Table Of ContentDepartment of Architecture
and Built Environment
SIMULATION OF PHOTOVOLTAIC AIRFLOW
WINDOWS FOR INDOOR THERMAL AND VISUAL
COMFORT AND ELECTRICITY GENERATION
Abdullah Haredy
BArch, MSc
Thesis submitted to the University of Nottingham for
the degree of Doctor of Philosophy
March 2016
ABSTRACT
The alleviation of heating (in winter), cooling (in summer), artificial lighting and
electricity use in office facilities is defined as a bioclimatic trend that offers sustainable
building practice through a semi-transparent building integrated photovoltaic thermal
envelope as a photovoltaic airflow window system. This thesis aims to produce
synthesised design and strategies for the use of a proposed airflow window unit in office
building in any given location and to maximise use of the renewable energy.
Computational Fluid Dynamics (CFD), namely ANSYS Fluent 14.0, and ECOTECT have
been employed to model the mechanical and natural ventilation of an office building
integrated with a semi-transparent photovoltaic airflow window and the daylighting
impact of various PV transparent degrees (15, 20, 25, 30 and 35 per cent) on the interior
space, respectively, for winter and summer conditions.
The use of such software has urged to establish a validation analysis a priori in order to
ascertain the applicability of the tools to the targeted examination. The validation
process involved a comparison of the results of CFD turbulence models, first, against
benchmark and, second, against results of literature for identical component. The results
of ECOTECT, in terms of daylight factor and illuminance level, were also compared
against the results of Daysim/radiance, Troplux and BC/LC found in the literature.
Excellent agreement was attained from the comparison of the results with errors less
than 10 per cent.
The study presents results of modelling of the airflow window system integrated into an
office room for energy efficiency and adequate level of thermal and visual comfort.
Results have revealed that the combination of mechanical and buoyancy induced flow
spreads the heat internally warming the space to be thermally acceptable during the
heating season whilst the mechanical convection is a main force for the cooling season.
The thermal and visual comfort was compared for different PV airflow window
transparent levels to determine the optimum PV transparency for the office space.
Moreover, time-dependant and steady state conditions were imposed to predict the
i
thermal and air behaviour for more elaborate investigation. The transient analysis was
carried out, in sequential and individual base, according to the solar irradiance of each
minute of working period, 8am-4pm (winter) and 5am-7pm (summer). The results
obtained from transient and steady state, for both seasons, were compared and revealed
negligible impact of transient effect.
The PV electricity output was calculated from each transparency level under each
condition, summer and winter (transient and steady). The predicted flow patterns,
temperature distribution and the daylight factors in the room have been used to
determine the most appropriate opening locations, sizes and system specifications for
maintaining a comfortable indoor environment. The simulation investigation show that,
for the proposed window model, optimum thermal and visual performance can be
achieved from the PV transparency level of 20 per cent, during the heating season, and
from the PV transmittance of 15 per cent, during the cooling season, where the PV
output is highest. However the PV transparencies of 25, 30 and 35% can be reliable
under altered conditions of operation.
ii
ACKNOWLEDGEMENTS
This honoured work could not have been completed without people who I have in
communicate with at the University of Nottingham. Thus, it is quite demanding to
express my sincere gratitude towards these wonderful figures.
I would like to thank my main supervisor, Dr Guohui Gan, for his continuing guidance
and inspiration towards the achievement of my doctoral degree. He had a great
contribution of visioning this study showing appreciated patience to advice throughout
the work; Dr Mohamed Gadi, my second supervisor for providing valuable input; Dr
Robin Wilson for allowing me to involve in his ECOTECT class that was beneficial towards
my studies.
I would also like to thank the staff of the Department of the Built Environment, especially
the IT team for giving advice and helping with computer programming and technical
issues that I had encountered during my work.
I am highly grateful to Baha University, Baha, Kingdom of Saudi Arabia represented in
Saudi Arabia Cultural Bureau in London, United Kingdom for the financial support
(through payments of tuition fees, living expenses and incentive allowances) towards this
academic achievement.
