Table Of ContentENHANCING BALLISTIC IMPACT RESISTANCE OF
POLYMER MATRIX COMPOSITE ARMORS BY
ADDITION OF MICRO AND NANO-FILLERS
A Thesis Submitted to the College of
Graduate and Postdoctoral Studies
In Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy
In the Division of Biomedical Engineering
University of Saskatchewan
Saskatoon
By
Edison E. Haro
© Copyright Edison Haro, July 2018. All rights reserved.
Permission to use
In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from
the University of Saskatchewan, I agree that the Libraries of this University may make it freely
available for inspection. I further agree that permission for copying of this thesis in any manner,
in whole or in part, for scholarly purpose may be granted by the professors who supervised my
thesis work or, in their absence, by the Head of the Department or the Dean of the College in which
my thesis work was done. It is understood that any copying or publication or use of this thesis or
part thereof for financial gain shall not be allowed without my written permission. It is also
understood that due recognition shall be given to me and to the University of Saskatchewan in any
scholarly use which may be made of any material in my thesis.
Requests for permission to copy or to make other use of material in this thesis in whole or part
should be addressed to:
College of Graduate and Postdoctoral Studies
116 Thorvaldson Building,
110 Science Place
University of Saskatchewan
Saskatoon, Saskatchewan (S7N 5C9)
Canada
OR
Division of Biomedical Engineering
Room 2B60
57 Campus Drive
University of Saskatchewan
Saskatoon, Saskatchewan (S7N 5A9)
Canada
i
Abstract
Improving the ballistic impact resistance of hybrid polymer matrix composites through addition of
micro- and nano-particles as fillers is the principal goal of this research. Development of light-
weight ballistic plates, made of polymer matrix composites with improved ballistic resistance, can
offer a solution of shielding with lighter, thinner, stronger and less expensive materials than the
conventional ballistic plates. The use of micro- and nano-particles in low concentrations can
achieve this goal without compromising the density or strength of the new armor plates.
Firstly, laminated hybrid composites consisting of aluminum alloy plates, epoxy resin and
Kevlar® fabrics were developed. Shear thickening fluid (STF) made of nano-particles of colloidal
silica (SiO ) was impregnated into Kevlar® fabrics to determine its effect on the energy absorption
2
behavior of the composites. STF decreased the tendency of Kevlar® fibers to rupture during
projectile penetration, and thus, increased its impact energy absorption performance when
compared to the samples made of Kevlar® neat fabrics (containing no STF). Similar laminated
hybrid composites were subsequently built through impregnation of micro- and nano-particles of
aluminum, gamma alumina, silicon carbide, colloidal silica and potato flour into Kevlar fabrics by
mixing these particles with polyethylene glycol. The obtained laminates were evaluated to
determine their impact resistance and energy absorption capabilities under ballistic impact. The
plates containing aluminum and colloidal silica nano-powders have the highest energy absorption
capability of between 679 up to 693 J for plate thickness and areal density of about 10.8 mm and
1.9 g/cm2, respectively. These laminates can meet the protective requirements for levels IIA, II,
and IIIA to resist ballistic impact from pistols caliber 9 mm.
In another approach, hybrid composite armor plates based on high density polyethylene (HDPE)
were prepared by using 10 wt.% of Kevlar® short fibers, and 20 wt.% chonta palm wood, potato
flour, colloidal silica or gamma alumina particles. Addition of colloidal silica and gamma alumina
nano-particles improve stiffness by 43.5% and increase impact energy absorption capability by
20%, compared to control sample, which is HDPE containing 10 wt.% Kevlar® short fibers.
Hybrid bio-composites made of 10 wt.% Kevlar® short fibers and varying amount of chonta wood
particles (10, 20, 30 wt. %), as additional reinforcement, were also developed and investigated.
The hybrid composite plates containing 10 wt.% chonta palm wood micro-particles exhibited the
ii
highest energy absorption capability of 62.4 J, which is equivalent to 19.5 % improvement over
control specimens: HDPE reinforced with 10 wt.% Kevlar® short fibers.
Finally, bio-composites made of HDPE reinforced with varying fractions of micro-particles of
chonta palm wood (10, 20, 25, and 30 wt. %) were developed and characterized. The ballistic
impact performance of the biocomposites containing 25 wt.% chonta palm wood particles
exhibited the highest energy absorption of 53.4 J, which represents a 41.3% improvement over the
unreinforced HDPE specimens with similar thickness and density.
iii
Acknowledgement
I would like to sincerely appreciate my supervisors Prof. Jerzy Szpunar and Prof. Akindele Odeshi
for their guidance and endless support while carrying out this research project and in the course of
writing this thesis. I wish to express my gratitude for their insights and comments that helped me
to develop my research skills. I feel very fortunate for their unconditional support, I will always
appreciate all they have done for me.
I also would like to thank my advisory committee members: Prof. Ike Oguocha, Prof. Duncan Cree,
and Prof. Lope Tabil for their encouragements and their very constructive comments and
discussions.
Additionally, I appreciate the valuable discussions and support from my friends and colleagues Xu
Wen, A.A Tiamiyu and all members of the Advanced Materials and Renewable Energy (AMRE)
group of the University of Saskatchewan.
