Table Of ContentGeometric Algebra Computing
Eduardo Bayro-Corrochano (cid:2) Gerik Scheuermann
Editors
Geometric
Algebra
Computing
in Engineering
and Computer Science
Editors
Prof.EduardoBayro-Corrochano Prof.Dr.GerikScheuermann
Dept.ElectricalEng.& Inst.Informatik
ComputerScience UniversitätLeipzig
CINVESTAV 04009Leipzig
UnidadGuadalajara Germany
Av.Científica1145 [email protected]
45015ColoniaelBajío,
Zapopan,JAL
Mexico
[email protected]
http://www.gdl.cinvestav.mx/edb
ISBN978-1-84996-107-3 e-ISBN978-1-84996-108-0
DOI10.1007/978-1-84996-108-0
SpringerLondonDordrechtHeidelbergNewYork
BritishLibraryCataloguinginPublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
LibraryofCongressControlNumber:2010926690
©Springer-VerlagLondonLimited2010
Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper-
mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced,
storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish-
ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe
CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto
thepublishers.
Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa
specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree
forgeneraluse.
Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation
containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions
thatmaybemade.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface
Thisbookpresentsnewresultsonapplicationsofgeometricalgebra.Thetimewhen
researchersandengineerswerestartingtorealizethepotentialofquaternionsforap-
plicationsinelectrical,mechanic,andcontrolengineeringpassedalongtimeago.
SincethepublicationofSpace-TimeAlgebrabyDavidHestenes(1966)andClifford
AlgebratoGeometricCalculus:AUnifiedLanguageforMathematicsandPhysics
by David Hestenes and Garret Sobczyk (1984), consistent progress in the appli-
cations of geometric algebra has taken place. Particularly due to the great devel-
opments in computer technology and the Internet, researchers have proposed new
ideasandalgorithmstotackleavarietyofproblemsintheareasofcomputerscience
andengineeringusingthepowerfullanguageofgeometricalgebra.Inthisprocess,
pioneer groups started the conference series entitled “Applications of Geometric
AlgebrainComputerScienceandEngineering”(AGACSE)inordertopromotethe
research activity in the domain of the application of geometric algebra. The first
conference, AGACSE’1999, organized by Eduardo Bayro-Corrochano and Garret
Sobczyk, took place in Ixtapa-Zihuatanejo, Mexico, in July 1999. The contribu-
tionswerepublishedinGeometricAlgebrawithApplicationsinScienceandEngi-
neering,Birkhäuser,2001.Thesecondconference,ACACSE’2001,washeldinthe
EngineeringDepartment of the CambridgeUniversity on 9–13 July 2001 and was
organizedbyLeoDorst,ChrisDoran,andJoanLasenby.Thebestconferencecontri-
butionsappearedasabookentitledApplicationsofGeometricAlgebrainComputer
ScienceandEngineering,Birkhäuser,2002.Thethirdconference,AGACSE’2008,
took place in August 2008 in Grimma, Leipzig, Germany. The conference chairs,
EduardoBayro-CorrochanoandGerikSheuermann,editedthisbookusingselected
contributionsthatwerepeer-reviewedbyatleasttworeviewers.
In the history of science, theories would have not been developed at all with-
outessentialmathematicalconcepts.Invariousperiodsofthehistoryofmathemat-
ics and physics, there is clear evidence of stagnation, and it is only thanks to new
mathematicaldevelopmentsthatastonishingprogresshastakenplace.Furthermore,
researchers unavoidably cause fragmented knowledge in their various attempts to
combine different mathematical systems. We realize that each mathematical sys-
tembringsaboutsomepartsofgeometry;however,together,theyconstituteasys-
tem that is highly redundant due to an unnecessary multiplicity of representations
v
vi Preface
forgeometricconcepts.Incontrast,inthegeometricalgebralanguage,mostofthe
standardmattertaughtinengineeringandcomputersciencecanbeadvantageously
reformulatedwithoutredundanciesandinahighlycondensedfashion.
Thisbookpresentsaselectionofarticlesaboutthetheoryandapplicationsofthe
advancedmathematicallanguagegeometricalgebrawhichgreatlyhelpstoexpress
theideasandconceptsandtodevelopalgorithmsinthebroaddomainsofcomputer
scienceandengineering.Thecontributionsareorganizedinsevenparts.
