAPERS
LinearandNonlinearDeviceModeling
ScalableSmall-SignalandNoiseModelingforDeep-SubmicrometerMOSFETs .................. J.GaoandA.Werthof 737
ExtendedHammersteinBehavioralModelUsingArtificialNeuralNetworks ................F. MkademandS.Boumaiza 745
ActiveCircuits,SemiconductorDevices,andICs
AQuasi-Four-PairClass-ECMOSRFPowerAmplifierWithanIntegratedPassiveDeviceTransformer..................
.................................................................................................... H.Lee,C.Park,andS.Hong 752
SignalGeneration,FrequencyConversion,andControl
AnAnalyticalApproachinAnalysisofLocalOscillatorNear-the-CarrierAMNoiseSuppressioninMicrowaveBalanced
Mixers .............................................................................. A.Kheirdoost,A.Banai,andF.Farzaneh 760
DesignTechniquesforaLow-VoltageVCOWithWideTuningRangeandLowSensitivitytoEnvironmentalVariations ...
............................................................................................................... D.ParkandS.Cho 767
Millimeter-WaveandTerahertzTechnologies
ANewConceptofOpen Cavity ........................................ G. Annino,M.Cassettari,andM.Martinelli 775
FerroelectricandFerriteComponents
Uniform Ferrite-Loaded Open Waveguide Structure With CRLH Response and Its Application to a Novel
Backfire-to-EndfireLeaky-WaveAntenna .......................................................... T.KoderaandC.Caloz 784
CADAlgorithmsandNumericalTechniques
AHierarchicalElectromagnetic-CircuitTechniqueforStatisticalAnalysisofRFCircuitsintheSpectralDomain .......
............................................................................. A.V.Sathanur,R.Chakraborty,andV.Jandhyala 796
(ContentsContinuedonBackCover)
(ContentsContinuedfromFrontCover)
FiltersandMultiplexers
ANovelTransition-IncludedMultilayerFilter .......................G.-S.Huang,Y.-S.Lin,C.-H.Wang,andC.H.Chen 807
DesignEnhancementofMiniatureLumped-ElementLTCCBandpassFilters ................................................
....................................................................................... G.Brzezina,L.Roy,andL.MacEachern 815
Dual-BandBandpassFilterWithImprovedPerformanceinExtendedUpperRejectionBand.... J.-T.KuoandH.-P.Lin 824
ATwo-PoleTwo-ZeroTunableFilterWithImprovedLinearity ........................ M.A. El-TananiandG.M.Rebeiz 830
Packaging,Interconnects,MCMs,Hybrids,andPassiveCircuitElements
CompactModelingandComparativeAnalysisofSilicon-ChipSlow-WaveTransmissionLinesWithSlottedBottomMetal
GroundPlanes .............................................................................. A.Sayag,D.Ritter,andD.Goren 840
A Novel Wideband Common-Mode Suppression Filter for Gigahertz Differential Signals Using Coupled Patterned
GroundStructure .................................................................S.-J.Wu,C.-H.Tsai,T.-L.Wu,andT.Itoh 848
ANovelApproachtoRingResonatorTheoryInvolvingEvenandOddModeAnalysis ..............J.A.BrandãoFaria 856
InstrumentationandMeasurementTechniques
AnErrorAnalysisoftheScatteringMatrixRenormalizationTransform ........................ C.-J.ChenandT.-H.Chu 863
AStableBayesianVectorNetworkAnalyzerCalibrationAlgorithm...........................................................
................................................................J.Hoffmann,P.Leuchtmann,J.Ruefenacht,andR.Vahldieck 869
Pulsed Active Load–Pull Measurements for the Design of High-Efficiency Class-B RF Power Amplifiers With GaN
HEMTs ....S.J.Doo,P.Roblin,V.Balasubramanian,R.Taylor,K.Dandu,J.Strahler,G.H.Jessen,andJ.-P.Teyssier 881
Microwave Photonics
Post-CompensationofUltra-WidebandAntennaDispersionUsingMicrowavePhotonicPhaseFiltersandItsApplications
toUWBSystems ................................................................................ E.HamidiandA.M.Weiner 890
Biological,Imaging,andMedicalApplications
InfluenceofUseConditionsandMobilePhoneCategoriesontheDistributionofSpecificAbsorptionRateinDifferent
AnatomicalPartsintheBrain ..............................................N.Varsier,K.Wake,M.Taki,andS.Watanabe 899
InformationforAuthors ............................................................................................................ 905
CALLSFORPAPERS
SpecialIssueonTerzahertzTechnology:BridgingtheMicrowave-to-PhotonicsGap ........................................ 906
IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY
TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheory
andtechniques.AllmembersoftheIEEEareeligibleformembershipintheSocietyuponpaymentoftheannualSocietymembershipfeeof$14.00,plusanannualsubscriptionfee
of$23.00peryearforelectronicmediaonlyor$46.00peryearforelectronicandprintmedia.Forinformationonjoining,writetotheIEEEattheaddressbelow.Membercopiesof
Transactions/Journalsareforpersonaluseonly.
