Table Of ContentSEPTEMBER2005 VOLUME53 NUMBER 9 IETMAB (ISSN0018-9480)
MINI-SPECIALISSUEONASIA–PACIFICMICROWAVECONFERENCE
GuestEditorial................................................. ................................. M.B.Steer 2649
MINI-SPECIALISSUEPAPERS
PerformanceofInter-ChipRF-InterconnectUsingCPW,CapacitiveCoupler,andUWBTransceiver.....................M.SunandY.P.Zhang 2650
TaperedDual-PlaneCompactElectromagneticBandgapMicrostripFilterStructures.. ...........................S.Y.HuangandY.H.Lee 2656
AnalysisoftheSARDistributionsinThree-LayeredBio-MediainDirectContactWithaWater-LoadedModifiedBox-HornApplicator.........
........ .............................................. .......................R.C.GuptaandS.P.Singh 2665
ESDProtectionDesignfor1-to10-GHzDistributedAmplifierinCMOSTechnology. ................... M.-D.Ker,Y.-W.Hsiao,andB.-J.Kuo 2672
Sub-ThresholdAnalysisandDrainCurrentModelingofPolysiliconThin-FilmTransistorUsingGreen’sFunctionApproach................
........ .............................................. ..A.Sehgal,T.Mangla,S.Chopra,M.Gupta,andR.S.Gupta 2682
AMiniaturizedMultilayerQuasi-EllipticBandpassFilterWithAperture-CoupledMicrostripResonators. ............................
........ ............................................. C.-F.Chen,T.-Y.Huang,C.-H.Tseng,R.-B.Wu,andT.-W.Chen 2688
Resonance-SuppressedMagneticFieldProbeforEMField-MappingSystem ...... ....................J.-M.Kim,W.-T.Kim,andJ.-G.Yook 2693
AHybridDrift-Diffusion–TLMAnalysisofTraveling-WavePhotodetectors....... ..........................D.PasalicandR.Vahldieck 2700
AnElectronicallyTunableMicrostripBandpassFilterUsingThin-FilmBarium–Strontium–Titanate(BST)Varactors. ....................
........ .............................J.Nath,D.Ghosh,J.-P.Maria,A.I.Kingon,W.Fathelbab,P.D.Franzon,andM.B.Steer 2707
MiniaturizedMicrowavePassiveFilterIncorporatingMultilayerSyntheticQuasi-TEMTransmissionLine............................
........ .............................................. ......H.-S.Wu,H.-J.Yang,C.-J.Peng,andC.-K.C.Tzuang 2713
PowerReflectionCoefficientAnalysisforComplexImpedancesinRFIDTagDesign. ........................................
........ ...................................... P.V.Nikitin,K.V.S.Rao,S.F.Lam,V.Pillai,R.Martinez,andH.Heinrich 2721
AnalysisonEffectivenessofWaveAbsorberstoImproveDSRCElectromagneticEnvironmentonExpressHighway.....................
........ .............................................. ........... R.K.Pokharel,M.Toyota,andO.Hashimoto 2726
CONTRIBUTEDPAPERS
AGeneralizedSurface-VolumeIntegral-Equation(SVIE)ApproachforAnalysisofHybridPlanar/NRD-GuideIntegratedCircuits...... D.LiandK.Wu 2732
AnalysisofStabilizationCircuitsforPhase-NoiseReductioninMicrowaveOscillators........................... A.SuárezandF.Ramírez 2743
EfficientAnalyticalFormulationandSensitivityAnalysisofNeuro-SpaceMappingforNonlinearMicrowaveDeviceModeling..............
........ .............................................. .. L.Zhang,J.Xu,M.C.E.Yagoub,R.Ding,andQ.-J.Zhang 2752
(ContentsContinuedonBackCover)
(ContentsContinuedfromFrontCover)
Ka-BandAnalogFront-EndforSoftware-DefinedDirectConversionReceiver.......S.O.Tatu,E.Moldovan,K.Wu,R.G.Bosisio,andT.A.Denidni 2768
ApplicationofBifurcationControltoPracticalCircuitDesign................ ........................... A.ColladoandA.Súarez 2777
K-andQ-BandsCMOSFrequencySourcesWithX-BandQuadratureVCO...... .............S.Ko,J.-G.Kim,T.Song,E.Yoon,andS.Hong 2789
TLM-BasedModelingandDesignExploitingSpaceMapping................... ...........J.W.Bandler,A.S.Mohamed,andM.H.Bakr 2801
ImprovedCoupled-MicrostripFilterDesignUsingEffectiveEven-ModeandOdd-ModeCharacteristicImpedances. ........H.-M.LeeandC.-M.Tsai 2812
AResonantSwitchforLNAProtectioninWatt-LevelCMOSTransceivers......... ..........W.B.Kuhn,M.M.Mojarradi,andA.Moussessian 2819
GuaranteedPassiveDirectLumped-ElementModelingofTransmissionLines...... ..........................S.-H.YouandE.F.Kuester 2826
A540–640-GHzHigh-EfficiencyFour-AnodeFrequencyTripler.............. ........................................
........ ..............A.Maestrini,J.S.Ward,J.J.Gill,H.S.Javadi,E.Schlecht,C.Tripon-Canseliet,G.Chattopadhyay,andI.Mehdi 2835
Stopband-EnhancedandSize-MiniaturizedLow-PassFiltersUsingHigh-ImpedancePropertyofOffsetFinite-GroundMicrostripLine .........
........ .............................................. ............................. S.SunandL.Zhu 2844
AParallelFFTAcceleratedTransientField-CircuitSimulator ................... .............A.E.Yılmaz,J.-M.Jin,andE.Michielssen 2851
CAD-OrientedAnalysisofCylindricalandSphericalDielectricResonatorsinCavitiesandMICEnvironmentsbyMeansofFiniteElements......
........ .............................................. ...................................J.M.Gil 2866
ARobustModelingandDesignApproachforDynamicallyLoadedandDigitallyLinearizedDohertyAmplifiers .......................