The first part presents screw theory in geometric algebra, the parameterization
of3Dconformaltransformationsinconformalgeometricalgebra,andanoverview
ofapplicationsofgeometricalgebra.Thesecondpartincludesthoroughstudieson
Cliffor–Fourier transforms: the two-dimensional Clifford windowed Fourier trans-
form; the cylindrical Fourier transform; applications of the 3D geometric algebra
Fourier transform in graphics engineering; the 4D Clifford–Fourier transform for
color image processing; and the use of the Hilbert transforms in Clifford analysis
for signal processing. In the third part, self-organizing geometric neural networks
areutilizedfor2Dcontourand3Dsurfacereconstructioninmedicalimageprocess-
ing.Theclusteringandclassificationarehandledusinggeometricneuralnetworks
and associative memories designed in the conformal geometric algebra. This part
concludes with a retrospective of the quaternion wavelet transform, including an
applicationforstereovision.Thefourthpartforcomputervisionstartswithanew
cone-pixelcamera using a convexhull and twists in conformal geometric algebra.
Thenextworkintroducesamodel-basedapproachforglobalself-localizationusing
activestereovisionandGaussianspheres.Inthefifthpart,thegeometriccharacter-
izationofM-conformalmappingsisdiscussed,andastudyoffluidflowproblems
is carried out in depth using quaternionic analysis. The sixth part shows the im-
pressive space group visualizer for all 230 3D groups using the software packet
forgeometricalgebracomputationsCLUCalc.Thesecondauthorstudiesgeometric
algebraformalismasanalternativetodistributedrepresentationmodels;herecon-
volutions are replaced by geometric products, and, as a result, a natural language
for visualization of higher concepts is proposed. Another author studies computa-
tionalcomplexityreductionsusingCliffordalgebrasandshowsthatgraphproblems
of complexity class NP are polynomial in the number of Clifford operations re-
quired.Theseventhpartincludesnewdevelopmentsinefficientgeometricalgebra
computing: The first author presents an efficient blade factorization algorithm to
producefasterimplementationsoftheJoin;withthesoftwarepacketGALOOP,the
second author symbolically reduces involved formulas of conformal geometric al-
gebra,generatingsuitablecodeforcomputingusinghardwareaccelerators.Another
chaptershowsapplicationsofGrobnerbasesinrobotics,formulatedinthelanguage
of Clifford algebras, in engineering to the theory of curves, including Fermat and
Beziercubics,andintheinterpolationoffunctionsusedinfiniteelementtheory.
We are very thankful to all book contributors, who are working persistently to
advancetheapplicationsofgeometricalgebra.Wedohopethatthereaderwillfind
this collection of contributions in a broad scope of the areas of engineering and
computer science very stimulating and encouraging. We hope that, as a result, we
willseeourcommunitygrowingandbenefittingfromnewandpromisingscientific
Preface vii
contributions. Finally, we thank also for the support to this book project given by
CINVESTAVUnidadGuadalajaraandCONACYTProject2007-182084.
CINVESTAV,Guadalajara,México EduardoBayro-Corrochano
UniversitätLeipzig, GerikSheuermann
InstitutfürInformatik,Germany
Contents
PartI GeometricAlgebra
NewToolsforComputationalGeometryandRejuvenationofScrew
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
DavidHestenes
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 UniversalGeometricAlgebra . . . . . . . . . . . . . . . . . . . . 4
3 GroupTheorywithGeometricAlgebra . . . . . . . . . . . . . . . 6
4 EuclideanGeometrywithConformalGA . . . . . . . . . . . . . . 8
5 InvariantEuclideanGeometry . . . . . . . . . . . . . . . . . . . . 10
6 ProjectiveGeometry . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 CovariantEuclideanGeometrywithConformalSplits . . . . . . . 14
8 RigidDisplacements . . . . . . . . . . . . . . . . . . . . . . . . . 18
9 FramingaRigidBody . . . . . . . . . . . . . . . . . . . . . . . . 20
10 RigidBodyKinematics . . . . . . . . . . . . . . . . . . . . . . . 22
11 RigidBodyDynamics . . . . . . . . . . . . . . . . . . . . . . . . 24
12 ScrewTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
13 ConformalSplitandMatrixRepresentation . . . . . . . . . . . . . 28
14 LinkedRigidBodies&Robotics . . . . . . . . . . . . . . . . . . 31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Tutorial:Structure-PreservingRepresentationofEuclideanMotions
ThroughConformalGeometricAlgebra . . . . . . . . . . . . . . . . 35
LeoDorst
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2 ConformalGeometricAlgebra . . . . . . . . . . . . . . . . . . . 36
2.1 Trick1:RepresentingEuclideanPointsinMinkowskiSpace 36
2.2 Trick 2: Orthogonal Transformations as Multiple
ReflectionsinaSandwichingRepresentation . . . . . . . . 39
2.3 Trick3:ConstructingElementsbyAnti-Symmetry . . . . . 42
2.4 Trick4:DualSpecificationofElementsPermitsIntersection 43
ix
Description:Geometric algebra provides a rich and general mathematical framework for the development of solutions, concepts and computer algorithms without losing geometric insight into the problem in question. Many current mathematical subjects can be treated in an unified manner without abandoning the mathema