Table Of ContentFactoring Groups
into Subsets
Sándor Szabó
University of Pecs
Pecs, Hungary
Arthur D. Sands
University of Dundee
Dundee, United Kingdom
© 2009 by Taylor & Francis Group, LLC
Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2009 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1
International Standard Book Number-13: 978-1-4200-9046-8 (Softcover)
This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
© 2009 by Taylor & Francis Group, LLC
Contents
Symbol Descriptions ix
List of Tables xi
List of Figures xiii
Preface xv
1 Introduction 1
2 New factorizations from old ones 11
2.1 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Non-periodic factorizations 37
3.1 Bad factorizations . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Periodic factorizations 63
4.1 Good factorizations . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Good groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Krasner factorizations . . . . . . . . . . . . . . . . . . . . . . 87
5 Various factorizations 93
5.1 The R´edei property . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Quasi-periodicity . . . . . . . . . . . . . . . . . . . . . . . . . 105
6 Factoring by many factors 121
6.1 Factoring periodic subsets . . . . . . . . . . . . . . . . . . . 121
6.2 Simulated subsets . . . . . . . . . . . . . . . . . . . . . . . . 128
7 Group of integers 141
7.1 Sum sets of integers . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Direct factor subsets . . . . . . . . . . . . . . . . . . . . . . . 146
7.3 Tiling the integers . . . . . . . . . . . . . . . . . . . . . . . . 152
vii
© 2009 by Taylor & Francis Group, LLC
viii Contents
8 Infinite groups 161
8.1 Groups with cyclic subgroups . . . . . . . . . . . . . . . . . . 161
8.2 Groups with special p-components . . . . . . . . . . . . . . . 169
9 Combinatorics 183
9.1 Complete maps . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.2 Ramsey numbers . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.3 Near factorizations . . . . . . . . . . . . . . . . . . . . . . . . 193
9.4 A family of random graphs . . . . . . . . . . . . . . . . . . . 199
9.5 Complex Hadamard matrices . . . . . . . . . . . . . . . . . . 201
10 Codes 207
10.1 Variable length codes . . . . . . . . . . . . . . . . . . . . . . 207
10.2 Error correcting codes . . . . . . . . . . . . . . . . . . . . . . 213
10.3 Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.4 Integer codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
11 Some classical problems 235
11.1 Fuchs’s problems . . . . . . . . . . . . . . . . . . . . . . . . . 235
11.2 Full-rank factorizations . . . . . . . . . . . . . . . . . . . . . 239
11.3 Z-subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
References 253
© 2009 by Taylor & Francis Group, LLC
Symbol Descriptions
Z The ring of integers. χ Characterofafiniteabelian
Z(n) The additive subgroup of group.
the residue classes modulo Kerχ The kernel of the character
n. χ.
Z(p∞) The Pru¨fer group, where p F (x) Thenthcyclotomicpolyno-
n
is a prime. mial.
G The order of the group G. degF The degree of the polyno-
| |
(G)p The p-component of the mial F.
group G, where p is a
R (r) A Ramsey number.
m
prime.
d(u,v) TheHammingdistanceofu
g The order of the element g
| | and v.
in a group.
S (u) An error sphere of radius e
e
(g) The H-component of g,
H centered at u.
where H is a subgroup.
ν(n) The number of the prime
(g) The p-component of g,
p factors of n.
where p is a prime.
[g,n] Bracket notation for a
GF(q) The Galois field of order q.
cyclic subset.
A The span of the set A in a
h i χ(Γ) The chromatic number of
group.
the graph Γ.
A The number of elements of
| | ω(Γ) The clique number of the
the subset A.
graph Γ.
Ann(A) The annihilator of the sub-
set A. A+B The sum of the subsets A
(A) The H-component of the and B.
H
subset A. A ϕB The composition of the
◦
(A) The p-component of the subsets A and B.
p
subset A, where p is a
prime.
