Table Of ContentGRB 081029: Understanding Multiple Afterglow
Components
S. T. Holland∗,∗∗, M. De Pasquale‡, J. Mao§, T. Sakamoto∗,∗∗, P. Schadyk,‡, S.
1 Covino§, P. D’Avanzo§, A. Antonelli††, V. D’Elia††, G. Chincarini§, F. Fiore†† and S.
1
B. Pandey‡‡
0
2
n ∗CentreforResearchandExplorationinSpaceScienceandTechnology,NASA/GSFC,Greenbelt,MD20771,
a USA
J †UniversitiesSpaceResearchAssociation,10211WinicopinCircle,Columbia,MD21044,USA
1 ∗∗Code660.1,NASA/GSFC,Greenbelt,MD20771,USA
3 ‡MullardSpaceScienceLaboratory,UniversityCollegeLondon,Holmbury,StMary,Dorking,Surrey,RH56NT,
UK
] §INAF-OsservatorioAstronomicodiBrera,ViaEmilioBianchi46,I–23807Merate(LC),Italy
O
¶JointCentreforAstrophysics,UniversityofMaryland,BaltimoreCounty,1000HilltopCircle,Baltimore,MD
C 21250,USA
. kMax-PlanckInstitutfürExtraterrestrischePhysik,Giessenbachstraße,85748Garching,Germany
h
††INAF-OsservatorioAstronomicodiRoma,ViadeFrascati33,I–00040MonteporzioCatone(Roma),Italy
p
- ‡‡RandallLaboratoryofPhysics,UniversityofMichigan,450ChurchSt,AnnArbor,MI48109–1040,USA
o
r
t Abstract. Wepresentananalysisoftheunusualopticallightcurveofthegamma-rayburstGRB081029,whichoccurredata
s redshiftofz=3.8479.WecombineX-rayandopticalobservationsfromtheSwiftX-RayTelescopeandtheSwiftUltraViolet
a
OpticalTelescopewithopticalandinfrareddataobtainedusingtheREMandROTSEtelescopestoconstructadetaileddata
[
setextendingfrom86sto∼100000saftertheBATtrigger.Ourdataalsocoverawideenergyrange,from10keVto0.77eV
1 (1.24Åto16000Å).TheX-rayafterglowshowsashallowinitialdecayfollowedbyarapiddecaystartingatabout18000s.
v Theopticalandinfraredafterglow,however,showsanuncharacteristicriseatabout5000sthatdoesnotcorrespondtoany
2 featureintheX-raylightcurve.Ourdataarenotconsistentwithsynchrotronradiationfromasingle-componentjetinteracting
5 withanexternalmedium.Wedo,however,findthattheobservedlightcurvecanbeexplainedusingmulti-componentmodel
9 forthejet.
5
Keywords: gamma-rayburst:individual:GRB081029
.
1 PACS: 98.70s.Rz
0
1
1 INTRODUCTION
:
v
i Thereisgrowingevidencethattheclassicalpictureofasingleuniformjetcannotexplainthespectralenergydistribu-
X
tionsandlightcurvesofsomegamma-rayburst(GRB)afterglows.Forexample,theunusuallybrightopticalafterglow
r
of the “naked-eye”burst GRB 080319B was best explained using a two-componentjet [6] while GRB 030329 [1]
a
appearstorequireanarrow,ultra-relativisticinnerjetandawide,mildlyrelativisticouterjettoexplainitslightcurves.
This is in agreementwith results from magneto-hydrodynamicmodelling that show complex structure in GRB jets
[e.g.,9].GRBafterglowsappeartobemorecomplexthanoriginallythought.
An example of a GRB afterglow that appears to require a multi-component jet is GRB 081029. This burst was
detectedbySwift/BATat01:43:56UTon2008Oct29[8].ROTSE-IIIcidentifiedtheopticalafterglowat86s[7],and
theREMtelescopestartedobservingtheopticalafterglowat154s[2],sothereisawell-sampledR-bandlightcurve
startinglessthan90saftertheBATtrigger.DuetoanobservingconstraingSwiftwasunabletoslewtothisburstas
soonasitwasdetected.XRTandUVOTobservationsbeganabout45minuteaftertheBATtriggerandcontinuedfor
approximately10days.