........ .........................................J.Sirois,S.Boumaiza,M.Helaoui,G.Brassard,andF.M.Ghannouchi 2875
AnEffectiveUsageofVectorNetworkAnalyzerforMicrowaveImaging......... .......................... C.-H.TsengandT.-H.Chu 2884
UnificationofDouble-DelayandSOCElectromagneticDeembedding........... ..................... J.C.RautioandV.I.Okhmatovski 2892
X-BandTwo-StageHigh-EfficiencySwitched-ModePowerAmplifiers............. . S.Pajic´,N.Wang,P.M.Watson,T.K.Quach,andZ.Popovic´ 2899
OpenResonatorTechniqueforMeasuringMultilayeredDielectricPlates......... ....................... A.N.DelenivandS.Gevorgian 2908
ImprovedY-FactorMethodforWide-BandOn-WaferNoise-ParameterMeasurements......L.F.Tiemeijer,R.J.Havens,R.deKort,andA.J.Scholten 2917
AShield-BasedThree-PortDe-EmbeddingMethodforMicrowaveOn-WaferCharacterizationofDeep-SubmicrometerSiliconMOSFETs.......
........ ......................M.-H.Cho,G.-W.Huang,L.-K.Wu,C.-S.Chiu,Y.-H.Wang,K.-M.Chen,H.-C.Tseng,andT.-L.Hsu 2926
ElectromagneticBandgapPower/GroundPlanesforWidebandSuppressionofGroundBounceNoiseandRadiatedEmissioninHigh-SpeedCircuits
........ ................................................. ..T.-L.Wu,Y.-H.Lin,T.-K.Wang,C.-C.Wang,andS.-T.Chen 2935
Fractal-ShapedMicrostripCoupled-LineBandpassFiltersforSuppressionofSecondHarmonic ..................................
........ ............... I.K.Kim,N.Kingsley,M.Morton,R.Bairavasubramanian,J.Papapolymerou,M.M.Tentzeris,andJ.-G.Yook 2943
Broad-Band180 PhaseShiftersUsingIntegratedSubmillimeter-WaveSchottkyDiodes.......................................
........ .............................................. ..Z.Liu,J.C.Midkiff,H.Xu,T.W.Crowe,andR.M.WeikleII 2949
PropertiesofLeft-HandedMetamaterials:Transmission,BackwardPhase,NegativeRefraction,andFocusing .........................
........ .....................................T.M.Grzegorczyk,C.D.Moss,J.Lu,X.Chen,J.Pacheco,Jr.,andJ.A.Kong 2956
CompactSuper-WideBandpassSubstrateIntegratedWaveguide(SIW)Filters........ ......Z.-C.Hao,W.Hong,J.-X.Chen,X.-P.Chen,andK.Wu 2968
DesignCriteriafortheRFSectionofUHFandMicrowavePassiveRFIDTransponders. ....................... G.DeVitaandG.Iannaccone 2978
Coupling3-DMaxwell’sandBoltzmann’sEquationsforAnalyzingaTerahertzPhotoconductiveSwitch. ....... M.Sirbu,S.B.P.Lepaul,andF.Aniel 2991
ExperimentalStudyonaHologram-BasedCompactAntennaTestRangeat650GHz. ........................................
........ ....................T.Koskinen,J.Ala-Laurinaho,J.Säily,A.Lönnqvist,J.Häkli,J.Mallat,J.Tuovinen,andA.V.Räisänen 2999
InvestigationofaMethodtoImproveVNACalibrationinPlanarDispersiveMediaThroughAddinganAsymmetricalReciprocalDevice...... J.B.Scott 3007
AnAccurateWaveguidePortBoundaryConditionfortheTime-DomainFinite-ElementMethod........................ Z.LouandJ.-M.Jin 3014
SystematicAnalysisoftheOffset-PLLOutputSpurSpectrum................ ............................C.-F.LeeandS.T.Peng 3024
AccurateandScalableRFInterconnectModelforSilicon-BasedRFICApplications.. ........C.B.Sia,B.H.Ong,K.S.Yeo,J.-G.Ma,andM.A.Do 3035
BJTClass-FPowerAmplifierNearTransitionFrequency................... .................................A.N.Rudiakova 3045
LETTERS
Commentson“ThermalResistanceCalculationofAlGaN–GaNDevices” ........ ......................................W.-Y.Yin 3051
Authors’Reply. ................................................ ..............A.M.Darwish,A.Bayba,andH.A.Hung 3052
Correctionson“PrecisionOpen-EndedCoaxialProbesforInVivoandExVivoDielectricSpectroscopyofBiologicalTissuesatMicrowaveFrequencies”
........ .........................D.Popovic,L.McCartney,C.Beasley,M.Lazebnik,M.Okoniewski,S.C.Hagness,andJ.H.Booske 3053
InformationforAuthors......................................... .......................................... 3054
CALLSFORPAPERS
Mini-SpecialIssueonMeasurementsforLarge-SignalCharacterizationandModelingofNonlinearAnalogDevices,Circuits,andSystems. ......... 3055
2006IEEEMTT-SInternationalMicrowaveSymposium ................... ........................................... 3056
IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY
TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheoryandtechniques.Allmembers
oftheIEEEareeligibleformembershipintheSocietyandwillreceivethisTRANSACTIONSuponpaymentoftheannualSocietymembershipfeeof$14.00plusanannualsubscriptionfeeof$24.00.Forinformation
onjoining,writetotheIEEEattheaddressbelow.MembercopiesofTransactions/Journalsareforpersonaluseonly.
