Table Of ContentSeries of Lectures in Mathematics
Geometry, Analysis and Dynamics sG
u
e
bo
on sub-Riemannian Manifolds -m
R
ie
et
mr
y
Volume I a, Geometry, Analysis
nA
nn
ia
a
l
ny
Davide Barilari, Ugo Boscain and Mario Sigalotti s and Dynamics
Mi
s
Editors a a
nn
ifd on sub-Riemannian
o
D
l
dy
sn
Sub-Riemannian manifolds model media with constrained dynamics: motion at any , a
point is only allowed along a limited set of directions, which are prescribed by the Vm Manifolds
o
physical problem. From the theoretical point of view, sub-Riemannian geometry is the luic
ms
geometry underlying the theory of hypoelliptic operators and degenerate diffusions on
o
e
manifolds. n
I
Volume I
In the last twenty years, sub-Riemannian geometry has emerged as an independent
research domain, with extremely rich motivations and ramifications in several parts of
pure and applied mathematics, such as geometric analysis, geometric measure theory,
stochastic calculus and evolution equations together with applications in mechanics,
MD Davide Barilari
optimal control and biology. aa
riovid
e Ugo Boscain
The aim of the lectures collected here is to present sub-Riemannian structures for the Sig Ba
use of both researchers and graduate students. ar
loila Mario Sigalotti
tti, Eri, U
dg
ito Editors
o B
rso
s
c
a
in
a
n
d
ISBN 978-3-03719-162-0
www.ems-ph.org
Barilari et al. Vol. I | Rotis Sans | Pantone 287, Pantone 116 | 170 x 240 mm | RB: 16 ?? mm
EMS Series of Lectures in Mathematics
Edited by Ari Laptev (Imperial College, London, UK)
EMS Series of Lectures in Mathematics is a book series aimed at students, professional
mathematicians and scientists. It publishes polished notes arising from seminars or lecture series
in all fields of pure and applied mathematics, including the reissue of classic texts of continuing
interest. The individual volumes are intended to give a rapid and accessible introduction into
their particular subject, guiding the audience to topics of current research and the more
advanced and specialized literature.
Previously published in this series:
Katrin Wehrheim, Uhlenbeck Compactness
Torsten Ekedahl, One Semester of Elliptic Curves
Sergey V. Matveev, Lectures on Algebraic Topology
Joseph C. Várilly, An Introduction to Noncommutative Geometry
Reto Müller, Differential Harnack Inequalities and the Ricci Flow
Eustasio del Barrio, Paul Deheuvels and Sara van de Geer, Lectures on Empirical Processes
Iskander A. Taimanov, Lectures on Differential Geometry
Martin J. Mohlenkamp and María Cristina Pereyra, Wavelets, Their Friends, and What They
Can Do for You
Stanley E. Payne and Joseph A. Thas, Finite Generalized Quadrangles
Masoud Khalkhali, Basic Noncommutative Geometry
Helge Holden, Kenneth H. Karlsen, Knut-Andreas Lie and Nils Henrik Risebro, Splitting Methods
for Partial Differential Equations with Rough Solutions
Koichiro Harada, “Moonshine” of Finite Groups
Yurii A. Neretin, Lectures on Gaussian Integral Operators and Classical Groups
Damien Calaque and Carlo A. Rossi, Lectures on Duflo Isomorphisms in Lie Algebra and
Complex Geometry
Claudio Carmeli, Lauren Caston and Rita Fioresi, Mathematical Foundations of Supersymmetry
Hans Triebel, Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration
Koen Thas, A Course on Elation Quadrangles
Benoît Grébert and Thomas Kappeler, The Defocusing NLS Equation and Its Normal Form
Armen Sergeev, Lectures on Universal Teichmüller Space
Matthias Aschenbrenner, Stefan Friedl and Henry Wilton, 3-Manifold Groups
Hans Triebel, Tempered Homogeneous Function Spaces
Kathrin Bringmann, Yann Bugeaud, Titus Hilberdink and Jürgen Sander, Four Faces of Number
Theory
Alberto Cavicchioli, Friedrich Hegenbarth and Dušan Repovš, Higher-Dimensional Generalized
Manifolds: Surgery and Constructions
Geometry, Analysis
and Dynamics
on sub-Riemannian
Manifolds
Volume I
Davide Barilari
Ugo Boscain
Mario Sigalotti
Editors
Editors:
Prof. Davide Barilari Prof. Mario Sigalotti
Institut de Mathématiques de Jussieu-Paris Rive Gauche INRIA Saclay
Université Paris 7, Denis Diderot Centre de Mathématiques Appliquées
5 rue Thomas Mann École Polytechnique
75205 Paris 13 Cedex Route de Saclay
France 91128 Palaiseau Cedex
France
E-mail: [email protected]
E-mail: [email protected]
Prof. Ugo Boscain
CNRS
Centre de Mathématiques Appliquées, Ecole Polytechnique
Route de Saclay
91128 Palaiseau Cedex
France
E-mail: [email protected]
2010 Mathematics Subject Classification: Primary: 53C17; Secondary: 35H10, 60H30, 49J15
Key words: sub-Riemannian geometry, hypoelliptic operators, non-holonomic constraints, optimal control,
rough paths
ISBN 978-3-03719-162-0
The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the
detailed bibliographic data are available on the Internet at http://www.helveticat.ch.
