Table Of ContentHandbook of
Materials Failure
Analysis
With Case Studies
from the Oil and
Gas Industry
Handbook of
Materials Failure
Analysis
With Case Studies
from the Oil and
Gas Industry
Edited by
Abdel Salam Hamdy Makhlouf
Mahmood Aliofkhazraei
AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON
NEW YORK (cid:129) OXFORD (cid:129) PARIS (cid:129) SAN DIEGO
SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO
Butterworth-Heinemann is an imprint of Elsevier
ButterworthHeinemannisanimprintofElsevier
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK
225WymanStreet,Waltham,MA02451,USA
Copyright#2016ElsevierLtd.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany
means,electronicormechanical,includingphotocopying,recording,oranyinformation
storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson
howtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesand
ourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe
CopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby
thePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand
experiencebroadenourunderstanding,changesinresearchmethods,professional
practices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge
inevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed
herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety
andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or
editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa
matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany
methods,products,instructions,orideascontainedinthematerialherein.
BritishLibraryCataloguinginPublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
ISBN:978-0-08-100117-2
ForinformationonallButterworthHeinemannpublications
visitourwebsiteathttp://store.elsevier.com/
Contributors
Mohammed A.Al-Anezi
SaudiAramco,Dhahran,SaudiArabia
Tariq A. Al-Ghamdi
SaudiAramco,Dhahran,SaudiArabia
Saad M. Al-Muaili
SaudiAramco,Dhahran,SaudiArabia
Waleed L. Al-Otaibi
SaudiAramco,Dhahran,SaudiArabia
Julien Capelle
ENIM (LaBPS), Metz, France
Guillermina Capiel
Composite Materials,InstituteofMaterials Science and Technology (INTEMA),
University ofMar delPlataand National Research Council, and Chemical
Engineering Department,University of Mar delPlata,Mar del Plata,
Argentina
CarlosChastre
Department ofCivilEngineering, FCT, Universidade NOVA de Lisboa,Lisboa,
Portugal
Joaquim S.Corte
Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia
Metalu´rgica e Materiais, Rio de Janeiro, Brazil
Tito L. da Silveira
TSEC IntegridadeEstrutural Ltda, Riode Janeiro, Brasil
Ryuichiro Ebara
InstituteofMaterialsScienceandTechnology,FukuokaUniversity,Fukuoka-city,
Japan
Ahmed Z.Farahat
CentralMetallurgical Research and Development Institute, CMRDI, Helwan,
Cairo,Egypt
Pablo Fayo´
Composite Materials,InstituteofMaterials Science and Technology (INTEMA),
University ofMar delPlataand National Research Council, Mar delPlata,
Argentina
Pablo Fazzini
GIE S.A., Failure Analysis Division,Mar delPlata, Argentina
Heloisa C. Furtado
ElectricalResearch Center,Rio deJaneiro, Brazil
xv
xvi Contributors
Yi Gong
Department ofMaterialsScience, Fudan University, Shanghai, China
ShokrollahHassani
BP America Inc.,Houston, TX, USA
Alexander Hudgins
Exponent, Menlo Park, California, USA
Brad James
Exponent, Menlo Park, California, USA
Herna´n G. Kunert
UniversityofMardelPlata,andGIES.A.,FailureAnalysisDivision,MardelPlata,
Argentina
ChunQ. Li
RoyalMelbourneInstituteofTechnology, Melbourne, Australia
TanF. Long
UTM-MPRC Institue for Oil and Gas, Universiti TeknologiMalaysia(UTM),
Skudai, Johor, Malaysia
MarcoLudovico-Marques
BarreiroSchoolofTechnology, Polytechnic Institute ofSetu´bal,Lavradio,
Portugal
Mojtaba Mahmoodian
RoyalMelbourneInstituteofTechnology, Melbourne, Australia
Zulkifli A.Majid
UTM-MPRC Institue for Oil and Gas, Universiti TeknologiMalaysia(UTM),
Skudai, Johor, Malaysia
AbdelS.H. Makhlouf
Manufacturing and Industrial Engineering Department,Collegeof Engineering
and ComputerScience,University ofTexas RioGrandeValley
AnibalA. Marquez
University ofMar del Plata, and INTEMA-CONICET, Mar del Plata, Argentina