ADMINISTRATIVE COMMITTEE
K.C.GUPTA,President K.VARIAN,VicePresident A.MORTAZAWI,Secretary M.HARRIS,Treasurer
M. P. DE LISO D. HARVEY S.KAWASAKI T. LEE V. J. NAIR W. SHIROMA K.VARIAN
S. M.EL-GHAZALY J. HAUSNER J.S.KENNEY D. LOVELACE B. PERLMAN R. SNYDER R.WEIGEL
M.HARRIS L.KATEHI N.KOLIAS J.MODELSKI D.RUTLEDGE R.SORRENTINO S.WETENKAMP
HonoraryLifeMembers DistinguishedLecturers PastPresidents
T. ITOH A.A.OLINER K. TOMIYASU L. E. DAVIS T. ITOH D. RYTTING R.J.TREW(2004)
T.S.SAAD L.YOUNG W. GWAREK B. KIM M. SHUR F.SCHINDLER(2003)
W. HEINRICH J. LASKAR P. SIEGEL J.T.BARRIV(2002)
W.HOEFER J.C.RAUTIO R.J.TREW
MTT-S Chapter Chairs
Albuquerque: G.WOOD Foothill: C.ANTONIAK Ottawa: J.E.ROY SouthBrazil: L.C.KRETLY
Atlanta: J.PAPAPOLYMEROU France: O.PICON Philadelphia: J.B.McCORMACK SoutheasternMichigan: L.M.ANNEBERG
ABBBBBBBBCCCaeeeeuueeeuuDFliilndnnelfstjjagf.tenattiii.arrrramnnSlrauiaalJurggaovUORslliox::,ae::L&NHra::NneLpNet:IaRYSuiMAwSVdDnFro.OA.s.-aj..BuE.iNRW/N:GnRCFtVn.hL.gIUE.eg.MLZ:.-InISGlIJGtHHWaPtICAaNrInEOOlLCAaN.ydSLV-NLlYAVKX:/EIGBSRIYoT.EoTwTZRRHsEaHt.Yo:ATnNI:BGERIO GGHHHHHIIIJKLLMnnsaooerooouuriddpateansrnuunnciialmeeaagagssgthAncls/ytta:eaCCIeoovnKCsrnsn:nniigoyaleloyoaa:,lleu:Sr:n:uceCnl-n.Iu:gneWd.ocAst:cT/iJZtXlWNailalC.U.lM:e.t:A:e.BTeSgWoAwNrT.H.euEl.WETAWonRKSEYPHRYHoAcCI.t..oNIaAi:..NEBLKlSrtRT:JKLLiGkA.U.oIIAII:RCSRCAnSIM-H.N:MAHTPRMEH.AASS.LARN.KMEIGH.EAMANNISCCOHZUOARRLSKI PPPPPQRRRRRhooorioouuuioWMollrncmsseaatessheucdnn..aiinneegeaaddCnSitssa,,x:,oiJtIlUlaJJeTa:Lan:tt:RrnNn/..i:MTCtdeINShCKIVi:eCIa.uriO.n..FoziEaPnVtWS.F:hn.ArAt/PInEaiMMaEPA.lyROJ:IReA:RJEL.T.teOYNOOZKRerZrDE.Bs.IAsOeLB.EIbBTNyWSNEuZ:ESLrSAROgOKIGN:DVIMIOANNONVA SSSSSSTTTTTTaowoppwwyuuhiruarrcrapieioiakisnittndenclhzneoagieu:eCyetn:nonfrsr::iildn::eteaiL::lCneAdO.Nsd.GJ:l:-D:.V.bE.S.AFeBE...VSr.MUVAJ.LtH..Ja.RCIUORE.C:AVHGVIJHLR.EVEEA.EAOKRSISGSFENSSETA.SEI/HSWSLCSEIOBNR.R.NAOGFMIRANETDOASHKERRSAILES
CentralNo.Carolina: T.IVANOV Melbourne: R.BOTSFORD Russia,Moscow:V.KALOSHIN UK/RI: A.REZAZADEH
Chicago: R.KOLLMAN Milwaukee: S.G.JOSHI Russia,Saratov-Penza: N.RYSKIN UkraineWest: M.I.ANDRIYCHUK
Cleveland: G.PONCHAK MohawkValley: P.RATAZZI SaintLouis: D.MACKE Ukraine,CentralKiev:Y.POPLAVKO
Columbus: J.-F.LEE Montreal: K.WU SanDiego: U.S.DHALIWAL Ukraine,East: A.KIRILENKO
DCCDDEEEFiaagrzeaanosseynlyllttacpavtaetoUhnetsri:n/nar:dkS::::rNlaoIPoi.vKJAn.T.Aa.eW...CkB:.KBTiaISaANEOrA:ARoARSIRTLSlOZT.iOEnONTKPMLaAU.I:IACRLHDVIIA,L.IEJZPRNDA.KRLOAMER NNNNNNNNOOeeeooooorraewwwrrrrrgnttttwhhhhogJHSaeneeQIJoyratr:enuC:asmurletseoNyhpyeeTu:MsyenW.Cnhv:sRt.iaolayGraOdUale:nea.s:TLKsdt:GTA:::.HAVHTDN.SBI.GGOABIJ.PX.NR...SEIDNATETTR.TEO.RKSEWSALIANN.KWNOSPISASRTSSAIARSINASTNONSA SSSSSSSSaaeeiiiobbnMnnaoueegttuttFarrah.lliipeeaaSCCA:ro,,HnlorfJTaAaerutroiT.n:KancmNd.OcaVoRis:oUOlakv:AVRl:.olSaIJeBEsCl.yHil..HJbe/.GSOLyKi-raY:UEOOsnOkB.L:LENFOJVR.GErVaTC.EInNS.cHWisUcEVoIAL:LEORV,JR UUVVVWWeiikkaicrNnnrrgsteaaonhoiziinriirnnupniitaeeaheeg:,,egltMaRVor:n:nieoAnpVuDSn..Anii.CMrott.gasNf/yNiIiNTnnGOa.Coi:G:eaBrHoH:tEhIrDAAgLeVNN.irLEa.nIMCA:D.HENAIUILaBDLsRtOELe.RVErZnROAYRIDZE
FloridaWestCoast: S.O’BRIEN Orlando: T.WU SouthAustralia: B.BATES Yugoslavia: A.MARINCIC
AssociateEditors
Editor-In-Chief
MICHAEL STEER ANDREAS CANGELLARIS JOSÉ PEDRO KENJI ITOH STEVEN MARSH
NorthCarolinaStateUniv. Univ.ofIllinois,UrbanaChampaign Univ. of Aveiro MitsubishiElectricCorp. Midas Consulting
Raleigh,NC27695-7911USAUSA Portugal Japan U.K.
