Table Of ContentFeasibility Studies on a Stand-Alone
Hybrid Wind-Diesel System for Fish
Farming Applications
Marius Holt
Master of Energy and Environmental Engineering
Submission date: June 2017
Supervisor: Kjetil Uhlen, IEL
Norwegian University of Science and Technology
Department of Electric Power Engineering
Problem Description
Most conventional Norwegian offshore fish farms use diesel-fueled aggregates as their
source of electrical power. These aggregates are often oversized to cover the peak
demand. Thisleadstolowefficiencywhenrunningatlowerloads,andthusyieldsavery
high energy cost for the system. Instead of using fossil fueled equipment, it would be
desirable to exploit renewable resources available at the fish farming site. The majority
ofNorwegianfishfarmingfacilitiesarelocatedalongthewesterncoastline. Atthesame
time,thereisagrowingtrendintheindustry,leadingtomorefishfarmssituatedfurther
off the shore. Here, the wind conditions are of excellent quality many places, with
both steady and high wind speeds. This makes it interesting to investigate a solution
where the renewable resources from wind are incorporated with the conventional diesel
aggregates, in order to generate power.
The purpose of this thesis it to shed some light on the possibilities of implementing
such a hybrid system solution. A major part of the thesis comprises descriptions of
the system components and the control mechanisms of these. Further, a dynamic sim-
ulation model will be implemented in the MATLAB®/Simulink environment. Based
on this, some critical scenarios will be investigated for assessing the system’s dynamic
performance. The feasibility of this is hoped to encourage further work within this
topic.
i
ii
Acknowledgements
This thesis concludes my final semester as a M.Sc. student at the Department of Elec-
tric Power Engineering at NTNU. The last five years have been a fantastic journey, and
I am forever grateful for the experiences I have got from the years both in Trondheim
and as an exchange student in New Zealand.
First and foremost I sincerely thank my supervisor, Professor Kjetil Uhlen for great
counselling and valuable advices throughout the year. Your expertise and availability
are highly appreciated.
Further, a special thank you is aimed to my external contacts at NVES; Pål Preede
Revheim and Thomas Bjørdal. They have provided me with a lot of information, and
then some. They also took the time to organise a meeting at Smøla so that I could
discuss important details for the thesis directly with relevant partners within the fish
farming industry.
In addition, I would also like to thank my friend and former M.Sc. student at NTNU,
Alexander Gaugstad for helping me out with the simulation model. Your help has
saved me a lot of frustration this semester.
Lastly, I would like to express gratitude towards my family and friends for your love
and support. Completing this degree would not have been possible without you.
Trondheim, 09.06.2017
Marius Holt
iii
iv
Abstract
This thesis aims to explore feasibility related to implementing a Hybrid Wind-Diesel
System for an offshore fish farm. The primary motivation behind this is to exploit
the excellent wind resources along the Norwegian coast in order to reduce CO emis-
2
sions related to the operation of diesel generators (DGs). Thus, instead of diesel as
the only source of electrical power, the hybrid system will utilise a wind turbine and
battery system to reduce the diesel generator’s operating time as much as possible.
Additionally, excessive wind energy from the wind turbine could be used to run auxil-
iary equipment on the farm, such as oxygen production, washers for lice removal and
freshwater production.
Asastartingpoint, thethesisprovidesaclearandperspicuousoverviewofconventional
offshorefishfarmsandHybridWind-DieselSystemsingeneral. Thisconstitutestheba-
sis for building a suitable model from fundamental blocks in the MATLAB®/Simulink
environment. The purpose is assessing the system’s dynamic performance when ex-
posed to disturbances. Figure 1 displays the system layout schematic.
Wind Turbine Back-to-back Three-phase
and Generator Converter Transformer VSI
IM Main Load
PMSG
IM Dump Load
Diesel Generator
Battery
M EESG System
Motor Clutch Generator
Figure 1: Simplified System Layout
The hybrid system comprises a Permanent Magnet Synchronous Generator (PMSG)
wind turbine, connected to a 400 V AC bus bar through a back-to-back Voltage Source
Converter (VSC) and a step-down transformer. The purpose of the turbine VSC is
to facilitate variable speed operation of the turbine and also enhance system control.
The battery is of Lithium-ion type and incorporates a VSC for AC/DC conversion.