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission
of the copyright owner must be obtained.
© European Mathematical Society 2016
Contact address:
European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum SEW A27
CH-8092 Zürich
Switzerland
Phone: +41 (0)44 632 34 36
Email: [email protected]
Homepage: www.ems-ph.org
Typeset using the authors’ TEX files: Alison Durham, Manchester, UK
Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany
∞ Printed on acid free paper
9 8 7 6 5 4 3 2 1
Preface
This book, divided into two volumes, collects different cycles of lectures given at
the IHP Trimester “Geometry, Analysis and Dynamics on Sub-Riemannian Mani-
folds”,heldatInstitutHenriPoincaréinParis,andtheCIRMSummerSchool“Sub-
Riemannian Manifolds: From Geodesics to Hypoelliptic Diffusion”, held at Centre
InternationaledeRencontresMathématiques,inLuminy,duringfall2014.
Sub-Riemannian geometry is a generalization of Riemannian geometry, whose
birthdatesbacktoCarathéodory’s1909seminalpaperonthefoundationsofCarnot
thermodynamics,followedbyE.Cartan’s1928addressattheInternationalCongress
ofMathematiciansinBologna.
Sub-Riemannian geometry is characterized by non-holonomic constraints: dis-
tances are computed by minimizing the length of curves whose velocities belong
to a given subspace of the tangent space. From the theoretical point of view, sub-
Riemannian geometry is the geometry underlying the theory of hypoelliptic opera-
torsanddegeneratediffusionsonmanifolds.
In the last twenty years, sub-Riemannian geometry has emerged as an indepen-
dent research domain, with extremely rich motivations and ramifications in several
partsofpureandappliedmathematics. Letusmentiongeometricanalysis,geomet-
ricmeasuretheory, stochasticcalculusandevolutionequationstogetherwithappli-
cationsinmechanicsandoptimalcontrol(motionplanning,robotics,nonholonomic
mechanics,quantumcontrol)andanothertoimageprocessing,biologyandvision.
Evenif,nowadays,sub-Riemanniangeometryisrecognizedasatransversesub-
ject,researchersworkingindifferentcommunitiesarestillusingquitedifferentlan-
guage. Theaimoftheselecturesistocollectreferencematerialonsub-Riemannian
structuresfortheuseofbothresearchersandgraduatestudents. Startingfrombasic
definitions and extending up to the frontiers of research, this material reflects the
pointofviewofauthorswithdifferentbackgrounds. Theexchangesamongthepar-
ticipantsoftheIHPTrimesterandoftheCIRMschoolarereflectedherebyseveral
connections and interplays between the different chapters. This will hopefully re-
ducetheexistinggapinlanguagebetweenthedifferentcommunitiesandfavourthe
futuredevelopmentofthefield.
ThenotesofFrancescoSerraCassanogiveanextensivepresentationofgeomet-
ric measure theory in Carnot groups. The first part of the notes discusses differen-
tialcalculusformapsbetweenCarnotgroupsinrelationwiththeunderlyingmetric
structure. The text then focuses on differential calculus within Carnot groups and
uses it to investigate intrinsic regular and Lipschitz surfaces in Carnot groups and
their relation with rectifiability. The final section deals with sets of finite perimeter
and with the related notions of reduced and minimal boundary. An application to
minimalgraphsinHeisenberggroupsisdeveloped.
vi Preface
The lecture notes by Nicola Garofalo are a quite comprehensive compendium
of results in geometric analysis. In the first part, starting from basic examples and
definitions of sub-Riemannian manifolds, length-spaces and Carnot groups, he dis-
cusses, in the sub-Riemannian context, Sobolev spaces, BV functions and Sobolev
embeddingtheorems,passingthroughisoperimetricinequalities. Inthesecondpart
hediscussesclassicalresultsingeometricanalysisinRiemannianmanifoldsandthe
now classical contributions by Folland–Stein, Rothschild–Stein and Nagel–Stein–
Wainger in the sub-Riemannian context. Besides giving estimates for the funda-
mental solution of the heat equation, the goal is to discuss Li–Yau inequalities and
curvaturedimensionalinequalitiesinthesub-Riemanniancase.