Phone:+19195155191 email:[email protected] email:jcp.mtted.av.it.pt email:[email protected] email:[email protected]
Fax:+19195131979 AMIR MORTAZAWI ZOYA POPOVIC RUEY-BEEI WU MANH ANH DO
email:[email protected] Univ.ofMichiganatAnnArbor Univ.ofColoradoatBoulder NationalTaiwan Univ. NanyangTechnologicalUniv.
USA USA Taiwan, R.O.C. Singapore
email:[email protected] email:[email protected] email:[email protected] email:[email protected]
YOSHIO NIKAWA DYLAN F. WILLIAMS ALESSANDROCIDRONALI VITTORIO RIZZOLI
Kokushikan Univ. NIST Univ. of Florence Univ. of Bologna
Japan USA Italy Italy
email:[email protected] email:[email protected] email:[email protected] email:[email protected]
M.GUPTA,Editor,IEEEMicrowaveMagazine R.VAHLDIECK,Editor,IEEEMicrowaveandWirelessComponentLettTe.rsLEE,WebMaster
IEEE Offficers
W. CLEON ANDERSON, President and CEO LEAHH.JAMIESON,VicePresident,PublicationServicesandProducts
MICHAEL R. LIGHTNER, President-Elect MARCT.APTER,VicePresident,RegionalActivities
MOHAMED EL-HAWARY, Secretary DONALDN.HEIRMAN,President,IEEEStandardsAssociation
JOSEPH V. LILLIE, Treasurer JOHNR.VIG,VicePresident,TechnicalActivities
ARTHUR W. WINSTON, Past President GERARDA.ALPHONSE,President,IEEE-USA
MOSHEKAM,VicePresident,EducationalActivities
STUART A. LONG, Director, Division IV—Electromagnetics and Radiation
Executive Staff
DONALD CURTIS, Human Resources MATTHEWLOEB,CorporateStrategy&Communications
ANTHONY DURNIAK, Publications Activities RICHARDD. SCHWARTZ, BusinessAdministration
JUDITH GORMAN, Standards Activities CHRIS BRANTLEY, IEEE-USA
CECELIA JANKOWSKI, Regional Activities MARY WARD-CALLAN, Technical Activities
BARBARACOBURNSTOLER,EducationalActivities SALLYA.WASELIK,InformationTechnology
IEEE Periodicals
Transactions/Journals Department
Staff Director: FRAN ZAPPULLA
Editorial Director: DAWN MELLEY Production Director: ROBERT SMREK
ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES
IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthecontentsrestsuponthe
authorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperationsCenter:445HoesLane,P.O.Box1331,
Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopyonly),nonmember$69.00percopy.(Note:Postageandhandling
chargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm.CopyrightandReprintPermissions:Abstractingispermittedwithcredittothe
source.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthecodeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222Rosewood
Drive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,writetoCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway,
NJ08855-1331.Copyright©2005byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:Send
addresschangestoIEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GSTRegistrationNo.125634188.PrintedinU.S.A.
DigitalObjectIdentifier10.1109/TMTT.2005.856959
IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.9,SEPTEMBER2005 2649
Guest Editorial
THE16thAsia–PacificMicrowaveConference(APMC’04) (cid:127) Mini-SpecialIssueonthe2006InternationalConference
was held in New Delhi, India, 15–18 December 2004. on Microwave Radar and Wireless Communications
As the largest international microwave conference in the (MiKon).Deadlineforsubmissionofmanuscripts:1June
Asia–Pacificregion,APMChasbeenwidelysupportedbymi- 2006;scheduledpublicationdate:February2007.
crowave and wireless academia and industry. The first APMC (cid:127) Special Issue on the 35th (2005) European Microwave
was held in India in 1986 and subsequently held annually Conference. Deadline for submission of manuscripts:
in various countries throughout Asia and Australasia. It has 1October2005;scheduledpublicationdate:June2006.
become one of the most renowned international microwave Upcoming Special Issues whose submission dates have
conferences along with the IEEE Microwave Theory and passedareasfollows.
Techniques Society (IEEE MTT-S) International Microwave (cid:127) Special Issue on Ultra-Wideband. Scheduled publication
Symposium (IMS), held in North America, and the European date:April2006.
Microwave Conference, held in Europe. For all three confer- (cid:127) Special Issue on Microwave Photonics. Scheduled
ences, Special Issues are published by this TRANSACTIONS, publicationdate:February2006.
but this is the first for APMC. As with the other international (cid:127) Mini-Special Issue on Radio Frequency Integrated
microwaveconferences,anindustryexhibitionisheldsimulta- Circuits.Scheduledpublicationdate:January2006.
neouslywithAPMCand,thus,allthreehaveaconsistentflavor (cid:127) Special Issue on the 2005 IEEE MTT-S International
ofcloselinkagebetweenindustrialdevelopmentsandscholarly Microwave Symposium. Scheduled publication date:
presentation. November2005.
Microwave engineering is experiencing substantial growth RecentSpecialIssueshavebeenhasfollows.
and much of this growth is coming from Asia and fueled by
(cid:127) Special Issue on Metamaterial Structures, Phenomena,
demandsforwirelessconnectivity.Aroundhalfofthetotalsub-
andApplications.Publicationdate:April2005.
missionstothisTRANSACTIONScomefromAsia.Itisclearfrom
(cid:127) SpecialIssueonMultifunctionalRFSystems.Publication
these submissions that many countries in Asia are developing
date:March2005.
aviablemicrowaveindustryandestablishingastrongresearch
(cid:127) Mini-SpecialIssueonthe2004IEEERFICSymposium.
base with unique concepts and ideas. Some of these ideas are
Publicationdate:February2005.
brought together in this TRANSACTIONS’ Mini-Special Issue.
(cid:127) Mini-SpecialIssueonthe2004InternationalConference
Authors of papers included in the conference were invited to
on Microwave Radar and Wireless Communications
submitmanuscriptstothisTRANSACTIONS.Altogether79sub-
(MiKon).Publicationdate:February2005.
missionswerereceived,and12areincludedhere.Anadditional
(cid:127) Special Issue on the 2004 IEEE MTT-S International
paper was accepted, but was not ready in time for production.