ADMINISTRATIVECOMMITTEE
B.PERLMAN, President S.M.EL-GHAZALY PresidentElect W.CHAPPELL, Secretary N.KOLIAS, Treasurer
L.BOGLIONE M.HARRIS L.KATEHI J.LIN V.J.NAIR D.ROSEN W.SHIROMA B.SZENDRENYI R.WEIGEL
M.GUPTA J.HAUSNER B.KIM A.MORTAZAWI Y.NIKAWA D.SCHREURS R.SNYDER K.VARIAN K.WU
J.HACKER K.ITOH T.LEE
HonoraryLifeMembers DistinguishedLecturers PastPresidents
T.ITOH T.S.SAAD K.TOMIYASU A.CANGELLARIS F.GHANNOUCHI V.NAIR P.TASKER J.MODELSKI(2008)
A.A.OLINER P.STAECKER L.YOUNG F.ELLINGER A.HAJIMIRI R.SNYDER H.WANG J.S.KENNEY(2007)
S.GEVORGIAN L.MAURER A.SUAREZ K.WU K.VARIAN(2006)
MTT-SChapterChairs
Albuquerque:H.J.WAGNON Czech/Slovakia: P.HAZDRA Kitchener-Waterloo: Philadelphia: J.NACHAMKIN SoutheasternMichigan: T.OZDEMIR
Atlanta: D.LEATHERWOOD Dallas:Q.ZHANG R.R.MANSOUR Phoenix:S.ROCKWELL SouthernAlberta:E.FEAR
Austria:A.SPRINGER Dayton:A.TERZUOLI Lithuania: V.URBANAVICIUS Poland:W.J.KRZYSZTOFIK Spain:J.I.ALONSO
Baltimore:N.BUSHYAGER Delhi/India:S.KOUL LongIsland/NewYork:J.COLOTTI Portugal: C.PEIXEIRO Springfield:P.R.SIQUEIRA
Bangalore: T.SRINIVAS Denver:M.JANEZIC LosAngeles,Coastal:W.DEAL Princeton/CentralJersey:A.KATZ Sweden: A.RYDBERG
Beijing:Z.FENG EasternNo.Carolina:T.NICHOLS LosAngeles,Metro/SanFernando: Queensland: A.RAKIC Switzerland: M.MATTES
Belarus: A.GUSINSKY Egypt: E.HASHISH F.MAIWALD RiodeJaneiro: J.BERGMANN Syracuse: E.ARVAS
Benelux: Finland:A.LUUKANEN Malaysia:M.ESA Rochester: S.CICCARELLI/ Taegu:Y.-H.JEONG
D.VANHOENACKER-JANVIER FloridaWestCoast: Malaysia,Penang:Y.CHOW J.VENKATARAMAN Taipei:F.-T.TSAI
Boston: J.MULDAVIN K.A.O’CONNOR Melbourne:K.LAMP Romania: G.LOJEWSKI Thailand: P.AKKARAEKTHALIN
Brasilia: J.DACOSTA/ Foothills:F.FREYNE Mexico: R.M.RODRIGUES-DAGNINO Russia,Moscow: V.A.KALOSHIN Toronto:G.V.ELEFTHERIADES
A.KLAUTAU France:P.EUDELINE Milwaukee: S.G.JOSHI Russia,Nizhny:Y.BELOV Tucson: N.BURGESS
Buenaventura: M.QUDDUS Germany:K.SOLBACH MohawkValley: E.P.RATAZZI Russia,Novosibirsk: A.GRIDCHIN Turkey: I.TEKIN
Buffalo: J.WHALEN Greece: R.MAKRI Montreal:K.WU Russia,SaintPetersburg: TwinCities:M.J.GAWRONSKI
Bulgaria: K.ASPARUHOVA Harbin:Q.WU Nanjing:W.X.ZHANG M.SITNIKOVA UK/RI:A.REZAZADEH
CedarRapids/CentralIowa: Hawaii: R.MIYAMOTO NewHampshire:D.SHERWOOD Russia,Saratov: N.M.RYSKIN Ukraine,Kiev: Y.POPLAVKO
M.ROY HongKong: W.S.CHAN NewJerseyCoast:D.REYNOLDS Russia,Tomsk:R.V.MESCHERIAKOV Ukraine,East,Kharkov:
Central&SouthItaly:G.D’INZEO Houston:J.T.WILLIAMS NewSouthWales: SaintLouis:D.MACKE O.V.SHRAMKOVA
CentralNo.Carolina: Houston,CollegeStation: A.M.SANAGAVARAPU SanDiego:G.TWOMEY Ukraine,EastStudentBranchChapter,Kharkov:
N.S.DOGAN G.H.HUFF NewZealand:A.WILLIAMSON SantaClaraValley/SanFrancisco: M.KRUSLOV
Chengdu:Z.NEI Hungary:T.BERCELI NorthItaly:G.VECCHI M.SAYED Ukraine,Rep.ofGeorgia:D.KAKULIA
Chicago: H.LIU Huntsville:H.G.SCHANTZ NorthJersey:H.DAYAL/K.DIXIT Seattle:K.A.POULSON Ukraine,Vinnitsya:V.DUBOVOY
Cleveland: M.SCARDELLETTI Hyderabad:M.CHAKRAVARTI NorthernAustralia:M.JACOB Seoul:S.NAM Ukraine,West,Lviv: I.ISAYEV
Columbus:F.TEXEIRA India/Calcutta: B.GUPTA NorthernNevada: B.S.RAWAT SerbiaandMontenegro: A.MARINCIC Venezuela: J.PENˇA
Connecticut:C.BLAIR India:D.BHATNAGER Norway:Y.THODESEN Shanghai:M.-J.FA Victoria: K.GHORBANI
Croatia:Z.SIPUS Indonesia:E.T.RAHARDO OrangeCounty: H.J.DELOSSANTOS Singapore: A.ALPHONES VirginiaMountain:T.A.WINSLOW
Israel:S.AUSTER Oregon: T.RUTTAN SouthAfrica: C.VANNIEKIRK WashingtonDC/NorthernVirginia:
Japan:K.ARAKI Orlando: X.GONG SouthAustralia:H.HANSON J.QIU
Kansai:T.OHIRA Ottawa: Q.YE SouthBrazil:R.GARCIA Winnipeg: V.OKHMATOVSKI
Editors-In-Chief AssociateEditors
DYLAN WILLIAMS DANIEL DE ZUTTER JEN-TSAI KUO MAURO MONGIARDO RICHARD SNYDER
NIST Universiteit Gent Nat.ChiaoTungUniv. Univ. of Perugia RSMicrowaveCompany
Boulder,CO80305USA Belgium Taiwan Italy USA
Phone:+13034973138 email:[email protected] email:[email protected] email:[email protected] email:[email protected]
Fax:+13034973970
email:[email protected] WOLFGANG HEINRICH YOUNGWOOKWON JOSÉ PEDRO CHI WANG
Ferdinand-Braun-Institut(FBH) Seoul Nat. Univ. Univ. of Aveiro OrbitalSciencesCorp.
AMIRMORTAZAWI Germany Korea Portugal USA
Univ. of Michigan email:[email protected] email:[email protected] email:jcp.mtted.av.it.pt email:[email protected]
AnnArbor,MI48109-2122USA
Phone:+17349362597 WEI HONG JENSHAN LIN ZOYA POPOVIC KE-LI WU
Fax:+17346472106 Southeast Univ. Univ. of Florida Univ.ofColorado,Boulder ChineseUniv.ofHongKong
email:[email protected] China USA USA Hong Kong
email:[email protected] email:[email protected] email:[email protected] email:[email protected]
ROBERT W. JACKSON
Univ.ofMassachusetts,Amherst
USA
email:[email protected]
K.REMLEY, Editor-in-Chief,IEEEMicrowaveMagazine G.E.PONCHAK, Editor-in-Chief,IEEEMicrowaveandWirelessComponentLetters T.LEE, WebMaster
IEEE Officers
JOHNR.VIG, President JONG.ROKNE, VicePresident,PublicationServicesandProducts
PEDROA.RAY, President-Elect JOSEPHV.LILLIE, VicePresident,MembershipandGeographicActivities
BARRYL.SHOOP, Secretary W.CHARLTON(CHUCK)ADAMS, President,IEEEStandardsAssociation
PETERW.STAECKER, Treasurer HAROLDL.FLESCHER, VicePresident,TechnicalActivities
LEWISM.TERMAN, PastPresident GORDONW.DAY, President,IEEE-USA
TEOFILORAMOS, VicePresident,EducationalActivities
ROGERW.SUDBURY, Director,DivisionIV—ElectromagneticsandRadiation
IEEE Executive Staff
DR.E.JAMESPRENDERGAST, ExecutiveDirector&ChiefOperatingOfficer
BETSYDAVIS, SPHR,HumanResources MATTHEWLOEB, CorporateStrategy&Communications
ANTHONYDURNIAK, PublicationsActivities RICHARDD.SCHWARTZ, BusinessAdministration
JUDITHGORMAN, StandardsActivities CHRISBRANTLEY, IEEE-USA
CECELIAJANKOWSKI, MemberandGeographicActivities MARYWARD-CALLAN, TechnicalActivities
DOUGLASGORHAM, EducationalActivities
IEEE Periodicals
Transactions/JournalsDepartment
StaffDirector:FRANZAPPULLA
EditorialDirector: DAWNMELLEY ProductionDirector: PETERM.TUOHY
ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES
IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthe
contentsrestsupontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperations
Center:445HoesLane,Piscataway,NJ08854-4141.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopyonly),nonmember
$108.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm.Copyright
andReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthecode
atthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,write
toCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,Piscataway,NJ08854-4141.Copyright©2009byTheInstituteofElectricalandElectronics
Engineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:SendaddresschangestoIEEETRANSACTIONSONMICROWAVE
THEORYANDTECHNIQUES,IEEE,445HoesLane,Piscataway,NJ08854-4141.GSTRegistrationNo.125634188.CPCSalesAgreement#40013087.ReturnundeliverableCanadaaddresses
to:PitneyBowesIMEX,P.O.Box4332,StantonRd.,Toronto,ONM5W3J4,Canada.
