Table Of ContentGAS PHASE NANOPARTICLE SYNTHESIS
GAS PHASE NANOPARTICLE
SYNTHESIS
Edited by
Claes Granqvist
UppsalaUniversity,
Sweden
Laszlo Kish
Texas A&M University,
College Station, TX, U.S.A.
and
William Marlow
Texas A&M University,
College Station, TX, U.S.A.
Springer-Science+Business Media, B.V.
A C.I.P. Catalogue record for this book is available from the Library of Congress.
ISBN 978-90-481-6657-2 ISBN 978-1-4020-24 44-3 (eBook)
DOI 10.1007/978-1-4020-2444-3
Printed on acid-free paper
All Rights Reserved
©2004 Springer Science+Business Media Dordrecht
Originally published by Kluwer Academic Publishersin 2004.
Softcover reprint of the hardcover 1st edition 2004
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.
TABLE OF CONTENTS
Preface ix
1 vanderWaalsEnergiesintheFormationandInteraction
ofNanoparticleAggregates 1–27
WilliamH.Marlow
1 NanoparticleAggregatesforNanotechnology 1
1.1 NanoparticlesfromGas-PhaseProcesses 2
1.2 AssemblingFunctionalNanostructuresforUseof
IntrinsicPropertiesofNanoparticles 3
1.3 PotentialUtilizationofAgglomeratesas
ElementaryUnitsofFunctionalNanostructues 4
2 PhysicsofInteractionsontheNanoscale 5
2.1 BasicvanderWaalsEnergiesforPointAtoms 7
2.2 CouplingofPoint-Atoms:vanderWaals
InteractionsinDiscreteandContinuumDescriptions 10
2.3 Everywhere-FinitevanderWaalsInteractions 18
2.4 CondensedMatterInteractionsatShort
Range[26] 22
2.5 RecapitulationandFinalStep 24
2 EffectofThermoporesison10-NM-Diameter
NanoparticlesinGasFlowinsideaTube 29–42
FumioNaruse,SeiichiroKashuandChikaraHayashi
1 ExperimentalConfiguration 29
2 TemperatureProfile 31
2.1 TheCaseofTw=T0+ζz 31
2.2 TheCaseofaConstantTw 32
2.3 RequirementOutsidetheTubeWallforHaving
Tw=To+ζz 33
2.4 GasFlowEntranceZoneoftheTube 33
v
vi Contents
3 NanoparticlesinPoiseuilleGasflowinaTubeHavingan
insideTemperatureProfileTW=T0+ZZ 34
3.1 FlowVelocity 34
3.2 Thermophoreticforce, F 34
2
3.3 TerminalVelocity,U 35
T
3.4 TotalTravelDistancebyThermophoresis 35
3.5 BrownianDiffusion 38
4 ExperimentalResults 39
3 KeyEffectsinNanoparticleFormationby
CombustionTechniques 43–67
IgorS.Altman,PeterV.PikhitsaandMansooChoi
1 Introduction 43
2 PhysicalProcessFundamentals 45
3 CondensationGrowthofOxideParticles:
MacroApproach 48
3.1 GeneralDescription 48
3.2 HeatTransferBetweenaNanoparticleand
ItsEnvironment 50
3.3 QualitativeAnalysis 52
4 CondensationGrowthofOxideParticles:
MicroApproach 57
4.1 PrerequisitesfortheMicroApproach 57
4.2 GeneralIdeas 58
4.3 EmissionCharacteristicsofOxideParticles 60
4.4 DefectGeneration 62
5 Summary 66
4 BasicsofUVLaser-AssistedGeneration
ofNanoparticles
ChemicalVapourDeposition,andComparisonwithUV
LaserAblation 69–122
PeterHeszler,LarsLandstro¨mandClaes-Go¨ranGranqvist
1 Introduction 69
1.1 Nanoparticles/Nanocrystals 69
1.2 NanostructuredMaterials 71
1.3 GenerationofNanoparticles 71
1.4 LaserAssistedGenerationofGas
PhaseNanoparticles 71
2 ModelSystem:TungstenNanoparticleFormationby
UVLaserAssistedCVD 73
Contents vii
2.1 Experimental 73
2.2 MaterialsAnalysis 75
2.3 EmissionSpectroscopyofHotNanoparticles:
AnalysisofEmittedThermalRadiation 78
2.4 EffectofGasConstituentsontheSize
Distribution,DepositionRate,and