MicrowaveSymposium.Publicationdate(inthreeparts):
Papers were reviewed with the same procedure as regular pa-
November2004,December2004,January2005.
pers.Inadeparturefrompastyears,anarchivalconferencedi-
(cid:127) Mini-Special Issue on Terahertz Electronics. Publication
gestwasnotproducedforAPMC’04,butinfutureyears,APMC
date:October2004.
shouldreturntoarchivalpublicationofconferencepapers.
(cid:127) Special Issue on Model-Order Reduction Methods
ThisTRANSACTIONSmaintainsawebsiteathttp://www.mtt.
for Computer-Aided Design of RF/Microwave and
org/publications/Transactions/transactions.htmwhereCallsfor
Mixed-Signal ICs and Systems. Publication date:
Papers for Special Issues and links to author tools are main-
September2004.
tained.CurrentCallsforPapersareasfollows.
(cid:127) Mini-SpecialIssueonUltra-Wideband.Publicationdate:
(cid:127) Mini-Special Issue on Measurements for Large-Signal
September2004.
CharacterizationandModelingofNonlinearAnalogDe-
(cid:127) Special Issue on Medical Applications and Biological
vices,Circuits,andSystems.Deadlineforsubmissionof
Effects of RF/Microwaves. Publication date: August
manuscripts: 15 December 2005. Scheduled publication
2004.
date:September2006.
MICHAELB.STEER,Editor-In-Chief
NorthCarolinaStateUniversity
DepartmentofElectricalandComputerEngineering
DigitalObjectIdentifier10.1109/TMTT.2005.854222 Raleigh, NC 27606-7911 USA
0018-9480/$20.00©2005IEEE
2650 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.9,SEPTEMBER2005
Performance of Inter-Chip RF-Interconnect Using
CPW, Capacitive Coupler, and UWB Transceiver
M. Sun and Y. P. Zhang
Abstract—Anovelinter-chipRF-interconnectsystemoperating andthecapacitivecoupledinterconnect(CCI).Itimprovesthe
intherangeof22–29GHzisdescribedandanalyzedintermsof signal-to-noiseratioandlowersthesignalswingandoutputcon-
systembiterrorrate(BER)performance.Aftercharacterizingthe
sumption while it increases the transmission data rate [4]. For
interconnectchannel,plottingthetransmittedandreceivedultra-
thisRFIsystemstructure,ithasdemonstratedamaximumdata
widebandpulses,andestimatingtheswitchingnoisepowerdensity
byproposinganovelswitchingnoiseattackmodel,wefinallyget rate of 2.2 Gb/s in 0.18- m CMOS technology [4]. However,
theresultsofthesystemperformance.Itisshownthattheperfor- in[3]–[5],thetransceiversofthesepreviousRFIsystemsareall
mancedegradeswiththeinterconnectdistanceandtheswitching basedonatraditionalradiostructure.Ascomparedwithconven-
noise attacker number. It is concluded that a high data rate at
tional radios, the UWB radio is much simpler and there is no
3.33Gb/swithalowBER 10 5 overtheentirechipofsize
30 30 mm2 is achievable with the radiated power density less reference oscillator, frequency synthesizer, voltage-controlled
than 41dBm/MHz(ortheaveragetransmittedpowerlessthan oscillator, mixer, or power amplifier, which directly translates
2.85dBm). tosmallercircuitry overheadand powerconsumption [7].The
conceptofintegrationofanultra-wideband(UWB)transceiver
IndexTerms—Biterrorrate(BER),capacitivecoupler,coplanar
waveguide(CPW), inter-chip RF-interconnect (RFI),ultra-wide- intoachipforanintra-andinter-chipwirelessinterconnecthas
band(UWB)radio. been proposed in a novel configuration of wireless chip area
networks (WCANs) as its physical layer [8]. In [9], the UWB
radioisfirstlyproposedasthetransceiverfortheinter-chipRFI
I. INTRODUCTION
systemusingCPWandcapacitivecouplers.Basedonthisidea,
SEMICONDUCTORtechnologiescontinuouslyscaledown a novel RFI system structure is proposed to offer an alterna-
featuresizetoimprovethespeedofoperation.Takingcom- tive solution for the chip-to-chip interconnect problem. It has
plementary metal–oxide semiconductor (CMOS) technology theadvantageofthesmallattenuationoftheCPWandcapaci-
asanexample,theminimumfeaturesizeofmetal–oxidesemi- tivecouplerchannel,aswellastheadvantageoftheUWBradio
conductor (MOS) transistors has been reduced to 90 nm and forshort-rangecommunication.Inthispaper,theperformance
the speed of operation has exceeded 100 GHz [1]. Such rapid ofthisRFIsystemwillbeanalyzedindetail.Theinterconnect
scaling has two profound impacts. First, it enables a much channelwillbecharacterizedandthetransmittedandreceived
higherdegreeofintegration.Second,itimpliesamuchgreater UWBpulseswillbeplottedand,afterthat,arealisticswitching
challengeoftheinterconnectbecausethemetalwirewidthand noiseattackmodelwillbeproposedtoestimatethesystemSNR
space are greatly reduced and fundamental material limits are and evaluate the system bit error rate (BER) performance in
approaching[2].Revolutionaryinterconnectmethodsandtech- termsofthedifferentswitchingnoiseattacknumber.
niques must be pursued to carry on the fast progress of future
ultra large-scale integration (ULSI) technology. At this point,
RF-interconnect (RFI) become possible with high-frequency II. SYSTEMSTRUCTUREANDPERFORMANCEANALYSIS
silicontechnologiesandever-increasingintegrated-circuit(IC)
Fig. 1 shows the proposed inter-chip RFI system located
size[3]–[6].