Finally, and most important of all, I am most thankful for the infinite love and support
that my family has always granted me, during my studies at the University of
Nottingham and my whole life.
iii
TABLE OF CONTENTS
ABSTRACT .............................................................................................................. i
ACKNOWLEDGEMENTS .................................................................................................... iii
LIST OF FIGURES ............................................................................................................ xv
LIST OF TABLES .......................................................................................................... xxii
LIST OF ABBREVIATIONS ............................................................................................. xxiv
NOMENCLATURE ............................................................................................................. x
CHAPTER 1 BACKGROUND ....................................................................................... 1
1.1 INTRODUCTION .............................................................................................. 1
1.2 BACKGROUND ................................................................................................. 3
1.2.1 DOUBLE-SKIN FAÇADE ............................................................................. 3
1.2.2 AIRFLOW WINDOW .................................................................................. 5
1.3 SOLAR PHOTOVOLTAIC ENERGY ..................................................................... 6
1.3.1 PV’S TYPES AND COSTS ........................................................................... 7
1.3.2 APPLICATION OF PHOTOVOLTAICS INTO MULTIPLE-GLAZED VENTILATED
FAÇADES ................................................................................................ 8
1.4 FORCES OF AIRFLOW BETWEEN AIRFLOW WINDOW FAÇADES CAVITIES ....... 9
1.5 COMPUTATIONAL FLUID DYNAMICS (CFD) CODE ......................................... 10
1.6 PROBLEM STATEMENT .................................................................................. 11
1.7 MOTIVATION ................................................................................................ 11
1.8 THESIS HYPOTHESIS .................................................................................... 12
1.9 STUDY OBJECTIVES ...................................................................................... 12
1.10 THESIS STRUCTURE ...................................................................................... 14
CHAPTER 2 LITERATURE REVIEW .......................................................................... 16
2.1 NATURAL VENTILATION RESEARCH .............................................................. 16
2.2 MECHANICAL VENTILATION RESEARCH ........................................................ 19
2.3 VISUAL EFFECTS OF INTEGRATING PHOTOVOLTAIC SOLAR CELLS INTO
MULTIPLE-LAYER FAÇADES .......................................................................... 21
2.4 HEAT TRANSFER ANALYSES .......................................................................... 24
2.5 NUMERICAL MODELS FOR MULTIPLE-LAYER FAÇADES.................................. 28
2.6 THE MAIN SIMULATION SCHEMES FOR MULTIPLE-LAYER FAÇADE ............... 29
2.6.1 LUMPED MODEL ...................................................................................... 29
2.6.2 ZONAL APPROACH .................................................................................. 29
2.6.3 AIRFLOW NETWORK MODEL ..................................................................... 30
2.6.4 COMPUTATIONAL FLUID DYNAMIC METHOD ............................................... 32
2.6.5 NON-DIMENSIONAL ANALYSIS ................................................................. 33
2.6.6 CONTROL VOLUME APPROACH .................................................................. 34
2.7 AIR FLOW RATE REPRESENTATION .............................................................. 34
2.8 AIRFLOW WINDOW ...................................................................................... 36
2.9 MODELS VALIDATION ................................................................................... 39
2.10 DYLIGHTING ................................................................................................. 40
2.11 SUMMARY ..................................................................................................... 41
ix
CHAPTER 3 ANALYTICAL METHOD ......................................................................... 43
3.1 MATARO LIBRARY FAÇADE ........................................................................... 43
3.2 STEADY STATE FORMULAS ............................................................................ 44
3.3 PARAMETRIC ANALYSES ............................................................................... 45
3.3.1 CAVITY WIDTH AND HEIGHT EFFECT ......................................................... 47
3.3.2 AIR VELOCITY EFFECT ............................................................................. 50
3.3.3 AMBIENT AIR TEMPERATURE EFFECT ........................................................ 51
3.3.4 SOLAR RADIATION.................................................................................. 54
3.4 SUMMARY ..................................................................................................... 57
CHAPTER 4 MODELS VALIDATION ......................................................................... 58
4.1 INTRODUCTION ............................................................................................ 58
4.2 CFD NUMERICAL MODELLING ....................................................................... 58
4.3 VALIDATION ANALYSIS AGAINST BENCHMARK FOR FLOW IN PARALLEL