ix
© 2009 by Taylor & Francis Group, LLC
List of Tables
1.1 Some difference sets . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The lines of a finite projective plane . . . . . . . . . . . . . . 4
2.1 The factors D and E . . . . . . . . . . . . . . . . . . . . . . . 34
5.1 The factors A, H, and B . . . . . . . . . . . . . . . . . . . . . 97
5.2 The factors A, H, and B . . . . . . . . . . . . . . . . . . . . . 99
5.3 The factors A and B . . . . . . . . . . . . . . . . . . . . . . . 119
9.1 Complete maps . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.2 The incidence matrix of K . . . . . . . . . . . . . . . . . . . 191
13
9.3 The incidence matrix of the Keller graph K . . . . . . . . . 192
2
9.4 The values of s(i),t(i) . . . . . . . . . . . . . . . . . . . . . . 204
10.1 The factors A and B . . . . . . . . . . . . . . . . . . . . . . 211
1 1
10.2 Shor’s code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
10.3 The divisors of 84. . . . . . . . . . . . . . . . . . . . . . . . . 221
10.4 A substitution error sphere . . . . . . . . . . . . . . . . . . . 227
10.5 A single shift error sphere . . . . . . . . . . . . . . . . . . . . 229
11.1 Equation relations among i, j, f(i), and f(j) . . . . . . . . . 241
xi
© 2009 by Taylor & Francis Group, LLC
List of Figures
1.1 A difference system in Z(21). . . . . . . . . . . . . . . . . . . 3
1.2 A closed polygon in the n=8 case. . . . . . . . . . . . . . . . 3
2.1 The implications. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The subgroup H. . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Cosets modulo H. . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 The vector rhombus. . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 The cube tiling . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.1 The edges of K colored by A . . . . . . . . . . . . . . . . . 191
13 2
9.2 A Cayley graph. . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.3 The Keller graph K .. . . . . . . . . . . . . . . . . . . . . . . 199
2
10.1 A (3,1)-semicross. . . . . . . . . . . . . . . . . . . . . . . . . 217
10.2 A (3,1)-cross. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.1 Twins and not twins. . . . . . . . . . . . . . . . . . . . . . . . 237
11.2 A 2-dimensional cube tiling. . . . . . . . . . . . . . . . . . . . 238
xiii
© 2009 by Taylor & Francis Group, LLC
Preface
Thefactorizationtheoryofabeliangroupsdealswithdecomposinganabelian
group into a direct sum of its subsets. The nature of these problems are
partly algebraic and partly combinatorial. The results have applications in
various fields: geometry of tilings, variable length codes, integer codes, error
correctingcodes,cryptography,graphtheory,numbertheory,Fourieranalysis,
complex Hadamard matrices, just to mention a few.
This book is about the factorization theory of abelian groups focusing
mainlyoncyclicgroups. Thebook[157]treatsselectedtopicsofthefactoriza-
tion theory with anintentionto possibly touchallthe main areas. Inevitably
overlaps are bound to occur.
The direct sum of isomorphic copies of a cyclic group of prime order, that
is, an elementary p-group, behaves in many respects as a finite linear space
andmustbetreateddifferentlythanacyclicgroup. Someoftheresultsofthe
factorizationtheorybecometrivialwhenrestrictedtocyclicgroups. Onthese
occasions the exiting part of the problem lies in the non-cyclic case, while at
other times the substantial part of the result is in the cyclic case. It is an
empirical fact that factoring cyclic groups is still a rich field. For instance,
[85] claims that each cryptosystem in use is based on factoring a large cyclic
group. Manyofthe results andapplicationsareavailablewith the masteryof
simpler techniques than those required by the general non-cyclic case.
Withmercilessediting(notincluding manytopicsthathappenedto be our
personalfavorite)wekeptthematerialtoamanageablesize. Ourhopeisthat
this book will serve as a gentle introduction for practitioners of other fields
interested in the applications of the factorization theory of abelian groups.
xv
© 2009 by Taylor & Francis Group, LLC
Chapter 1
Introduction
Therearemanyproblemswithacombinatorialflavourrelatedtofiniteabelian
groups. ThefirstsuchresultismostlikelyduetoA.L.Cauchy[16]from1813
andrediscoveredby H. Davenport[25] in1935. Letp be a prime number and
let Z(p) be the additive group of residue classes modulo p. For two subsets
A, B of Z(p) we define A+B to be a+b : a A,b B and we use A
{ ∈ ∈ } | |
to denote the number of elements ofA. The Cauchy-Davenporttheoremnow
reads as follows.
If A, B are not empty subsets of Z(p), then
A+B A + B 1,
| |≥| | | |−
provided p A + B 1.
≥| | | |−
This result has since been extended and generalized in a number of ways.
(See the monograph [91].)
Let A be a set of Z(n) with A =s. The difference set
| |
D =A A= a a′ :a,a′ Z(n)
− { − ∈ }
is clearly symmetric in the sense that d D implies d D. There are at
∈ − ∈
most s(s 1)/2 distinct non-zero elements in D. The situation when each
−
non-zero element of Z(n) can be represented uniquely in the way
d=a a′, a,a′ A
− ∈
is particularly interesting. In this case one can use the elements of Z(n) as
points of a finite projective plane. The subsets A+b, b Z(n) will form
∈
the straight lines of the plane. In his book [62] F. K´arteszi considered a
regular polygon of n sides and coordinatized the vertices by the elements
0,1,...,n 1 of Z(n) walking around the polygon, say clockwise. (See also
−
the text [66].) Considering the distances between the vertex 0 and the other
vertices1,...,n 1makesclearthatthenumberofnon-zerodistinctdistances
−
occurring between the vertices of the polygon is (n 1)/2 when n is odd.
−
Therefore
s(s 1) n 1
− − .
2 ≤ 2
Wearelookingforthecaseswhenequationholds,thatis,whenn=s(s 1)+1.
−
Table 1.1 (on page 2) lists some values of n and s together with a suitable
choice of A where the bound is tight.
1
© 2009 by Taylor & Francis Group, LLC
Description:Decomposing an abelian group into a direct sum of its subsets leads to results that can be applied to a variety of areas, such as number theory, geometry of tilings, coding theory, cryptography, graph theory, and Fourier analysis. Focusing mainly on cyclic groups, Factoring Groups into Subsets explo