inside a multichip module (MCM) package to fulfill the inter-
AnovelRFIsystemconceptisfirstproposedin[3].Itsstruc-
connectfunctionbetweendigitalI/OAandB[9].ItusesUWB
ture is based on RF-transceiver and capacitive coupling over
radios as transceivers, which comprises a pulse generator, a
animpedance-matchedtransmissionline,whereRFsignalsare
transmit/receive (T/R) switch, a low-noise amplifier (LNA), a
up-linked to the shared broadcasting medium, coplanar wave-
matchedfilter, and a thresholdcircuit. Inaddition, this system
guide(CPW),ormicrostriptransmissionline(MTL)viatrans-
features a unique channel, composed by capacitive couplers,
mittingcapacitivecouplers,thendown-linkedviareceivingca-
and an off-chip, but in-package passive MTL or CPW as a
pacitive couplers to fulfill the interconnect function. This RFI
sharedbroadcastingmedium.Thetransmittedpulseisdirectly
system structure overcomes the limits of conventional digital
fed to the transmitting capacitive couplers. The information
interface systems using the direct-coupled interconnect (DCI)
canbetransmittedusingpulsepositionmodulation(PPM).The
receivedpulseispassedthroughthematchedfilter.Theoriginal
ManuscriptreceivedDecember17,2004;revisedMarch17,2005. information is then recovered with an adjustable high-gain
TheauthorsarewiththeIntegratedSystemsResearchLaboratory,School thresholdcircuit.Thesystemoperatesatthe22–29-GHzUWB
ofElectricalandElectronicEngineering,NanyangTechnologicalUniversity,
frequencyband.Theadvantageofthishigherbandasopposed
Singapore639798(e-mail:[email protected];[email protected]).
DigitalObjectIdentifier10.1109/TMTT.2005.854213 tothe3.1–10.6-GHzUWBbandwillbeshownbelow.
0018-9480/$20.00©2005IEEE
SUNANDZHANG:PERFORMANCEOFINTER-CHIPRFIUSINGCPW,CAPACITIVECOUPLER,ANDUWBTRANSCEIVER 2651
amplitudeoftransferfunction ,asshowninFig.3(a)–(c).The
parametersincludethedistancebetweenthetransmitterandre-
ceiver , the coupler capacitance , and the re-
sistance . Note that the value of coupler ca-
pacitance and resistance is the same for the transmitter
andreceiverbecauseofoursystem’sbidirectionalcommunica-
tionnature.Asexpected,theamplitudeofthetransferfunction
showsthehigh-passcharacteristic.Inaddition,Fig.3(a)shows
that the amplitude of quickly decreases with distance. The
longerdistancehasthelargerattenuation.Fig.3(b)showsthat
the coupler capacitance has an important effect on the am-
plitude of . The smaller capacitance has the larger channel
attenuation. Based on this simulation, fF is chosen
for our system. Furthermore, it is found that output resistance
Fig.1. Inter-chipRFIsystemarchitecture. has a certain effect on the amplitude of . with a small
value will cause the fluctuation of the amplitude of in high
frequency,asshowninFig.3(c).Basedonthissimulation,we
choose k .Thephaseofthetransferfunctionintermsof
distanceisalsoexaminedinFig.3(d).Itshowsthelinearchar-
acteristic, and the longer distance has the larger delay. Based
on the above observation, we conclude that the CPW and ca-
pacitive coupler channel can be regarded as a high-pass filter,
whichhasalinearincreaseddelaywithinterconnectlength.This
conclusionreconcileswellwiththemeasurementresultin[10].
Thishigh-passcharacteristicofthechannelcangreatlyreduce
theswitchingnoisecouplingfromtheon-chipdigitalcircuitry
into the channel at the transmitter end, as illustrated in Fig. 4
Fig.2. Channelmodel:C isthetransmitter’scouplingcapacitor,C isthe [10].ItalsoexplainswhythehigherUWB22–29-GHzbandis
receiver’scouplingcapacitor,R isthetransmitter’soutputresistance,R is
thereceiver’sinputresistance,V isthesourcesignalvoltage,disthedistance preferabletothelowerband.However,forarealisticcondition,
betweenthetransmitterandreceiver,Z istheimpedancelookedintotheCPW, switching noise will randomly couple to the CPW channel at
V isthechannel’sinputvoltage,andV isthechannel’soutputvoltage. anypoint.Themorerealisticswitchingnoisemodelwillbede-
velopedandtheaccordingaveragenoisepowerspectraldensity
A. CharacterizationoftheInterconnectChannel (PSD)willbepresentedinSectionII-C.
The channel comprises capacitive couplers and a shared
CPW.Thecharacteristicofthischannelisfirstanalyzedin[3]
B. TransmittedandReceivedUWBPulses
based on transmission-line theory with some approximation.
Here,thechannel’sexacttransferfunctionisderivedasfollows The PPM scheme is used in UWB radio. The designed
in (1) based on transmission-line theory using the channel UWBpulsewasplottedin[9].Ithas0.25-nstimedurationand
modelshowninFig.2[9]: 7-GHzbandwidthlocatedfrom 22to29GHz.Theexpression
of transmitted UWB pulses using the PPM scheme was also
presented in [9]. PPM delay is optimized as 0.02 ns. Appro-
priateframewidthischosentorealizetheinterconnectdatarate
Gb/s. Thepeak amplitude of the transmitted pulse
(1)
isadjustedtochangethetransmittedenergyperbit ,e.g.,
when is 0.03 V, we obtain the value of 131.4811 dB
where
for22–29-GHzbandwidthandthetransmittedpowerdensityis
lessthan 41dBm/MHz.
Fig.5(a)showsthetransmitteddata,transmittedpulses,and
received pulses with normalized amplitude at mm. It
isfoundthatthedelayisserious.Thiscanbeexplainedbythe
channel transfer function , which has linear increased delay
with interconnect length. One method is developed in simula-
tiontoestimatethedelayaccurately.TheresultisshowninFig.
isthecomplexpropagationconstantoftheCPW.Its 6.Asexpected,thedelayincreaseswithdistance.Usingthises-
real part in nepers per meterrepresents the attenuation con- timateddelaytocompensatethereceivedsignal,weobtainthe
stantanditsimaginarypart inradianspermeterrepresentsthe result, as shown in Fig. 5(b), which confirms the accuracy of
phaseconstant.Basedonthesimulatedfrequency-dependant delay estimation. Furthermore, the received signal suffers en-
and valuesin[9],weexaminedtheparameters’effectonthe ergy loss, as shown in Fig. 6, computed using a time-domain
2652 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.9,SEPTEMBER2005
Fig.3. AmplitudeandphaseofHversusfrequency.(a)Effectofdistance:C =500fF,R=5k(cid:10).(b)Effectofcouplercapacitance:d=5mm,R=5k(cid:10).