ThelecturenotesbyFabriceBaudoinstudyhypoellipticdiffusionoperatorsfrom
the viewpoint of geometric analysis. The main focus is on sub-Riemannian Lapla-
cians that arise as horizontal Laplacians of a Riemannian foliation. For this kind
of operator an extensive theory is developed, with special attention to subelliptic
Weitzenböckidentitiesanddifferentapplications,fromLi–Yauinequalitiestospec-
tral gap inequalities and the Bonnet–Myers theorem. The last section is devoted to
theanalysisofsomeKolmogorov-typehypoellipticdiffusionoperatorsandhypoco-
erciveestimates.
DavideBarilari
UgoBoscain
MarioSigalotti
Contents
1 SometopicsofgeometricmeasuretheoryinCarnotgroups. . . . . . . . . 1
FrancescoSerraCassano
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 AnintroductiontoCarnotgroups . . . . . . . . . . . . . . . . . . . 3
3 DifferentialcalculusonCarnotgroups . . . . . . . . . . . . . . . . 20
4 DifferentialcalculuswithinCarnotgroups . . . . . . . . . . . . . . 34
5 SetsoffiniteperimeterandminimalsurfacesinCarnotgroups . . . 83
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2 Hypoelliptic operators and some aspects of analysis and geometry of sub-
Riemannianspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
NicolaGarofalo
1 Sub-Riemanniangeometryandhypoellipticoperators . . . . . . . . 123
2 Carnotgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3 FundamentalsolutionsandtheYamabeequation. . . . . . . . . . . 147
4 Carnot–Carathéodorydistance . . . . . . . . . . . . . . . . . . . . 160
5 SobolevandBVspaces . . . . . . . . . . . . . . . . . . . . . . . . 175
6 Fractionalintegrationinspacesofhomogeneoustype . . . . . . . . 189
7 Fundamentalsolutionsofhypoellipticoperators . . . . . . . . . . . 202
8 ThegeometricSobolevembeddingandtheisoperimetricinequality. 212
9 TheLi–YauinequalityforcompletemanifoldswithRicci≥0. . . . 216
10 HeatsemigroupapproachtotheLi–Yauinequality . . . . . . . . . 224
11 Aheatequationapproachtothevolumedoublingproperty . . . . . 233
12 Asub-Riemanniancurvature-dimensioninequality . . . . . . . . . 239
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
3 Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian
foliations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
FabriceBaudoin
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
2 RiemannianfoliationsandtheirLaplacians . . . . . . . . . . . . . 261
3 HorizontalLaplaciansandheatkernelsonmodelspaces . . . . . . 268
4 TransverseWeitzenböckformulas . . . . . . . . . . . . . . . . . . 282
5 Thehorizontalheatsemigroup . . . . . . . . . . . . . . . . . . . . 292
6 ThehorizontalBonnet–Myerstheorem . . . . . . . . . . . . . . . . 302
7 Riemannianfoliationsandhypocoercivity . . . . . . . . . . . . . . 308
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Chapter 1
Some topics of geometric measure theory in
Carnot groups
FrancescoSerraCassano(cid:49)
Tomyparents
Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 AnintroductiontoCarnotgroups. . . . . . . . . . . . . . . . . . . . . . . . . 3
3 DifferentialcalculusonCarnotgroups. . . . . . . . . . . . . . . . . . . . . . 20
4 DifferentialcalculuswithinCarnotgroups. . . . . . . . . . . . . . . . . . . . 34
5 SetsoffiniteperimeterandminimalsurfacesinCarnotgroups. . . . . . . . . . 83
Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1 Introduction
These notes aim at illustrating some results achieved in geometric measure theory
in Carnot groups. They are an extended version of part of the course Geomet-
ric Measure Theory given during the “Geometry, Analysis and Dynamics on sub-
Riemannian Manifolds” trimester, held in Paris in September 2014 at the Institut
HenriPoincaré.
Firstofall,IwouldliketothanktheorganizersofthetrimesterAndreiAgrachev,
Davide Barilari, Ugo Boscain, Yacine Chitour, Frederic Jean, Ludovic Rifford, and
MarioSigalotti,fortheirkindinvitation,aswelltoIHPforitsbacking.
Itisalsoagreatpleasureformetoacknowledgethehelpandsupportofseveral
friends of mine who have made this work possible: first of all, most of the results
(cid:49)[email protected]
DipartimentodiMatematica,UniversitàdiTrento,ViaSommarive14,38123,Trento,Italy.
F.S.C.issupportedbyMIUR,Italy,GNAMPAoftheINdAM,UniversityofTrento,ItalyandbyMAnETMarie
CurieInitialTrainingNetworkGrant607643–FP7-PEOPLE-2013-ITN.PartoftheworkwasdonewhileF.S.C.
wasvisitingattheInstitutHenriPoincaré,Paris.HewishestothanktheIHPforitshospitality.