DigitalObjectIdentifier10.1109/TMTT.2009.2020218
IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.57,NO.4,APRIL2009 737
Scalable Small-Signal and Noise Modeling
for Deep-Submicrometer MOSFETs
JianjunGao, Senior Member, IEEE, and Andreas Werthof
Abstract—A new scalable noise and small-signal model for scattering parameters is necessary for computer-aided de-
deep-submicrometermetal–oxidesemiconductorfield-effecttran- sign (CAD) of monolithic microwave integrated circuits or
sistors,whichconsistofmultipleelementarycellsispresentedin
opto-electronic integrated circuits (OEICs). A scalable noise
this paper. It allowsexact modeling of all noise and small-signal
and small-signal modelis required for severalpurposes. From
model parameters from elementary cell to large-size device. The
scalable rules for noise and small-signal model parameters are a foundry point-of-view, one requires insight into the noise
givenindetail.Theexperimentalandtheoreticalresultsshowthat and small-signal behavior to develop new transistors, and
atsamebiascondition,goodscalingofthenoise,andsmall-signal to have small-sized sample devices in order to monitor the
model parameters can be achieved between the large-size de-
process parameters. The designer of monolithic microwave
vices and elementary cell. Model verification is carried out by
integrated circuits, on the other hand, demands for simulation
comparison of measured and simulated -parameters and noise
parameters. Good agreement is obtained between the measured tools to optimize the MOSFET performance as a function of
and modeled results for 4 0.6 18 m, 8 0.6 12 m, MOSFETsizeforaspecifictask.Thus,scalingisacentraltask
and 32 0.6 2 m gatewidth (number of gate fingers unit
forMOSFETmodelingwhenproceedingfrom“simple”small
gatewidth cells)90-nmgatelengthMOSFETs.
peripherydevicestolarge-sizetransistors.
Index Terms—Equivalent circuits, noise modeling, parameter Byaddingthesubstrateeffectstotheconventionalfield-effect
extraction,MOSFET,scalablemodel,semiconductordevicemod-
transistor(FET)noiseandsmall-signalmodel,theperformance
eling,small-signalmodeling.
ofMOSFETscanbepredictedverywell[1]–[9].However,these
models are based on the device structures, which consist only
one elementary cell, and are notsuitable for the large-size de-
I. INTRODUCTION
vice,whichactuallyconsistsofmultipleelementarycells.The
mainreasonisthattheeffectoftheinterconnectionbetweenthe
D EEP-SUBMICROMETER metal–oxide semiconductor
elementarycellshasnotbeentakenintoaccountintheconven-
field-effecttransistors(MOSFETs)haveshownexcellent
tionalMOSFETcircuitmodel.Thesemodels,therefore,haveto
microwave and noise performance and are very attractive for
beimproved.
RF integrated circuit (RFIC) design. Compared to the III–V
Inordertoovercomethelimitationsofpreviousliterature,we
compound semiconductor devices (such as pseudomorphic
havedevelopedanewscalablenoiseandsmall-signalmodelfor
HEMT(pHEMT)andHBT),thesilicon-basedMOSFEToffers
deepMOSFETs,whichissuitableforthedevicesthatconsistof
theadvantagesoflowcost,highintegration,andthepossibility
multipleelementarycells.Itisverifiedfor90-nmMOSFETde-
ofasingle-chipsolution.Nevertheless,thedesignofRFcircuits
vicesfabricatedbyInfineonTechnlogies,Munich,Germany.It
for real products remains a challenge due to strong constrains
canbeobservedthatthedifferentsizeMOSFETsunderinvesti-
onpowerconsumptionandnoisethatleaveverylittlemargins
gationcanbedescribedbythesameproposedequivalent-circuit
for RFICdesigners. Therefore,itis crucial tobe able toaccu-
model. In comparison with previous publications [1]–[9], this
rately predictthe performanceof MOS RF circuits in orderto
modelhasthefollowingadvantages.
reducedesigncyclesandhavefirsttimesuccess.