(c)Effectofresistance:d=5mm,C =500fF.(d)Effectofdistance:C =500fF,R=5k(cid:10).
[11].Therefore,theswitchingnoiseattackofbothtypescanbe
modeled based on the capacitive coupling mechanism. Fig. 7
shows the attack by a switching noise source on a victim
CPWthroughcapacitivecouplingatthepoint .Themorereal-
isticattackerwaveform asopposedtoapiecewise-linear
oneisproposedin[11]basedontheMarkovchainandlow-pass
filter(LPF)model,asshowninFig.8.Theswitchingnoiseac-
tivity is modeled by the Markov chain producing , whose
PSDisshownasfollowsin(2),where istheprobabilitythata
Fig.4. SuppressionofswitchingnoiseatthetransmitterendintheRFI.
particularattackerswitchesand istheshortestdelaybetween
statetransition:
waveformofthesignalafterthechannel.Asexpected,theen-
ergylossGlossincreaseswithdistance. (2)
C. SwitchingNoiseAttackModel The realistic attack noise waveform is obtained by
making passthroughafirst-orderLPFhavingagain and
Foroursystemthatintegratesboththeanalogradiofrontend
atimeconstant .ItsPSDisthenderivedas
and digital baseband processing circuits, the switching noise
produced by the digital circuits may be significant and impact
(3)
the receiver performance. Two types of switching noise cou-
pling can be considered. The first type is the noise generated
by the transistors in digital circuits injecting currents into the For the switching noise attack model shown in Fig. 7, the
commonsubstrate.Itseffectonthesystemcanbemodeledby transfer function between and can be exactly
the capacitive coupling. The second is the noise capacitively derivedbasedontransmission-linetheoryaccordingtothethree
coupled tothe CPW inthe samelayer or from adjacentlayers cases and . The received noise
SUNANDZHANG:PERFORMANCEOFINTER-CHIPRFIUSINGCPW,CAPACITIVECOUPLER,ANDUWBTRANSCEIVER 2653
Fig.7. Switchingnoiseattackmodel.
Fig.8. Markovchainmodelfortheswitchingactivityofattackers.
(b)
bysuperposingthe contributionofeachindividualattacker.In
Fig. 5. Transmitted, received, and delay compensated received signal with
normalizedamplitudeatd=20mm. MATLAB, we simulated the average PSD at for the case of
the numberof attacker of5, 10,and 15, respectively,which is
calculatedby
(5)
where isthetotaltestnumber, isthetestindex,and rep-
resents the th switching noise attacker. In every test, a noise
source’scouplinggain andcouplingposition isproduced
randomlyaccordingtotheirdistribution. isthencal-
culatedaccordingtoitsposition .Thesimulated at
theattackernumberof5,10,and15,respectively,isshownin
Fig.9.Asexpected,the increaseswiththenumberof
attacker.Itisalsoworthnotingthatthe hasnodccom-
ponentandisfairlyflatinthefrequencyrangeof22–29GHz.
Fig.6. Receivedsignal’sdelayandenergylossversusdistance.
Itsaveragevalueinthisfrequencyrange willbeusedtoes-
timatetheaveragebitSNRatthereceiverendinSectionII-D.
PSD at contributed by the single noise attacker is then
Theexacttransferfunctionandrealisticswitchingnoiseattack
obtained by
model presented here makes it possible to realistically model
theswitchingnoisePSDonthevictimline,whichwillprovide
(4)
importantinformationtoevaluateoursystem’sperformance.
Itisassumedthatthepositionofeachattacker isarandom
D. BERPerformance
variable,whichisuniformlydistributedintherangeof0tothe
CPW’s length . The gain is also assumed to be a random Foraninter-chipinterconnectwithinapackage,thesignalis
variablehavingtheuniformdistributionintherangefrom0to1. only contaminated by thermal noise and switching noise. The
Toconsidertherealisticcaseofmanyswitchingnoiseattackers expressionofthethermalnoisePSD hasbeenpresentedin
tothevictimCPW,thetotalPSDofthenoiseat isdetermined [9] based on the receiver noise figure . It is shown that
2654 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.9,SEPTEMBER2005
The average bit SNR and BER versus distance for the
different attacker number are shown in Fig. 10. The parame-
ters used in simulation are dB, dB, and
dBandthepeakamplitudeofthetransmittedpulse
isadjusted to0.03V.As expected, decreaseswithdistance
andtheattackernumber.TheBERincreaseswithdistanceand
theattackernumber.Itisconcludedthatahighinterconnectdata
rateat3.33Gb/swithalow overtheentirechip
ofsize30 30mm isachievablewiththeradiatedpowerden-
sitylessthan 41dBm/MHz(ortheaveragetransmittedpower
lessthan 2.85dBm).
III. CONCLUSION
Fig.9. AverageswitchingnoisePSDversusfrequency.
A novel inter-chip RFI system operating in the range of
22–29GHzhasbeendescribedandanalyzedintermsofsystem
BER performance. This system features a channel comprised
bythe CPW and capacitivecouplers. It also features an UWB
radioasthetransceiver.Forthissystem,thetransmittedUWB
pulse is designed and the transfer function of the interconnect
channelisderived;afterthat,arealisticswitchingnoiseattack
model is proposed to estimate the system SNR and evaluate
the system BER performance in terms of the different attack
number. As expected, the BER increases with distance and
the attacker number. It is concluded that a high data rate at
3.33Gb/swithalow overtheentirechipofsize
30 30mm isachievablewiththeradiatedpowerdensityless
than 41 dBm/MHz (or the average transmitted power less
than 2.85dBm).
Fig.10. AveragebitSNRandBERversusdistanceforadifferentattacker
number.
REFERENCES
is6.6dBinthelowerbandand8.6dBintheupperbandfora [1] International Technology Roadmap for Semiconductors (ITRS), 2002
Update,SIA.