OpticalEmission 89
3 OntheChemistryofParticleNucleationandGrowth 98
4 CarbonCoatedIronNanoparticlesbyLaserInduced
DecompositionofFerrocene(FE(C H ) ) 102
5 5 2
4.1 Experimental 103
4.2 MaterialsCharacterisation 103
4.3 SizeDistributions 106
4.4 EmissionSpectroscopyofHotParticles 107
5 SizeDistributionofLCVDGeneratedNanoparticles 109
6 TungstenNanoparticleFormationbyLaserAblation 112
6.1 Experimental 112
6.2 MaterialsAnalysis 114
7 ComparisonofNanoparticleGenerationbyLCVD
andLA 117
8 SummaryandConclusions 118
5 NanoparticleFormationbyCombustionTechniques
Gas-DispersedSynthesisofRefractoryOxides 123–156
AndreyN.Zolotko,NikolayI.Poletaev,JacobI.Vovchuk
andAleksandrV.Florko
1 Introduction 124
2 PhysicalPrerequisitesfortheGDSMethod 125
3 LaboratoryGDSReactor 127
4 StabilizationofTwo-phaseLPFandLDF 130
5 MechanismforCombustionofFuelParticles
inaDustCloud 134
6 InfluenceofMacroparametersfortheReactoronthe
PropertiesofGDSoxides 140
7 ControlofDispersionPropertiesforGDSOxides 144
8 EstimationoftheDispersionofCombustionProducts 147
9 Conclusion 153
6 ElectronDiffractionfromAtomicClusterBeams 157–184
B.D.Hall,M.Hyslop,A.Wurl,andS.A.Brown
1 Introduction 157
viii Contents
2 ElectronDiffractionfromAtomicClusters 159
2.1 KinematicDiffraction 159
2.2 TypicalProfiles 160
2.3 RelatingMeasurementstoStructure 162
3 Rare-gasClusters—TheOrsayGroup 164
3.1 EarlyResultsandAnalysis 164
3.2 Icosahedral-to-FCCTransition 165
4 EarlyMetalParticleStudies 166
4.1 TheNorthwesternSource 166
4.2 SourceCharacteristics 168
4.3 ExperimentsonMetalClusters 168
5 FurtherStudiesofMetals 169
5.1 UnsupportedMetalMTPs 169
5.2 LargeMetastableIcosahedra 170
5.3 StructuralTransitionsinCopper 171
6 RecentStudies 172
6.1 BismuthClusters 172
6.2 LeadClusters 175
7 AlternativeElectronDiffractionTechniques 180
7.1 DiffractionfromTrappedClusters 180
8 Conclusion 181
Index 185
PREFACE
“Nanotechnology” is abroad term that includes aspects of materials
science, mesoscopic physics, organic and inorganic chemistry, nano-
electronics, atmospheric chemistry, air pollution, and other fields. The
technology is very much in current focus—at the beginning of the Third
Millennium—andraiseshopesforenvironmentallybenign,resource-lean
manufacturingofproductsofmanykinds.
One precursor to present-day nanotechnology used porous coatings,
comprisedof“ultrafine”particleswithdimensionsinthenanometerrange,
forabsorptionofthermalradiationonthermocouples,bolometers,andthe
like. These particles were prepared by gas-phase syntheses, specifically
using species formed by nucleation and growth from a metal vapor un-
dergoing cooling by collisions with inert gas molecules. Such “inert gas
evaporation”wasexploredinthe1920sand1930s[see,forexample,A.H.
Pfund,Phys.Rev.35(1930)1434]andwasinvestigatedinmoredetailin
the1960sand1970s[see,forexample,K.Kimotoetal.,Jpn.J.Appl.Phys.
2(1963)702;C.G.GranqvistandR.A.Buhrman,J.Appl.Phys.47(1976)
2200]. Improved analytical capabilities (electron microscopy) aswell as
newapplications(selectiveabsorptionofsolarenergy)weretwooftherea-
sonsfortherenewedinterest.Today,gas-phasesynthesisofnanoparticles
constitutesthefoundationforaprofitablebutstillsmallindustry.