1) Thedistributedeffectsofthegate,drain,andsourcefeed-
Compared with the MOSFET modeling for digital and
lineinductanceshavebeentakenintoaccount.
low-frequency analog applications, the high-frequency mod-
2) Theproposedmodelissuitableforbothsingleelementary
elingofMOSFETsismorechallenging.Alloftherequirements
celldeviceandmultipleelementarycellsdevice.
for a MOSFET model in low-frequency application, such as
3) The scaled model can be obtained by defining the model
continuity,accuracy,andscaleabilityofthedcandcapacitance
parametersasafunctionofMOSFETgeometry.
models should be maintained in an RF model. The complete
Thispaperisorganizedasfollows.SectionIIgivesthepro-
characterization of MOSFET devices in terms of noise and
posedscalablenoiseandsmall-signalequivalent-circuitmodel
oftheMOSFET.SectionIIIthendiscussesthebasicprocedure
ManuscriptreceivedJuly01,2008;revisedDecember05,2008.Firstpub- forextractingthesmall-signalandnoisemodelparameters.The
lishedMarch16,2009;currentversionpublishedApril08,2009.Thiswork
scalingrulesforextrinsicandintrinsicelementsaregiveninde-
wassupportedinpartbytheJiangsuNaturalScienceFoundationofChinaand
ProgramforNewCenturyExcellentTalents. tailinSectionIV.SectionVcomparesthescaledsmall-signal
J.GaoiswiththeSchoolofInformationScienceandTechnology,EastChina andnoise parameterswiththemeasuredvaluesfor MOSFETs
NormalUniversity,Shanghai200241,China(e-mail:[email protected]).
with various gatewidth sizes to show the validity of the tech-
A.WerthofiswithInfineonTechnologies,Neubiberg85579,Germany.
DigitalObjectIdentifier10.1109/TMTT.2009.2015075 nique.TheconclusionsarediscussedinSectionVI.
0018-9480/$25.00©2009IEEE
738 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.57,NO.4,APRIL2009
Fig.2. Schematiclayoutoflarge-sizeMOSFET,whichconsistsofmultiple
elementarycells.
(2)
Fig. 1. (a) Conventional schematic layout and (b) small-signal model for
MOSFET.
(3)
II. EQUIVALENT-CIRCUITMODEL
(4)
A. ConventionalEquivalent-CircuitModel
Fig.1showstheconventionalschematiclayoutandI/Opads with
[seeFig.1(a)]fortheMOSFET,whichconsistsofasinglecell
only, in order to minimize the bulk resistance, the guard ring
aroundthedeviceisneeded[10],[11].
Thecorrespondingconventionalsmall-signalmodelisshown
inFig.1(b),where and representtheinductancesof
thegate,drain,andsourcefeedline,respectively.Theparasitics
where are the -parameters of the intrinsic
of the pad due to substrate losses are modeled by the capaci-
partofelementarycell,andcanbeexpressedasfollows:
tors and in series with the resistors and .
models the distributed effect at the gate and source, and
drain resistances and are dominated by the resistance
(5)
of the lightly doped extensions of the source and drain diffu-
sions.Thecapacitor iscomposedofthegate–channelcapac-
(6)
itanceandthecapacitanceofthegate–sourceoverlap,whereas
thegate–draincapacitance ismainlyduetothegate–drain
(7)
overlap, and is the drain-to-source capacitance. is the
transconductance, isthedrainconductance,and isthetime
(8)
delayassociatedwithtransconductance.
InordertotakeintoaccounttheinfluenceofthelossySiwell/
substrate region beneath the drain–bulk junction in Si MOS- with
FETs, a coupling network consisting of a series connection of
and betweenthedrainandlossysubstrateisneeded.
For 0-V bulk bias, the source and bulk are tied to the ground
fromthesmall-signalpointofview,therefore,thecouplingnet-
workisconnectedbetweenthedrainandsource.Itisalsonoted
thatthegatetobulkcapacitanceisincorporatedintotheintrinsic
gate-to-sourcecapacitance . B. ProposedEquivalent-CircuitModel
Theopen-circuit -parametersofthesmall-signalequivalent
Fig. 2 shows the schematic layout of large-size MOSFET,
circuitforsingleelementarycellcanbeexpressedasfollows:
whichconsistsofmultipleelementarycells,thebulkseriesre-
sistanceisminimizedbysurroundingeachelementarycellwith
(1)
aguardring,whichisconnectedtothetopbulkcontact.
GAOANDWERTHOF:SCALABLESMALL-SIGNALANDNOISEMODELINGFORDEEP-SUBMICROMETERMOSFETs 739
(12)
(13)
InthePRCmodel,theshort-circuitnoisecurrentsatdrainand
gatearemodeledby
(14)
(15)
Thecrosscorrelationbetween and canbeexpressedas
(16)
where and arethegateanddrainnoisemodelparameters,
and isthecorrelationcoefficient.
For the condition , the coefficients and
can be written in terms of gate and drain temperature of the
Pospieszalskimodel[16]
Fig.3. Proposednoiseandsmall-signalmodelforMOSFET.(a)Outerpart.