CMOSUWBradiooperatingfrom3.1to10.6GHz[12],[13].
[2] R.H.HavemannandJ.A.Hutchby,“High-performanceinterconnects:
Thus, here, can be reasonably assumed to be 15 dB. The Anintegrationoverview,”Proc.IEEE,vol.89,no.5,pp.586–601,May
simulated average switching noise PSD was obtained in Sec- 2001.
[3] M.F.Chang,V.P.Roychowdhury,L.Zhang,S.Hyunchol,andY.X.
tionII-Cas .TheaveragebitSNRatthereceiverendisthen
Qian,“RF/wirelessinterconnectforinter-andintra-chipcommunica-
shownasfollows: tions,”Proc.IEEE,vol.89,no.4,pp.456–466,Apr.2001.
[4] H.Shin,Z.Xu,andM.F.Chang,“RF-interconnectformulti-Gb/sdigital
interfacebasedon10GHzRF-modulationin0.18(cid:22)mCMOS,”IEEE
(6) MTT-SInt.MicrowaveSymp.Dig.,vol.1,pp.477–480,Jun.2002.
[5] H.ShinandM.F.Chang,“1.1Gbit/sRF-interconnectbasedon10GHz
RF-modulationin0.18(cid:22)mCMOS,”Electron.Lett.,vol.38,no.2,pp.
where is the received average energy per bit calculated 71–72,Jan.2002.
[6] Y.P.Zhang,“Bit-error-rateperformanceofintra-chipwirelessintercon-
using the expression presented in [9] based on the gain of the
nectsystems,”IEEECommun.Lett.,vol.8,no.1,pp.39–41,Jan.2004.
receiver andtheimplementationmargin . [7] J.Foerster,E.Green,S.Somayazulu,andD.Leeper,“Ultra-wideband
The BER of our system using PPM modulation is then ob- technologyforshort-ormedium-rangewirelesscommunications,”Intel
Technol.J.Q2,pp.1–11,2001.
tainedasa -function[9]
[8] Y.P.Zhang,“Wirelesschipareanetwork:Anewparadigmforantennas,
RF(MM)IC’s,andcommunications,”presentedattheAsia–PacificMi-
crowaveConf.,2004.
[9] M.SunandY.P.Zhang,“Inter-chipRF-interconnectusingCPW,ca-
(7) pacitivecouplerandUWBtransceiver,”presentedattheAsia–Pacific
MicrowaveConf.,2004.
[10] H.Shin,Z.Xu,K.Miyashiro,andM.F.Chang,“Estimationofsignal-to-
(8)
noiseratioimprovementinRF-interconnect,”Electron.Lett.,vol.38,no.
25,pp.1666–1667,Dec.2002.
[11] M. Saint-Laurent, Z. Ajmal, M. Swaminathan, and J. D.Meindl, “A
where isthereceivedpulsecorrespondingtoourdesigned model for interlevel coupling noise in multilevel interconnect struc-
tures,”inInterconnectTechnol.Conf.,vol.4–6,Jun.2001,pp.110–112.
pulse without delay and the PPM delay is optimized as
[12] IEEEStandard802.15-03/139r5,2003.
0.02nstoobtainthebestBERperformance. [13] IEEEStandard802.15-03/334r3,2003.
SUNANDZHANG:PERFORMANCEOFINTER-CHIPRFIUSINGCPW,CAPACITIVECOUPLER,ANDUWBTRANSCEIVER 2655
M. Sun was born in Gansu, China, in 1980. She Y.P.ZhangreceivedtheB.E.degreefromTaiyuan
received the B.S. degree in electrical and informa- Polytechnic Institute, Shanxi, China, in 1982, the
tionengineeringfromtheHunanUniversity,Hunan, M.E. degree from and the Shanxi Mining Institute
China,in2000,theM.S.degreeinelectronicengi- ofTaiyuanUniversityofTechnology,Shanxi,China,
neering from the Beijing Institute of Technology, in 1987, and the Ph.D. degree from the Chinese
Beijing, China, in 2003, and is currently working UniversityofHongKong,HongKong,in1995,all
towardthePh.D.degreeinelectricalandelectronic inelectronicengineering.
engineering at Nanyang Technological University, From1982to1984,hewaswiththeShanxiElec-
Singapore. tronicIndustryBureau.From1990to1992,hewas
Herresearchinterestsincludeintra-andinter-chip with the University of Liverpool, Liverpool, U.K.
RFwirelesscommunicationsystemsimulationand From1996to1997,hewaswiththeCityUniversity
implementationandintegratedantennadesignforwirelesscommunication. ofHongKong.From1987to1990,hewaswiththeShanxiMiningInstitute.
From1997to1998,hewaswiththeUniversityofHongKong.In1996,he
became a Full Professor with the Taiyuan University of Technology. He is
currentlyanAssociateProfessorwiththeSchoolofElectricalandElectronic
Engineering, Nanyang Technological University, Singapore. He currently
guides a research group with the Integrated Systems Research Laboratory,
School of Electrical and Electronic Engineering, Nanyang Technological
University, to develop radio technologies for inter- and intra-chip wireless
interconnection, communications, and networking. He has been involved in
the areas of propagation of radio waves, characterization of radio channels,
miniaturizationofantennas,andimplementationofwirelesscommunications
systems.HeislistedinMarquis’Who’sWhoinScienceandEngineeringand
Cambridge University Press’s IBC 2000 Outstanding Scientists of the 21st
Century.HeservesontheEditorialBoardoftheInternationalJournalofRF
andMicrowaveComputer-AidedEngineeringandwasaGuestEditorofthe
journalforthe“SpecialIssueonRFandMicrowaveSubsystemModulesfor
WirelessCommunications.”
Prof.Zhangwastherecipientofthe1990Sino-BritishTechnicalCollabo-
rationAwardforhiscontributiontotheadvancementofsubsurfaceradiosci-
enceandtechnology.Hewasalsotherecipientofthe2000BestPaperAward
presentedattheSecondInternationalSymposiumonCommunicationSystems,
NetworksandDigitalSignalProcessing,Bournemouth,U.K.