PLATES ......................................................................................................... 59
4.4 RESULTS AND DISCUSSION .......................................................................... 62
4.5 VALIDATION ANALYSIS FOR AIRFLOW WINDOW ......................................... 64
4.5.1 SUPPLY AIR WINDOW DESCRIPTION ......................................................... 66
4.5.2 SOLUTION METHODS .............................................................................. 68
4.5.3 EMPLOYING k-ε TURBULENCE MODEL WITH ENHANCED WALL TREATMENT
............................................................................................................ 68
4.5.4 RESULTS AND DISCUSSION ..................................................................... 70
4.5.5 k-ε WITH ENHANCED WALL TREATMENT EXCLUSIVE VALIDATION ................ 71
4.5.6 EMPLOYING SST k-ω CFD MODEL ............................................................. 75
4.5.7 RESULTS AND DISCUSSION ..................................................................... 75
4.5.8 SST k-ω EXCLUSIVE VALIDATION ............................................................. 77
4.5.9 EMPLOYING SST TRANSITION TURBULENCE MODEL .................................... 80
4.5.10 RESULTS AND DISCUSSION ..................................................................... 81
4.5.11 SST TRANSITION EXCLUSIVE VALIDATION ................................................ 84
4.5.12 MEASUREMENT CALIBRATION .................................................................. 87
4.5.13 RESULTS AND DISCUSSION ..................................................................... 87
4.6 SUMMARY ..................................................................................................... 89
CHAPTER 5 DAYLIGHTING ..................................................................................... 91
5.1.1 STANDARD SKY MODELS ......................................................................... 92
5.1.2 ILLUMINATION AND THE DAYLIGHT FACTOR .............................................. 93
5.1.3 BASIC DAYLIGHTING STRATEGIES ............................................................ 94
5.1.4 DAYLIGHTING ASSESSMENT AND SIMULATION TOOLS ................................ 96
5.2 VALIDATION ................................................................................................. 97
5.2.1 ECOTECT AGAINST DAYSIM/RADIANCE AND TROPLUX (case one) ................ 98
5.2.2 ECOTECT AGAINST EMPIRICAL MEASUREMENTS (case two) ....................... 100
5.2.3 ECOTECT AGAINST RADIANCE AND BuildingCalc/LightCalc (BC/LC) (case three)
.......................................................................................................... 102
5.3 SUMMARY ................................................................................................... 106
CHAPTER 6 THE PROPOSED SIMULATION MODEL SET UP .................................... 107
x
6.1 AIR LAYERS WIDTHS .................................................................................. 107
6.2 AIR QUALITY AND VENTILATION FOR WORKPLACES .................................. 108
6.3 DAYLIGHTING ............................................................................................ 108
6.4 HEAT TRANSFER ......................................................................................... 110
6.5 THERMAL PROPERTIES OF THE AIRFLOW WINDOW ELEMENTS .................. 112
6.6 CFD SOLVER SET UP ................................................................................... 112
6.7 LONDON WEATHER DATA ........................................................................... 114
6.8 CALCULATION OF THE HEAT FLUX .............................................................. 114
6.9 CALCULATION OF AIR VELOCITY ................................................................ 116
6.10 CALCULATION OF THE AREA OF INLET AND OUTLET ................................... 117
6.11 PV TRANSPARENCY RATIOS ....................................................................... 119
6.12 SUMMARY ................................................................................................... 120
CHAPTER 7 ANALYSIS AND DESIGN OPTIMISATION FOR WINTER SEASON ........ 121
7.1 INTRODUCTION .......................................................................................... 121
7.1.1 MECHANICAL VENTILATION ONLY ........................................................... 121
7.1.2 BUOYANCY VENTILATION ONLY .............................................................. 122
7.1.3 COMBINED MECHANICAL AND BUOYANCY VENTILATION EFFECTS .............. 123
7.2 COMPARSION OF VENTILATION FORCES .................................................... 124
7.3 EFFECT OF PV TRANSPARENCY LEVELS ....................................................... 129
7.3.1 PV TRANSPARENCY LEVEL OF 0.15 .......................................................... 131
7.3.2 PV TRANSPARENCY LEVEL OF 0.2 ........................................................... 133
7.3.3 PV TRANSPARENCY LEVEL OF 0.25 .......................................................... 136
7.3.4 PV TRANSPARENCY LEVEL OF 0.3 ........................................................... 137
7.3.5 PV TRANSPARENCY LEVEL OF 0.35 .......................................................... 139
7.4 COMPARISON BETWEEN DIFFERENT PV TRANSPARENT LEVELS ................. 141
7.5 PV PANEL ELECTRIC ANALYSIS .................................................................. 143
7.5.1 POWER GENERATION MODEL ................................................................. 144
7.6 PV PANEL DAYLIGHTING ANALYSIS ........................................................... 145
7.7 PV PANEL TRANSPARENCIES DAYLIGHTING EFFECT .................................. 147