(b)Elementarycell. (17)
(18)
Fig.3showstheproposednoiseandsmall-signalmodelfor
the large-size MOSFET, which consists of multiple elemen-
tarycells.Itcanbeobservedthattheeffectoftheinterconnec- (19)
tionsbetweentheelementarycellshasbeentakenintoaccount.
Thisequivalent-circuitmodelcanbedividedintotwoparts,i.e.,
the outer part contains just pad parasitics and external feed- The six noise sources and
lineinductances,andtheinnerpartcontains elementarycells represent the noisy behavior of the access resistances
[dashedboxinFig.3(b)]. and ,andaresimplygivenby
Threeinductances and representthefeedlines
betweenpadsandpartofelementarycells,andanotherthreein- (20)
ductances and representtheinductancesofthegate,
drain,andsourceinterconnectionsbetweenelementarycells,re-
where istheBoltzmann’sconstant, istheambienttemper-
spectively.
ature,and istheresistancevalue.
In Fig. 3, we consider the two most common noise models
From Fig. 3(a), it can be observed that a large size device
for MOSFETs, i.e., the Pospieszalski model [12] and Pucel et
normallyconsistsof elementarycellswiththesamegatewidth
al.model(alsocalledthePRCmodel)[13]–[15].Bothmodels
connected in parallel. The relationship between inner part and
introducetwonoisesourcesintheintrinsicequivalentcircuit,as
elementarycellisasfollows[17]:
showninFig.3(b).InPospieszalski’smodel,elevatedtemper-
atures and are assigned to the resistances and .
Both resistances contribute uncorrelated thermal noise, these (21)
two noise sources are characterized by their mean quadratic (22)
valueinabandwidth centeredonthefrequency ,andcan
begivenbythefollowingexpressions:
where and arethe -matrixandnoisematrixoftheinner
part of MOSFET, and and are the matrix and noise
(9)
matrixoftheelementarycell,respectively.
(10)
III. PARAMETEREXTRACTION
Thecorrespondingadmittancenoisematrixoftheelementary
cellcanbeexpressedasfollows: A. Small-SignalModelParameterExtraction
First of all, the four elements, which are characterizing the
(11)
pads ( and ) are derived from a measure-
740 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.57,NO.4,APRIL2009
mentofateststructurewiththesamemetallizationasthereal
structure,butwithoutaconnectedtransistor(openstructure)ne-
glecting any coupling between the gate and drain. In the fol-
lowing, the external feedline inductances ( and )
aredeterminedfromatypicalshortteststructure.
The -parameteroftheelementarycellcanbeobtainedfrom
(21) after deembedding the pad parasitics and external feed-
line inductances. Based on the semianalytical method, all the
intrinsicelementsdeterminedaredescribedasfunctionsofthe
extrinsic elements [18]–[20]. The parasitic elements are itera- Fig.4. Extrinsicinductancesversusgatewidthforelementarycell.
tivelydeterminedusingthevarianceoftheintrinsicelementsas
anoptimizationcriterion.
B. NoiseModelParameterExtraction
Oncethesmall-signalelementsareextractedfromthe -pa-
rametermeasurements,theextractionofthenoisemodelparam-
eterscanbecarriedoutusingtheprocedurebasedonthenoise
correlationmatrixtechniqueasfollows[17].
1) Calculation of the chain noise correlation matrix for
MOSFET
Fig.5. Extrinsicresistancesversusgatewidthforelementarycell.
(23)
where istheminimumnoisefigure, isthenoise
resistance,and istheoptimumsourceadmittance.
2) Transformation of the chain noise correlation matrix into
theadmittancenoisecorrelationmatrixandsubtractionof
padparasitics( and ).
3) Transformationoftheadmittancenoisecorrelationmatrix
into the impedance noise correlation matrix and subtrac-
tionofexternalfeedlineinductances( and ).
Due to the external feedline inductances network being a
Fig.6. Substrateparasiticsversusgatewidthforelementarycell.
noiselessnetwork,theimpedancenoisematrixremainin-
variant.
4) Transformationoftheimpedancenoisecorrelationmatrix IV. SCALINGOFMODELPARAMETERS
into the admittance noise correlation matrix and calcula-
ThepadparasiticsarethesamefordifferentsizeMOSFETs
tionoftheadmittancenoisecorrelationmatrixoftheele-
and the feedline inductances are deembedded using short test
mentarycellfrom(22).
structures, which correspond to the MOSFET size; these ele-
5) Transformationoftheadmittancenoisecorrelationmatrix
ments,therefore,donotneedanyscaling.Inthefollowing,the
into the impedance noise correlation matrix and subtrac-
scalingofthenoiseandsmall-signalparametersfortheelemen-
tionofinterconnectionfeedlineinductancesandextrinsic
tarycellisdiscussedindetail.
resistances( and ).
