Table Of ContentFUNDAMENTALS OF MATRIX ANALYSIS
WITH APPLICATIONS
FUNDAMENTALS OF
MATRIX ANALYSIS
WITH APPLICATIONS
EDWARDBARRYSAFF
DepartmentofMathematics
CenterforConstructiveApproximation
VanderbiltUniversity
Nashville,TN,USA
ARTHURDAVIDSNIDER
DepartmentofElectricalEngineering
UniversityofSouthFlorida
Tampa,FL,USA
Copyright©2016byJohnWiley&Sons,Inc.Allrightsreserved
PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey
PublishedsimultaneouslyinCanada
Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany
means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunder
Section107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthe
Publisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,
Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebat
www.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissions
Department,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)
748-6008,oronlineathttp://www.wiley.com/go/permissions.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin
preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessof
thecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessfora
particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.
Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha
professionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother
commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.
Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer
CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax
(317)572-4002.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe
availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.
LibraryofCongressCataloging-in-PublicationData:
Saff,E.B.,1944–
Fundamentalsofmatrixanalysiswithapplications/EdwardBarrySaff,CenterforConstructiveApproximation,
VanderbiltUniversity,Nashville,Tennessee,ArthurDavidSnider,DepartmentofElectricalEngineering,
UniversityofSouthFlorida,Tampa,Florida.
pages cm
Includesbibliographicalreferencesandindex.
ISBN978-1-118-95365-5(cloth)
1. Matrices. 2. Algebras,Linear. 3. Orthogonalizationmethods. 4. Eigenvalues.
I. Snider,ArthurDavid,1940– II. Title.
QA188.S1942015
(cid:2)
512.9434–dc23
2015016670
PrintedintheUnitedStatesofAmerica
10 9 8 7 6 5 4 3 2 1
1 2015
ToourbrothersHarveyJ.Saff,DonaldJ.Saff,andArthurHerndonSnider.Theyhave
set a high bar for us, inspired us to achieve, and extended helping hands when we
neededthemtoreachforthosegreaterheights.
EdwardBarrySaff
ArthurDavidSnider
CONTENTS
PREFACE ix
PARTI INTRODUCTION:THREEEXAMPLES 1
1 SystemsofLinearAlgebraicEquations 5
1.1 LinearAlgebraicEquations, 5
1.2 Matrix Representation of Linear Systems and the Gauss-Jordan
Algorithm, 17
1.3 TheCompleteGaussEliminationAlgorithm, 27
1.4 EchelonFormandRank, 38
1.5 ComputationalConsiderations, 46
1.6 Summary, 55
2 MatrixAlgebra 58
2.1 MatrixMultiplication, 58
2.2 SomePhysicalApplicationsofMatrixOperators, 69
2.3 TheInverseandtheTranspose, 76
2.4 Determinants, 86
2.5 ThreeImportantDeterminantRules, 100
2.6 Summary, 111
GroupProjectsforPartI
A. LUFactorization, 116
B. Two-PointBoundaryValueProblem, 118
C. ElectrostaticVoltage, 119
CONTENTS vii
D. Kirchhoff’sLaws, 120
E. GlobalPositioningSystems, 122
F. Fixed-PointMethods, 123
PARTII INTRODUCTION:THESTRUCTUREOFGENERAL
SOLUTIONSTOLINEARALGEBRAICEQUATIONS 129
3 VectorSpaces 133
3.1 GeneralSpaces,Subspaces,andSpans, 133
3.2 LinearDependence, 142
3.3 Bases,Dimension,andRank, 151
3.4 Summary, 164
4 Orthogonality 165
4.1 OrthogonalVectorsandtheGram–SchmidtAlgorithm, 165
4.2 OrthogonalMatrices, 174
4.3 LeastSquares, 180
4.4 FunctionSpaces, 190
4.5 Summary, 197
GroupProjectsforPartII
A. RotationsandReflections, 201
B. HouseholderReflectors, 201
C. InfiniteDimensionalMatrices, 202
PARTIII INTRODUCTION:REFLECTONTHIS 205
5 EigenvectorsandEigenvalues 209
5.1 EigenvectorBasics, 209
5.2 CalculatingEigenvaluesandEigenvectors, 217
5.3 SymmetricandHermitianMatrices, 225
5.4 Summary, 232
6 Similarity 233
6.1 SimilarityTransformationsandDiagonalizability, 233
6.2 PrincipleAxesandNormalModes, 244
6.3 SchurDecompositionandItsImplications, 257
6.4 TheSingularValueDecomposition, 264
6.5 ThePowerMethodandtheQRAlgorithm, 282
6.6 Summary, 290
viii CONTENTS
7 LinearSystemsofDifferentialEquations 293
7.1 First-OrderLinearSystems, 293
7.2 TheMatrixExponentialFunction, 306
7.3 TheJordanNormalForm, 316
7.4 MatrixExponentiationviaGeneralizedEigenvectors, 333
7.5 Summary, 339
GroupProjectsforPartIII
A. PositiveDefiniteMatrices, 342
B. HessenbergForm, 343
C. DiscreteFourierTransform, 344
D. ConstructionoftheSVD, 346
E. TotalLeastSquares, 348
F. FibonacciNumbers, 350
ANSWERSTOODDNUMBEREDEXERCISES 351
INDEX 393