TheVLT/UVESandGemini-Southmeasuredaredshiftofz=3.8479[4,3],whichcorrespondstoalookbacktime
of11.9Gyr.TheGemini-SouthGMOSspectrumshowsevidenceforadampedLyman-alphasystemaswellasseveral
metalabsorptionfeaturesinthehostgalaxyofGRB081029.
OBSERVATIONS
BAT:Prompt Emission
The Swift/BAT discovered and observed GRB 081029. The burst duration was T =280±50 s, the peak flux
90
was (2.8±1.3)×10−8 erg cm−2 s−1, and the spectrum was best fit by a simple power law with a photonindex of
G =1.5±0.2.TheBATlightcurvewassomewhatsmootherandweakerthanatypicalBAT-detectedGRB.Figure1
showstheBATlightcuvrvefortheprompeemissionfromGRB081029.
0.01 15−25 keV
5×10−3
0
0.01 25−50 keV
5×10−3
0
0.01
50−100 keV
5×10−3
0
4×10−3 100−150 keV
2×10−3
0
−2×10−3
0.03
0.02 15−150 keV
0.01
0
−0.01
−100 0 100 200 300 400
Time since the BAT trigger [sec]
FIGURE1. TheBATenergyresolvedlightcurvesofGRB081029with10sbinning.
XRT:X-Ray LightCurve and Spectrum
The Swift/XRT observed GRB 081029 from 41.4 minutes to approximately 10 days after the BAT trigger. The
X-raylightcurve(seeFigure2)iswellfitbya brokenpowerlaw withindices(fn (cid:181) t−a )ofa 1 =0.56±0.03until
18230±346s,anda =2.56±0.09afterthat.Thereissomeevidenceforflaringbetweenapproximately2500sand
2
5000s.ThetimescalesoftheseflaresareconsistentwithD t/t<1.TheX-raydataarenotunusual,andareconsistent
withthecanonicalX-raylightcurveforGRBafterglowsdescribedby[5]and[10].
FIGURE2. TheX-ray,optical,andinfrareddatapresentedasfluxdensities.
TheSwift/XRTspectrumcanbefitbyasinglepowerlaw(fn (cid:181) n −b )withanindexofb X =0.98±0.08.Thereis
noevidenceforanyevolutioninthepowerlawindexatX-rayenergies.TheestimatedGalacticcolumndensityinthe
directionoftheburstisN =2.8×10−20cm−2,andtheabsorptioninthehostisN =4.9×10−21cm−2.
H H
FIGURE3. Atwo-componentjetmodelprovidesareasonablefittotheoptical,infrared,andX-raylightcurvesoftheafterglow
ofGRB081029.
OpticalandInfrared Observations
TheSwiftUVOTbeganobservingtheafterglowofGRB081029at2689saftertheBATtrigger.Theafterglowwas
detectedintheUVOTv,b,andwhitebands,consistentwiththereportedredshiftofz=3.8479.Ground-baseddata
was obtained using REM and ROTSE. ROTSE began observations 86 s after the burst in the R band. REM began
observingGRB081029156saftertheBATtriggerintheR,J,andH bands.Theresultinglightcurvesarecomplex,
instarkcontrasttothesimpleX-raylightcurve.ThecombinedopticalandinfraredobservationsareshowninFigure2
alongwiththeSwift/XRTlightcurve.Theopticalandinfrareddatashowajumpinthefluxdensityofapproximately
afactoroftenatapproximately5000s.ThereisnocorrespondingincreaseintheX-rayfluxdensityatthattime.