IainL. May
Metallurgical Consulting Services Ltd.,Saskatoon,SK, Canada
Rahmat Mohsin
UTM-MPRC Institue for Oil and Gas, Universiti TeknologiMalaysia(UTM),
Skudai, Johor, Malaysia
PabloE.Montemartini
CompositeMaterials, Institute ofMaterials Science and Technology (INTEMA),
University ofMar del Plata and NationalResearch Council, and Chemical
Engineering Department,University ofMar del Plata,Mar delPlata,
Argentina
Contributors xvii
SeifollahNasrazadani
Engineering TechnologyDepartment,University of North Texas, Denton,
TX, USA
AntonelaOrofino
Composite Materials,InstituteofMaterials Science and Technology (INTEMA),
University ofMar delPlataand National Research Council, and Chemical
Engineering Department,University of Mar delPlata,Mar del Plata,
Argentina
Jose´ L. Otegui
Y-TEC (YPF—CONICET), Ensenada,Argentina
Juan M.Pardal
UniversidadeFederalFluminense–EscoladeEngenharia,RuaPassodaPa´tria,
Nitero´i, Rio de Janeiro, Brazil
Guy Pluvinage
ENIM (LaBPS), Metz, France
Iva´nU. Pe´rez
Universidad Industrial Santander,Bucaramanga, Colombia
Xudong Qian
Department ofCiviland Environmental Engineering, NationalUniversity of
Singapore,Singapore
CarlosRubio-Gonza´lez
Centro deIngenierı´a y Desarrollo Industrial, Quere´taro,Me´xico
Juan M.Salgado-Lo´pez
Centro deIngenierı´a y Desarrollo Industrial, Quere´taro,Me´xico
ChristianSchmitt
ENIM (LaBPS), Metz, France
Se´rgioS.M.Tavares
UniversidadeFederalFluminense–EscoladeEngenharia,RuaPassodaPa´tria,
Nitero´i, Rio de Janeiro, Brazil
GudimellaV.S. Murthy
Materials Science and Technology Division,CSIR-National Metallurgical
Laboratory, Jamshedpur, Jharkhand,India
Zhen-Guo Yang
Department ofMaterials Science,Fudan University, Shanghai, China
Xiao-Hua Zhu
SchoolofMechanicalEngineering, Southwest Petroleum University, Chengdu,
China
Preface
Failureanalysisandpreventionareimportantissuesforallengineeringmaterialsand
industrial structures. One of the most important engineering fields which plays an
essentialroleinfailureanalysisisMaterialsEngineering.Whetherthefailurehap-
pens in service or during the production process (manufacturing defects), failure
analysis must be performed in order to prevent it from happening again in future.
Another important factor which must be precisely investigated is to determine
whetheror notthe metalliccomponents andstructures are beingused well.
There have been several reports of catastrophic accidents in the Oil and Gas
industry in countries including the United Kingdom, Kuwait, the United States of
America, Venezuela, etc. Most, if not all of these accidents, were due to materials
failureandwerethoughttobethecauseofanumberofworkersbeingkilled,inaddi-
tiontotheenvironmentalcrises.Forinstance,in1993,anaturalgaspipelinerunning
alongahighwayinVenezuela,exploded.Therapidcombustionofthespreadinggas
caused a hellish situation that lead to the deaths of at least 50 people. It should be
notedthatalotoffactors,includingbaddesign,impropermanufacturing,low-grade
rawmaterialsinthepipeproduction,improperjoiningofthepipesand/orcorrosion,
can bethe cause ofsuch incidents.
This handbookcoversanalysis ofmaterials failureinthe Oil and Gas industry,
where a single failure can result in devastating consequences for people, wildlife,
theenvironment,andtheeconomyofaregion.Thebookcombinesintroductorysec-
tionsonfailureanalysiswithnumerousreal-worldcasestudiesofpipelinesandother
typesofmaterialsfailureintheOilandGasindustry,includingjointfailure,leakage
incrudeoilstoragetanks,failureofglassfiber-reinforcedepoxypipes,andfailureof
stainless steel components inoffshore platforms, amongst others.
Thishandbookcontainsmanyfailurereal-worldcasesandcasestudiescoveringa
widespectrumofmaterialsfailurerelatedtopetroleum,petrochemicals,oil,andgas
applications.Theeditorsthankallthecontributorsfortheirexcellentchaptercontri-
butions to this handbook, and for their hard work and patience during preparation,
andproductionofthehandbook.Wesincerelyhopethatthepublicationofthishand-
book will help people from Industry and Academia to get the maximum benefits
from the experience contained inthe published chapters.