7.8 SUMMARY ................................................................................................... 149
CHAPTER 8 ANALYSIS AND DESIGN OPTIMISATION FOR SUMMER SEASON ........ 151
8.1 INTRODUCTION .......................................................................................... 151
8.1.1 MECHANICAL VENTILATION ONLY ........................................................... 151
8.1.2 BUOYANCY VENTILATION ONLY .............................................................. 152
8.1.3 COMBINED MECHANICAL AND BUOYANCY VENTILATION EFFECTS .............. 153
8.2 COMPARSION OF VENTILATION FORCES .................................................... 154
8.3 EFFECT OF PV TRANSPARENCY LEVELS ....................................................... 156
8.3.1 PV TRANSPARENCY LEVEL OF 0.15 .......................................................... 157
8.3.2 PV TRANSPARENCY LEVEL OF 0.2 ........................................................... 160
8.3.3 PV TRANSPARENCY LEVEL OF 0.25 .......................................................... 162
8.3.4 PV TRANSPARENCY LEVEL OF 0.3 ........................................................... 164
8.3.5 PV TRANSPARENCY LEVEL OF 0.35 .......................................................... 167
8.4 COMPARISON BETWEEN DIFFERENT PV TRANSPARENT LEVELS ................. 169
xi
8.5 PV PANEL ELECTRIC ANALYSIS .................................................................. 170
8.6 SUMMARY ................................................................................................... 172
CHAPTER 9 IMPACT OF INTERNAL HEAT GAINS ON THERMAL AND VENTILATION
PERFORMANCES OF AIRFLOW WINDOW ........................................... 173
9.1 INTERNAL HEAT GAINS .............................................................................. 173
9.2 CALCULATION OF THE PARAMETERS (HEAT FLUX, AIR VELOCITY, AND FLOW
RATE) ......................................................................................................... 174
9.3 IMPACT OF INTERNAL HEAT GAINS ............................................................ 175
9.3.1 TEMPERATURE PERFORMANCE FOR WINTER HEATING ............................... 176
9.3.2 VENTILATION PERFORMANCE FOR WINTER HEATING ................................ 180
9.4 COMPARISON BETWEEN DIFFERENT PV TRANSPARENT LEVELS WITH AND
WITHOUT INTERNAL HEAT GAINS .............................................................. 183
9.5 TEMPERATURE PERFORMANCE FOR SUMMER COOLING .............................. 184
9.5.1 VENTILATION PERFORMANCE FOR SUMMER COOLING ............................... 188
9.6 COMPARISON BETWEEN DIFFERENT PV TRANSPARENT LEVELS WITH AND
WITHOUT INTERNAL HEAT GAINS .............................................................. 190
9.7 SUMMARY ................................................................................................... 191
CHAPTER 10 IMPACT OF TRANSIENT TREATMENT ON THERMAL AND VENTILATION
PERFORMANCES OF AIRFLOW WINDOW ........................................... 192
10.1 WINTER HEATING....................................................................................... 193
10.1.1 TEMPERATURE PERFORMANCE FOR WINTER HEATING ............................... 193
10.1.2 VENTILATION PERFORMANCE FOR WINTER HEATING ................................ 196
10.1.3 PV PANEL ELECTRIC ANALYSIS FOR WINTER HEATING .............................. 199
10.2 SUMMER COOLING ...................................................................................... 203
10.2.1 TEMPERATURE PERFORMANCE FOR SUMMER COOLING ............................. 203
10.2.2 VENTILATION PERFORMANCE FOR SUMMER COOLING ............................... 206
10.2.3 PV PANEL ELECTRIC ANALYSIS FOR SUMMER COOLING ............................. 208
10.3 SUMMARY ................................................................................................... 212
CHAPTER 11 CONCLUSION AND RECOMMENDATIONS ........................................... 214
11.1 INTRODUCTION .......................................................................................... 214
11.2 CONTRIBUTION .......................................................................................... 215
11.3 FINDINGS ................................................................................................... 215
11.4 LIMITATIONS ............................................................................................. 216
11.5 FUTURE WORK ............................................................................................ 217
11.6 CLOSURE .................................................................................................... 218
REFERENCES ......................................................................................................... 219
APPENDICES ......................................................................................................... 236
Appendix A INPUTS DATA FOR CHAPTER 3 .......................................................... 236
Appendix A-1 Variation Values of Parameters for Summer Season ......................... 236
Appendix A-2 Variation Values of Parameters for Winter Season ........................... 236
Appendix B RESULTS FOR CHAPTER 3 .................................................................. 237
Appendix B-1 Results of the Effect of Different Gap Sizes in Winter Season ........... 237
Appendix B-2 Results of the Effect of Different Gap Sizes in Summer Season ........ 238
xii
Appendix B-3 Results of the Effect of Different Heights in Winter Season .............. 239
Appendix B-4 Results of the Effect of Different Heights in Summer Season ............ 240
Appendix B-5 Results of the Effect of Different Solar Radiations in Winter Season . 241
Appendix B-6 Results of the Effect of Different Solar Radiations in Summer Season ....