6) Transformationoftheimpedancenoisecorrelationmatrix
A. ScalingofSmall-SignalModelParameters
intotheadmittancenoisecorrelationmatrix,andsubtrac-
tionofsubstrateparasitics( and ). Figs. 4 and 5 show the extracted extrinsic inductances and
The noise model parameters can then be determined as resistances of elementary cell versus device gatewidth. It can
follows: be found that the extrinsic inductances and resistances are
inversely proportional to the gatewidth of the elementary cell.
Fig. 6 shows the substrate parasitics versus gatewidth for ele-
(24) mentary cell, it can be seen that the drain-to-bulk capacitance
is proportional to the gatewidth of the elementary cell,
andseriesbulkresistance isinverselyproportionaltothe
(25)
gatewidth.
GAOANDWERTHOF:SCALABLESMALL-SIGNALANDNOISEMODELINGFORDEEP-SUBMICROMETERMOSFETs 741
matrixfortheelementarycellisproportionaltothegatewidth,
i.e.,
(29)
Therefore, the impedance noise correlation matrix for
intrinsic part of the elementary cell can be obtained by deem-
beddingtheextrinsicresistancesandinductances
(30)
With(26)and(29)substitutedin(30),wehave
(31)
The corresponding admittance noise matrix is obtained by
translatingtheimpedancenoisecorrelationmatrix
(32)
From (32), it can be found that the admittance noise matrix
Fig.7. Intrinsicelementsversusgatewidthforelementarycell:(a)(cid:0) (cid:2)(cid:0) (cid:2) of intrinsic part of the elementary cell is proportional to the
and(cid:0) and(b)(cid:3) (cid:2)(cid:3) (cid:2)and(cid:4) . gatewidth.
With (27) and (32) substituted in (11)–(13), it can be found
thatthenoisemodelparameters and areindependenton
FromFig.4–6,itisobviousthatthescalingformulasarede-
thedevicesize,andwillremaininvariantforscalableMOSFET
terminedtobeasfollowsforextrinsicelementsofelementary
devices,i.e.,
cell:
(33)
(26)
where isthegatewidthoftheelementarycell. and denotethattwoscalableMOSFETdeviceswithdif-
For the intrinsic components, the scaling rule is simple and ferentgatewidth.
conventionalandiseitherproportionalorinverselyproportional
tothegatewidth(Fig.7),i.e., V. EXPERIMENTALVERIFICATION
In order to verify the above results, a set of noise and
small-signal model parameters are determined for 90-nm
(27) NMOSFET transistors with 4 0.6 18 m (number of gate
fingers unit gatewidth cells), and then scaled for larger
size devices 8 0.6 12 m and 32 0.6 2 m gatewidth
using the scaling rules described above. The Infineon Tech-
With(26)and(27)substitutedin(1)–(4),wehave nologies 90-nm CMOS technology is a stable and high-yield
technology with low variation between wafers or different
lots. The measured MOS transistors are from a typical wafer,
(28)
which was verified by inline measurements. The -parameter
measurementsformodelextractionandverificationweremade
up to 40 GHz using an Agilent 8510C network analyzer. DC
B. ScalingofNoiseModelParameters
bias was supplied by an Agilent 4156A. Microwave noise
Due to the -parameters of the elementary cell being in- parameter measurements are carried out on wafer over the
versely proportional to the gatewidth, based on the noise cor- frequencyrangeof1–26GHzusingtheATNmicrowavenoise
relationmatrixtechnique[17],theimpedancenoisecorrelation measurementsystemNP5.
742 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.57,NO.4,APRIL2009
TABLEI
MOSFETMODELPARAMETERS
Fig. 8. Comparison of modeled and measured (cid:0)-parameters for the
4(cid:0)0.6(cid:0)18(cid:2)mMOSFET.Bias:(cid:3) (cid:0)(cid:2)(cid:4)(cid:3)V,(cid:3) (cid:0)(cid:2)(cid:4)(cid:3)V.
A. Small-SignalModelVerification
Theextracted valuesofthe noise andsmall-signal elements
for 4 0.6 18 m MOSFETs at a constant drain–source
voltage V and mA are summarized in
TableI.Fig.8comparesthemeasuredandmodeled -parame-
ters for the 4 0.6 18- m MOSFET in the frequency range
of50MHzto40GHzunder -and -Vbias
Fig.9. Comparisonofaccuracybetweenproposedandconventionalmodels.
condition.Themodeled -parametersagreeverywellwiththe
measuredonestovalidatetheaccuracyoftheproposedmodel.