Summer 2015
Abdel Salam Hamdy Makhlouf
Mahmood Aliofkhazraei
xix
CHAPTER
1
Failure analysis of oil and gas
transmission pipelines
BradJames, AlexanderHudgins
Exponent,MenloPark,California,USA
CHAPTER OUTLINE
1 Introduction .........................................................................................................1
2 MechanicalDamage .............................................................................................3
3 LongitudinalSeam-WeldDefects ...........................................................................6
3.1 Lap-WeldDefects .................................................................................8
3.2 Lap-WeldCaseStudy ...........................................................................9
3.3 ERWDefects .....................................................................................12
3.4 FlashWeldDefects ............................................................................14
3.5 Submerged-ArcWeldDefects ..............................................................14
3.6 Submerged-ArcWeldDefectCaseStudy ..............................................15
3.7 ShieldedMetalArcWeldDefects.........................................................20
4 Corrosion ...........................................................................................................21
4.1 GeneralCorrosion ...............................................................................22
4.2 StressCorrosionCracking ...................................................................22
4.3 High-pHSCCCaseStudy ....................................................................23
4.4 Near-NeutralpHSCCCaseStudy ........................................................24
4.5 Hydrogen-StressCracking ...................................................................24
4.6 HSCCaseStudy.................................................................................28
4.7 GroovingCorrosion .............................................................................31
5 Fatigue ..............................................................................................................33
6 Conclusion .........................................................................................................36
References ..............................................................................................................36
1 INTRODUCTION
Thereareover2.3millionmilesofpipelinesintheUnitedStatesthatcarrynatural
gasandliquid-petroleumproducts[1];approximately60%ofwhichwereinstalled
before 1970 [2]. These oil and gas pipelines are the backbone of our energy-
dependentsociety.Statisticsindicatethatoilandgaspipelinesareafarsafer,more
efficient, cost-effective way to move these hazardous products than any other
1
HandbookofMaterialsFailureAnalysisWithCaseStudiesfromtheOilandGasIndustry.
http://dx.doi.org/10.1016/B978-0-08-100117-2.00001-7
Copyright©2016ElsevierLtd.Allrightsreserved.
2 CHAPTER 1 Failure analysis of oil and gas transmission pipelines
methodoftransportation[1].However,whenpipelinesdoruptureorleak,disastrous
human, environmental, and business consequences can result. The most common
issuesthatcanresultinpipelineleaksandrupturesincludemechanicaldamage,seam
weld defects, stress corrosion cracking (SCC), hard spots, fatigue, and corrosion.
This chapter is intended to serve as a primer to help failure analysts to understand
andinterpretthesemorecommonpipelinefailuremechanismsandprovidesspecific
casestudies.Themoreweunderstandhowandwhypipelinescanfail,thebetterwe
can maintain ouraging infrastructureandprevent accidentsin the future.
Internalpressureresultsin“hoopstress”inapipelineandistypicallyquantified
using Barlow’s formula [3]. These hoop stresses act to favor crack initiation and
growthinaradialandalongitudinaldirection.Hoopstressesandthecorresponding
preferentialcrackgrowthdirectionsinpipeareshownschematicallyinFigure1.1.
Thus,pipinganomaliesthataremostdetrimentaltointegrityaretypicallythosethat
are oriented ina longitudinal direction.
Stresses other than pressure-induced hoop stress can affect pipeline integrity.
Residualstressescausedbyinadvertentdentsorgougescancontributetocrackini-
tiationandgrowth.Weldingcanalsobeasourceofresidualstresses.Anotherofthe
morecommonstressesthatcancausepipelinefailuresarethosecausedbygeological
forces, such as landslides, earthquakes, or other large-scale soil or pipeline move-
ment. These can result in axial stresses that cause failures transverse to the pipe’s
longitudinal direction, such as at girthwelds.
Datafrom2011showthatmaterialandweldfailuresconstitutethelargestincident
type for both hazardous liquid and gas transmission systems (Figures 1.2 and 1.3).
Other authors have indicated that third party damage is the most common cause of
incidentsingastransmissionsystems[4].Thefollowingsectionsoutlinespecificpipe-
linefailure mechanismsand provideexamplestoillustrate key phenomena.A sum-
mary of failure mechanisms presented in this chapter is shown in Table 1.1, which
alsoservesasanoutlineforthecontentpresentedinthischapter.
Radial crack Hoop stress
growth direction
Longitudinal crack
growth direction
FIGURE1.1
Schematicpipelineshowingtheorientationofhoopstressresultingfrominternalpressure
andthepreferentialorientationofcrackgrowth.
2 Mechanical Damage 3
Other outside forceAll other causes, 37,
damage, 18, 3% 7%
Natural force
damage, 34, 6%
Corrosion, 133, 24%
Excavation damage,
Material and/or 75, 14%
weld failures, 195,
36% Incorrect operation,
55, 10%
FIGURE1.2
Thedistributionofincidentsinhazardousliquidlinesisshownbetweentheyearsof2006
and2010[20].
Other outside
force damage, 24, All other causes,
9% 43, 16% Corrosion, 54, 20%
Excavation
damage, 40, 14%
Natural
force
damage, Material and/or
18, weld failures, 84,
6% 31%
Incorrect
operation, 10, 4%
FIGURE1.3
Thedistributionofincidentsingastransmissionlinesisshownbetweentheyearsof2006
and2010[20].
2 MECHANICAL DAMAGE
Mechanicaldamageoccurswhenapipelineisstruckbymechanicalequipment,such
asabackhoe.Mechanicaldamagehasbeencharacterizedbysomeofthemostcom-
mon causes of pipeline rupture [5]. If the mechanical strike does not immediately
rupturethepipe,theformationofthedentorgougewilloftenresultinlocalstress
concentrationandresidualstresses.API579andASMEB31.8provideguidancefor