Aerosols,i.e.,dispersionsorsuspensionsofparticlesinagas,formthe
background field for contemporary efforts in gas-phase nanotechnology.
Interestinaerosolresearchhistoricallyarosefromtheissuesofatmospheric
chemistryandphysics,humanhealthprotection,andairpollution.Today,
aerosolresearchengagesavastarrayofeffortsintheseandrelatedfields,
andelsewhereinworkidentifiedasnanotechnology.
Whereasnanotechnologyispresentlyapopularsubject,thefundamen-
tal scientific aspects of the relevant processes underlying this technology
havenot,inourview,receivedtheattentiontheydeserve.Thefirstattempt
ix
x Preface
atidentifyingandreviewingthesefundamentals,atleastinthegasphase,
were in the volumes Aerosol Microphysics I: Particle Interaction (edited
by W.H. Marlow, Springer, Berlin, 1980) and Aerosol Microphysics II:
Chemical Physics of Microparticles (edited by W.H. Marlow, Springer,
Berlin,1982).Thecurrentbookfillsthegapinthecontemporaryliterature
byaddressingcertainfundamentalsofgas-phasenanotechnology.Various
chaptersinthebookcoverspecifictopicssuchasforceswithinanddynam-
icsofnanoparticlesystems,gasevaporationanddeposition,laserassisted
nano-particlesynthesis,andnanoparticlefabricationviaflameprocesses.
We also include a chapter on in-situ structural studies of nanoparticles
undergoinggrowth.
Werecognizethatthetopicschosenforthebookcompriseonlyasmall
fractionofthenanotechnologyfieldtoday.However,webelievethatthese
aspectsareamongthemostimportantones,whichwillplaymajorrolesin
shapingthenanotechnologyofthefuture.
Claes-Go¨ranGranqvist
The A˚ngstro¨mLaboratory
UppsalaUniversity
Sweden
LaszloB.Kish
TexasA&MUniversity
CollegeStation
U.S.A.
WilliamH.Marlow
TexasA&MUniversity
CollegeStation
U.S.A.
Chapter 1
VAN DER WAALS ENERGIES IN THE
FORMATION AND INTERACTION OF
NANOPARTICLE AGGREGATES
WilliamH.Marlow
NuclearEngineeringDepartment,TexasA&MUniversity,CollegeStation,
TX77843-3133,U.S.A.
Abstract: Researchonnanoparticlesismotivatedby(1)theirintrinsicproperties,(2)
thepropertiesofthestructurescreatedfromthem,and(3)theeffectstheyandtheir
structureshaveonmaterialsorlargerstructureswheretheyaredepositedorembedded.
Forimplementingaprocess-leveldescriptionoftheformationofthesestructures,a
quantitativetreatmentofthephysicalfactorsinvolvedintheirassemblyfromisolated
nanoparticulateelementsisuseful.Inadditiontotransport,suchadescriptionmust
includeinteractionpotentialenergiesnotonlybetweenindividual,isolatedspherical
particlesbutitmustalsoaccountformultiparticleinteractionssuchassphereswith
aggregates of nanoparticles, aggregates with aggregates, etc. Such a hierarchy of
interactionsinvolvesmultiplelengthscalesandmustaccountcorrectlyforalllevels
of interactions on a basis that is internally consistent from one length scale to the
next.Thiscontributionreviewsrecentprogressbytheauthorandhiscolleaguesinthe
formulationofthemultiscalevanderWaalsinteractionenergy,includingtheonsetof
retardation,anditsmany-bodygeneralizationsforthepurposeofaccountingforthe
formationofaggregatesofnanoparticlesandapplicationselsewhere.
Keywords: multi-scale interaction energy, van der Waals potential, aggregate,
nanoparticle
1. NANOPARTICLEAGGREGATESFOR
NANOTECHNOLOGY
Nanoparticles are expected to become essential elements of emerg-
ingtechnologiesdueto(1)theirintrinsicproperties,(2)thepropertiesof
thestructurescreatedfromthem,and(3)theeffectstheyandtheirstruc-
tures have on materials or larger structures where they are deposited or
C.G.Granqvistetal.(eds.),GasPhaseNanoparticleSynthesis,1–27.
(cid:2)C 2004KluwerAcademicPublishers.