The proposed model is also compared with conventional
If devices become larger, the proposed method still offers
model, and Fig. 9 shows the comparison of accuracy between
bettermodelingqualityathigherfrequenciesthantheconven-
both models. It can be clearly found that the accuracy (rela-
tionalmodelduetofirst-orderapproximationofdistributedef-
tive error) of the proposed model is better than conventional
fectswith and .Thisisalsothedifferencecompared
model,especiallyathigh-frequencyranges(above20GHz)for
withcombiningof devicemodels.
and . hasremainedwithinanaccuracyof2%,
Fig.10showsgoodagreementin -parametersbetweenthe
whilethedeviationis3%for and6%for and .
measured and scaled models determined by using the scaling
The improved accuracy is achieved by taking into account
rules for 8 0.6 12 m and 32 0.6 12 m MOSFET
distributedeffectsathigherfrequenciesmodeledbytheinduc-
devices.
tors and ofelementarycells(seeFig.3).Theresidual
differences of less than 6% between measurement and simu-
B. NoiseModelVerification
lation are due to limited measurement and model accuracy. A
morecomplexmodelmayallowevenbetterfittingquality.On Fig.11showsthecomparisonofmeasuredandmodelednoise
theotherhand,overlycomplexmodelstendtolosephysicalrel- parameters for the 4 0.6 18 m MOSFETunder bias con-
evanceofparameters,whichpreventsmeaningfulscaling.The dition Vand V.Anexcellentagreement
proposedmodelisacompromiseofconsideringfirst-orderdis- overtheentirefrequencyrangeisobtained.
tributedeffectsandstillbeingphysicallymeaningful,whichis Thecorrespondingnoisemodelparametersareasfollows.
demonstratedbyscalingresults.Itiscompactenoughfordesign ForPospieszalskimodel: K, K
oflargecircuits. ForthePRCmodel:
GAOANDWERTHOF:SCALABLESMALL-SIGNALANDNOISEMODELINGFORDEEP-SUBMICROMETERMOSFETs 743
Fig. 12. Comparison between measured and scaled noise parameters for
Fig.10. Comparisonof(cid:0)-parametersbetweenmeasuredandscaledMOSFET 8(cid:0)0.6(cid:0)12(cid:4)mMOSFETdevice.Bias:(cid:2) (cid:0)(cid:2)(cid:3)(cid:3)V,(cid:2) (cid:0)(cid:2)(cid:3)(cid:3)V.
devices.Bias:(cid:2) (cid:0) (cid:2)(cid:3)(cid:3)V,(cid:2) (cid:0) (cid:2)(cid:3)(cid:3)V.(a)8(cid:0)0.6(cid:0)12(cid:4)mMOSFET.
(b)32(cid:0)0.6(cid:0)2(cid:4)mMOSFET.
totalgatewidths in the range between 38.4–57.6 m, resulting
inoptimumsourcereflectioncoefficientcloseto1.Thisisex-
tremelydifficult tomeasureandthemainreasonforincreased
measurementuncertaintyatlowerfrequencies.
VI. CONCLUSION
In this paper, we have proposed a new scalable noise and
small-signalmodelfordeepsubmicrometerMOSFETs,which
consist of multiple elementary cells. It allows exact modeling
of all noise and small-signal model parameters from elemen-
tary cell to large size device. The scalable rules for noise and
small-signalmodelparametersaregivenindetail.Thevalidity
of the new approach is proven by comparison with measured
-parametersandnoiseparametersupto26GHz.
The experimental and theoretical results show that at same
bias condition, good scaling of the noise and small-signal
model parameters can be achieved between the large-size
device and elementary cell. Good agreement is obtained be-
tween the measured and modeled results for 4 0.6 18 m,
8 0.6 12 m, and 32 0.6 2 m gatewidth (number of
gate fingers unit gatewidth cells) 90-nm gatelength MOS-
FETs.
Fig. 11. Comparison of measured and modeled noise parameters for the
4(cid:0)0.6(cid:0)18(cid:4)mMOSFET.Bias:(cid:2) (cid:0)(cid:2)(cid:3)(cid:3)V,(cid:2) (cid:0)(cid:2)(cid:3)(cid:3)V. REFERENCES
[1] C.Enz,“AnMOStransistormodelforRFICdesignvalidinallregions
ofoperation,”IEEETrans.Microw.TheoryTech.,vol.50,no.1,pp.
Fig.12showsgoodagreementinnoiseparametersbetween 342–359,Jan.2002.
[2] S.Lee, H.K. Yu, C. S. Kim,J. G.Koo, and K.S. Nam, “A novel
the measured and the scaled models determined by using the
approach to extracting small-signal model parameters of silicon
scalingrulesfor8 0.6 12 mMOSFETdevices. MOSFET’s,” IEEE Microw. Guided Wave Lett., vol. 7, no. 1, pp.
ThemeasurednoiseleveloffournoiseparametersinFig.11 75–77,Jan.1997.
[3] C.-H.Kim,C.S.Kim,H.K.Yu,andK.S.Nam,“Uniqueextractionof
is within the specified accuracy limits of the 1–26-GHz ATN
substrateparametersofcommon-sourceMOSFET’s,”IEEEMicrow.
noise measurement system. The devices-under-test have small GuidedWaveLett.,vol.9,no.3,pp.108–110,Mar.1999.