......................................................................................................... 242
Appendix B-7 Results of the Effect of Different Temperatures in Winter Season .... 243
Appendix B-8 Results of the Effect of Different Temperatures in Summer Season .. 244
Appendix B-9 Results of the Effect of Different Velocities in Winter Season ........... 245
Appendix B-10 Results of the Effect of Different Velocities in Summer Season ......... 246
Appendix C RESULTS AND PARAMETERS OF CFD MODELS VALIDATION FOR
CHAPTER 4 ........................................................................................ 247
Appendix C-1 Results and Parameters of k-ε with Enhanced Wall Treatment CFD
Model (Ti = 288.15K, To = 323.15K) ................................................. 247
Appendix C-2 Results and Parameters of k-ε with Enhanced Wall Treatment CFD
Model (Ti = 286k, To = 306K) ........................................................... 247
Appendix C-3 Results and Parameters of SST k-ω CFD Model (Ti = 288.15K, To = 323.15K) 248
Appendix C-4 Results and Parameters of SST k-ω CFD Model (Ti = 286k, To = 306K) ....... 248
Appendix C-5 Results and Parameters of Transition SST CFD Model (Ti = 288.15k, To
= 323.15K) ....................................................................................... 249
Appendix C-6 Results and Parameters of Transition SST CFD Model (Ti = 286k, To =
306K) ................................................................................................ 249
Appendix C-7 Results and Parameters of Overall Nusselt number Obtained From CFD
Model and Benchmark at the Original Mesh, 1st mesh Refinement, and
2nd mesh refinement ......................................................................... 250
Appendix D RESULTS AND PARAMETERS OF DAYLIGHTING VALIDATION FOR
CHAPTER 5 ........................................................................................ 252
Appendix D-1 Results and Parameters of Daylight Factor of 5*5 Model .................. 252
Appendix D-2 Results and Parameters of Daylight Factor of 5*10 Model ................ 252
Appendix D-3 Results and Parameters of Daylight Factor of the Models A and B .... 253
Appendix D-4 Results and Parameters of Daylight Factors From CIE Standard
Overcast Sky Model and Clear Double Glazing with Low-e Coating ... 254
Appendix D-5 Results and Parameters of Illuminance Levels of the Blind Lowered
Case .................................................................................................. 254
Appendix D-6 Results and Parameters of Illuminance Levels of Screen Lowered Case .
......................................................................................................... 255
Appendix E PARAMETERS OF TRANSIENT ANALYSIS FOR CHAPTER 10............. 256
Appendix E-1 Parameters of Transient Analysis From 8-9am in Winter .................. 256
Appendix E-2 Parameters of Transient Analysis From 10-11am in Winter .............. 257
Appendix E-3 Parameters of Transient Analysis From 12-13pm in Winter .............. 259
Appendix E-4 Parameters of Transient Analysis From 14-15pm in Winter .............. 260
Appendix E-5 Parameters of Transient Analysis From 16pm-17pm in Winter ......... 262
Appendix E-6 Parameters of Transient Analysis From 5-6am in Summer ............... 263
Appendix E-7 Parameters of Transient Analysis From 7-8am in Summer ............... 265
xiii
Appendix E-8 Parameters of Transient Analysis From 9-10am in Summer.............. 266
Appendix E-9 Parameters of Transient Analysis From 11-12pm in Summer ........... 268
Appendix E-10 Parameters of Transient Analysis From 13-14pm in Summer ........... 269
Appendix E-11 Parameters of Transient Analysis From 15-16pm in Summer ........... 271
Appendix E-12 Parameters of Transient Analysis For 17pm-18pm in Summer.......... 272
xiv
Description:EMPLOYING k-ε TURBULENCE MODEL WITH ENHANCED WALL laminar flow: mass and momentum equations are for fluid dynamics and