The fish farm also contains an Electrically Excited Synchronous generator (EESG)
associated with a diesel engine. This can be used for fast active and reactive power
support if the wind and battery system fails to cover the load. The main load is a
fixed, inductive load together with a variable-speed Induction Motor (IM), and the
dump load consists of a variable inductive load and a directly connected IM. Three
critical situations have been investigated. These represent some of the most frequent
and severe situations that the system will have to endure on a day-to-day basis. Start-
up of the directly connected IM proved to be the most critical scenario, due to the
high initial reactive power requirement. If sufficient resources of reactive power are not
present, this may lead to a permanent voltage collapse. Starting the DG during sudden
shortfall of wind indicated redundancy. However, the importance of bringing it online
in generator operation and not in motor operation was highlighted. Start and stop of
the feed blowers induced little stress on the system, even at low wind speeds. Overall,
the system shows promising performance during most of the investigated disturbances.
v
vi
Sammendrag
Denne hovedoppgaven har i hensikt å utforske gjennomførbarheten ved et hybrid vind-
diesel system for havbasert fiskeoppdrett. Hovedmotivet bak dette er å utnytte de
ypperlige vindressursene som finnes langs norskekysten til å redusere CO -utslipp i
2
forbindelse med drift av dieselgeneratorer. I stedet for å ha dieselgenerator som den
eneste elektrisitetskilden, vil det hybride systemet nyttiggjøre seg av en vindturbin og
et batterisystem for å redusere driftstiden til dieselgeneratoren så mye som mulig. I
tillegg kan et potensielt overskudd av vindenergi fra turbinen brukes til å kjøre annet
utstyr på flåten, som oksygenproduksjon, lusespylere og ferskvannsproduksjon.
Som et naturlig starpunkt gir oppgaven en klar og tydelig oversikt over konvensjonelle
havbaserte fiskeoppdrettsanlegg, samt hybride vind-diesel systemer generelt. Dette
danner grunnlaget for å bygge en egnet modell ut ifra fundamentale blokker fra Simu-
links bibliotek. Målet er å undersøke systemets dynamiske respons når det blir utsatt
for forstyrrelser. Figur 1 viser systemutformingen.
Wind Turbine Back-to-back Three-phase
and Generator Converter Transformer VSI
IM Main Load
PMSG
IM Dump Load
Diesel Generator
Battery
M EESG System
Motor Clutch Generator
Figure 1: Simplified System Layout
Det hybride systemet består av en vindturbin med permanentmagnet-basert synkron-
generator. Denne er koblet til en 400 V samleskinne via en back-to-back frekvensom-
former og en transformator. Hensikten med turbinens frekvensomformer er å utnytte
drift med variabel turbinhastighet i tillegg til å forsterke systemkontrollen. Batteriet
er av typen Litium-ion og er utstyrt med en frekvensomformer. Oppdrettsanlegget
innebærer også en synkrongenerator, med justerbar feltmagnetisering, koblet til en
dieselmotor. Denne kan brukes for rask effektregulering hvis turbinen og batterisys-
temet ikke dekke den aktuelle lasten. Hovedlasten består av en konstant, induktiv last
sammen med en induksjonsmotor med variable hastighetskontroll. Overskuddslasten
er en variabel induktiv last, i parallell med induksjonsmotor direkte koblet til samle-
skinnen. Tre kritiske situasjoner har blitt undersøkt. Disse representerer de hyppigste
og mest kritiske situasjonene som systemet må tåle i en normal driftssituasjon. Start
av den direktekoblede induksjonsmotoren viste seg å være det mest kristiske scenariet,
på grunn av motorens høye forbruk av reaktiv effekt under oppstart. Hvis det ikke er
tilstrekkelige reserver med reaktiv effekt i systemet, kan dette føre til en permanent
spenningskollaps. Oppstart av dieselgeneratoren ved plutselig bortfall av vindkraft
fremsto som redundant. Likevel ble det understreket viktigheten av å koble på aggre-
gatet i generatordrift. Start og stopp av fôrblåserne viste seg å ha liten innvirkning på
systemet.
vii
viii
Description:the only source of electrical power, the hybrid system will utilise a wind turbine and and Generator. Back-to-back. Converter. Three-phase. Transformer. EESG. PMSG .. 3.3 Pulse-Width Modulation (Single-Phase) . An overall control scheme, which incorporates the whole system logic is not im-.