DISCUSSION
The X-ray light curve is consistent with energy injection from ongoing central engine activity until about 15000 s
followed by a jet break at 18230 s. However, this scenario cannot explain the jump in the flux seen at optical and
infraredwavelengthsatabout5000s. Therefore,we donotthinkthata changein the energyinjectioniscapableof
explainingthelightcurvesforthisafterglow.Similarly,thejumpcannotbemodelledbyinvokingthepassageofthe
synchrotronpeakfrequencythroughtheopticalregime,orastheriseoftheforwardshockduetointeractionwiththe
circumburstmedium. We also examined the possibility that the jump is due to density structure in the surrounding
environment,butthisisunabletoreproducethespeedorthemagnitudeoftheincreaseinluminosity.
Ingeneralwefindthataone-componentjetcannotexplaintheobservedlightcurvesandspectralenergydistribution
oftheX-ray,optical,andinfraredafterglowsofGRB081029.However,atwo-componentjetmodel,similartowhatis
seeninsomeotherGRBafterglows,doesprovideareasonablefittothedataOurtwo-componentjetmodelisshown
inFigure3,andtheparametersofeachjetarelistedinTable1.Thehalf-openingangleofthejetisdenotedbyq ,G
j 0
istheLorentzfactor,E istheisotropicequivalentkineticenergyinthejet, p istheelectronindex,e ande are
K,iso e B
thefractionsoftheenergyinelectronsandmagneticfieldsrespectively,nisthedensityofthecircumburstmedium,
andzistheredshift.
Thenarrow,innerjethasahalf-openingangleofq =0.01radandaLorentzfactorof500.Thiscomponentgives
j,n
TABLE 1. Model parameters for the
best-fitting two-component jet model for
GRB081029.
Parameter NarrowJet WideJet
q j(rad) 0.01 0.02
G 500 60
0
EK,iso(erg) 2.5×1054 2.0×1054
p 2.2 2.2
ee 0.02 1/3
eB 0.0002 0.0002
n(cm−3) 10 10
z 3.8479 3.8479
rise totheX-rayfluxandthe pre-jumpopticalflux.Thewider,outerjethasq =0.02radanda Lorentzfactorof
j,w
60.Thiscomponentdominatestheafterglowafterabout10000s.Thetotalelectromagneticenergyintheafterglowis
approximatelyequallydividedbetweenthetwojets.
CONCLUSIONS
GRB 081029 was a long–soft GRB with a redshift of z=3.8479. It had a smooth gamma-ray light curve and did
notappearto haveanyunusualgamma-rayproperties.Neitherthe gamma-raynortheX-raypropertiesofthis burst
showed any sign of strange behaviour.The optical and infraredlight curves, on the other hand, were not typical of
GRBafterglows.Thereisabrighteningintheopticalandinfraredlightcurvesatabout5000sthatcannotbeexplained
usingasingle-componentjetmodel.However,wefindthatatwo-componentjetmodelfitsthedatareasonablywell.
WeconcludethattheafterglowofGRB081029wasprobablypoweredbyatwo-componentjetwiththeenergysplit
approximatelyequallybetweenanarrow(q =0.01rad)innerjetandawider(q =0.02rad)outerjet.Theinner
j,n j,w
jet has a Lorentz factor of G =500 while the outer jet has G =60. This result providesevidence that some (and
n w
perhapsall)GRBjetshavecomplexinternalstructure.
ACKNOWLEDGMENTS
WeacknowledgetheuseofpublicdatafromtheSwiftDataArchive.Thisworkisbasedinpartonobservationstaken
with the ROTSE-IIIctelescope in Namibia,the REM telescope atla Silla Observatory,andwith ESO Telescopesat
theParanalObservatories.
REFERENCES
1. Berger,E.,etal.,2003,Nature,426,154
2. Covino,S.,etal.,2008,GCNC8441
3. Cucchiara,A.,etal.,2008,GCNC8448
4. D’Elia,V.,etal.,2008,GCNC8438
5. Nousek,J.A.,etal.,2006,ApJ,642,389
6. Racusin,J.L.,etal.,2008,Nature,455,183
7. Rykoff,E.S.,2008,GCNC8436
8. Sakamoto,T.,etal.,2008,GCNC8435
9. Tchekhovskoy,A.,etal.,2010,NewAstronomy,15,749
10. Zhang,B.,etal.,2006,ApJ,642,354