Table Of ContentHANDBOOK
OF DIFFERENTIAL EQUATIONS
EVOLUTIONARY EQUATIONS
VOLUME II
This page intentionally left blank
H
ANDBOOK
D E
OF IFFERENTIAL QUATIONS
E E
VOLUTIONARY QUATIONS
Volume II
Editedby
C.M. DAFERMOS
DivisionofAppliedMathematics
BrownUniversity
Providence,USA
E. FEIREISL
MathematicalInstituteASCR
Praha,CzechRepublic
2005
Amsterdam Boston Heidelberg London NewYork Oxford
• • • • •
Paris SanDiego SanFrancisco Singapore Sydney Tokyo
• • • • •
ELSEVIERB.V. ELSEVIERInc. ELSEVIERLtd ELSEVIERLtd
Radarweg29 525BStreet,Suite1900 TheBoulevard,LangfordLane 84TheobaldsRoad
P.O.Box211 SanDiego,CA92101-4495 Kidlington,OxfordOX51GB LondonWC1X8RR
1000AEAmsterdam USA UK UK
TheNetherlands
©2005ElsevierB.V.Allrightsreserved.
ThisworkisprotectedundercopyrightbyElsevierB.V.,andthefollowingtermsandconditionsapplytoitsuse:
Photocopying
Single photocopies of single chapters may be made for personal use as allowed by national copyright laws.
PermissionofthePublisherandpaymentofafeeisrequiredforallotherphotocopying,includingmultipleor
systematiccopying,copyingforadvertisingorpromotionalpurposes,resale,andallformsofdocumentdelivery.
Specialratesareavailableforeducationalinstitutionsthatwishtomakephotocopiesfornon-profiteducational
classroomuse.
PermissionsmaybesoughtdirectlyfromElsevier’sRightsDepartmentinOxford,UK;phone:(+44)1865843830,
fax:(+44) 1865 853333, e-mail:[email protected]. Requestsmayalsobecompletedon-line viathe
Elsevierhomepage(http://www.elsevier.com/locate/permissions).
IntheUSA,usersmayclearpermissionsandmakepaymentsthroughtheCopyrightClearanceCenter,Inc.,222
RosewoodDrive,Danvers,MA01923,USA;phone:(+1)(978)7508400,fax:(+1)(978)7504744,andinthe
UKthroughtheCopyrightLicensingAgencyRapidClearanceService(CLARCS),90TottenhamCourtRoad,
LondonW1P0LP,UK;phone:(+44)2076315555,fax:(+44)2076315500.Othercountriesmayhavealocal
reprographicrightsagencyforpayments.
DerivativeWorks
Tablesofcontentsmaybereproducedforinternalcirculation,butpermissionofthePublisherisrequiredfor
externalresaleordistributionofsuchmaterial.PermissionofthePublisherisrequiredforallotherderivative
works,includingcompilationsandtranslations.
ElectronicStorageorUsage
PermissionofthePublisherisrequiredtostoreoruseelectronicallyanymaterialcontainedinthiswork,including
anychapterorpartofachapter.
Exceptasoutlinedabove,nopartofthisworkmaybereproduced,storedinaretrievalsystemortransmittedin
anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,withoutpriorwritten
permissionofthePublisher.
Addresspermissionsrequeststo:Elsevier’sRightsDepartment,atthefaxande-mailaddressesnotedabove.
Notice
NoresponsibilityisassumedbythePublisherforanyinjuryand/ordamagetopersonsorpropertyasamatterof
productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructionsor
ideascontainedinthematerialherein.Becauseofrapidadvancesinthemedicalsciences,inparticular,indepen-
dentverificationofdiagnosesanddrugdosagesshouldbemade.
Firstedition2005
LibraryofCongressCataloginginPublicationData
AcatalogrecordisavailablefromtheLibraryofCongress.
BritishLibraryCataloguinginPublicationData
AcataloguerecordisavailablefromtheBritishLibrary.
ISBN:0444520481
SetISBN:0444517448
ThepaperusedinthispublicationmeetstherequirementsofANSI/NISOZ39.48-1992(PermanenceofPaper).
PrintedinTheNetherlands.
Preface
Thisis thesecondvolumein theseries EvolutionaryEquations,partof theHandbookof
Differential Equations project. Whereas Volume I was intended to provide an overview
of diverse abstract approaches, the guiding philosophy of the present volume is to offer
arepresentativesampleofthemostchallengingspecificequationsandsystemsarisingin
scientificapplications.
Threechaptersaredevotedtothemodernmathematicaltheoryoffluiddynamics:Chap-
ter1dealswiththeEulerequations,Chapter5providesageneralintroductiontothetheory
ofincompressibleviscousfluids,andChapter3discussestheasymptoticlimitsofdiscrete
mechanicalsystemsdescribedbytheBoltzmannequation.
In a different direction, Chapter 2 introduces the blow-up phenomena of solutions of
generalparabolicequationsandsystems.
Chapters 4 and 6 are closely related and deal with mathematical problems arising in
materialsscience.
Finally,Chapter7exploresthetopicofnonlinearwaveequations.
Wehavedeliberatelychosendiversetopicsaswellasstylesofpresentationinorderto
exposethereadertotheenormousvarietyofproblems,methodologyandpotentialappli-
cations.
Weshouldliketoexpressourthankstotheauthorswhohavecontributedtothepresent
volume, to the referees who have generously spent time reading the papers, and to the
editorsandstaffofElsevier.
ConstantineDafermos
EduardFeireisl
v
This page intentionally left blank
List of Contributors
Chen,G.-Q.,NorthwesternUniversity,Evanston,IL,USA(Ch.1)
Fila,M.,ComeniusUniversity,Bratislava,Slovakia(Ch.2)
Golse,F.,InstitutUniversitairedeFranceandUniversitéParis7,Paris,France(Ch.3)
Krejcˇí, P., Weierstrass-Institute for Applied Analysis and Stochastics, Berlin, Germany
(Ch.4)
Málek,J.,CharlesUniversity,Praha,CzechRepublic(Ch.5)
Mielke, A., Weierstraß-Institut für Angewandte Analysis und Stochastik and Humboldt-
UniversitätzuBerlin,Berlin,Germany(Ch.6)
Rajagopal,K.R.,TexasA&MUniversity,CollegeStation,TX,USA(Ch.5)
Zhang,P.,AcademyofMathematics&SystemsScience,Beijing,China(Ch.7)
Zheng,Y.,PennStateUniversity,UniversityPark,PA,USA(Ch.7)
vii
This page intentionally left blank
Contents
Preface v
ListofContributors vii
ContentsofVolumeI xi
1. EulerEquationsandRelatedHyperbolicConservationLaws 1
G.-Q.Chen
2. Blow-upofSolutionsofSupercriticalParabolicEquations 105
M.Fila
3. TheBoltzmannEquationandItsHydrodynamicLimits 159
F.Golse
4. Long-TimeBehaviorofSolutionstoHyperbolicEquationswithHysteresis 303
P.Krejcˇí
5. MathematicalIssuesConcerningtheNavier–StokesEquationsandSome
ofItsGeneralizations 371
J.MálekandK.R.Rajagopal
6. EvolutionofRate-IndependentSystems 461
A.Mielke
7. OntheGlobalWeakSolutionstoaVariationalWaveEquation 561
P.ZhangandY.Zheng
AuthorIndex 649
SubjectIndex 659
ix
Description:The aim of this Handbook is to acquaint the reader with the current status of the theory of evolutionary partial differential equations, and with some of its applications. Evolutionary partial differential equations made their first appearance in the 18th century, in the endeavor to understand the m