Finally, I acknowledge the financial support of the Natural Science and Engineering Research
Council of Canada (NSERC), the National Secretary of Science and Technology of the Ecuador
(SENESCYT), and Ecuadorian Army.
iv
Dedication
I want to dedicate this thesis to my lovely family, Vanessa, Ian and Erika, for their unconditional
support, especially when the tasks many times seemed overwhelming, you have always been my
inspiration to be strong and persistent, no matter how great the obstacles have been.
Also, to my beloved parents, the reason for what I become today and the achievements that I have
accomplished. Thanks for your unconditional love and guide in all my challenges.
v
Table of Contents
Permission to use ....................................................................................................................... i
Abstract…… ............................................................................................................................ ii
Acknowledgement ................................................................................................................... iv
Dedication… ..............................................................................................................................v
Table of Contents .................................................................................................................... vi
List of Tables ........................................................................................................................... xi
List of Figures......................................................................................................................... xii
Acronyms.… ............................................................................................................................ xv
Chapter 1 : Introduction ...........................................................................................................1
1.1 Overview ...........................................................................................................................1
1.2 Motivations for Research ...................................................................................................1
1.3 Research Objectives ..........................................................................................................2
1.4 Thesis Overview ................................................................................................................3
Chapter 2 : Literature Review ..................................................................................................5
2.1 Overview ...........................................................................................................................5
2.2 Body armor classifications and level of protection .............................................................5
2.3 Advanced composite materials used in ballistic armor applications ....................................7
2.4 Polymer matrix composites designed for ballistic protection ..............................................9
2.4.1 Hybrid composite armors based on polymer matrix composites ................................ 13
2.4.1.1 Hybrid matrix laminates ..................................................................................... 15
2.4.1.2 Natural fiber reinforced hybrid polymer composites ........................................... 17
2.4.2 Impregnation of micro- and nano-fillers in hybrid composite armors ........................ 18
2.5 Information gaps identified from literature review ........................................................... 19
Chapter 3 : Materials and Methods ....................................................................................... 21
vi
3.1 Overview ......................................................................................................................... 21
3.2 Materials ......................................................................................................................... 21
3.2.1 Reinforcing materials and fillers ............................................................................... 21
3.2.1.1 Aluminum alloy AA 5086-H32 .......................................................................... 22
3.2.1.2 Kevlar® 49 woven fibers (#281-38) ................................................................... 22
3.2.1.3 Kevlar® pulp (#544 Kevlar®) ............................................................................ 22
3.2.1.4 Polyethylene glycol (PEG-400) .......................................................................... 23
3.2.1.5 Micro- and nano-filler materials ......................................................................... 23
3.2.2 Matrix materials ........................................................................................................ 25
3.2.2.1 Thermosetting matrix ......................................................................................... 26
3.2.2.2 Thermoplastic matrix ......................................................................................... 26
3.3 Manufacturing processes ................................................................................................. 27
3.3.1 Hybrid thermosetting composite armors .................................................................... 27
3.3.2 Hybrid thermoplastic composite armors .................................................................... 30
3.4 Characterization methods and experimental procedures ................................................... 32
3.4.1 Microstructural analysis ............................................................................................ 32
3.4.2 Water absorption test ................................................................................................ 33
3.4.3 Crystallographic structure analysis ............................................................................ 34
3.4.4 Tensile strength ........................................................................................................ 34
3.4.5 Dynamic impact test ................................................................................................. 35
3.4.6 Ballistic impact test................................................................................................... 37
Chapter 4 : Ballistic Impact Response of Laminated Hybrid Materials Made of
5086-H32 Aluminum alloy, Epoxy and Kevlar® Fabrics Impregnated
with Shear Thickening Fluid .............................................................................. 40
4.1 Overview ......................................................................................................................... 40
4.2 Abstract ........................................................................................................................... 41
vii
4.3 Introduction ..................................................................................................................... 41
4.4 Configuration and preparation of targets .......................................................................... 45
4.5 Results and discussion ..................................................................................................... 46
4.5.1 Evaluation of the interaction of components.............................................................. 46
4.5.2 Energy absorption (dissipation) by the targets during ballistic impact tests ................ 48
4.5.3 Comparison of the initial impact energy from different light weapons with
the energy dissipated from the developed hybrid composite laminates. ...................... 50
4.5.4 Deformation analysis and projectile penetration of targets ........................................ 52
4.5.5 The influence of target’s thickness ............................................................................ 54
4.5.6 Energy absorption and failure analysis during ballistic impacts ................................. 55
4.6 Conclusions ..................................................................................................................... 59
Chapter 5 : The Energy Absorption Behavior of Hybrid Composite Laminates
Containing Nano-fillers under Ballistic Impact................................................. 60
5.1 Overview ......................................................................................................................... 60
5.2 Abstract ........................................................................................................................... 61
5.3 Introduction ..................................................................................................................... 62
5.4 Configuration and preparation of targets .......................................................................... 65
5.5 Results and discussion ..................................................................................................... 66
5.5.1 Effects of target configuration and filler addition on absorbed and residual energy ... 66
5.5.2 Energy absorbed by the targets vs the initial impact energy of projectiles
fired by different light weapons ................................................................................. 69
5.5.3 Analysis of deformation and penetration behavior of the targets................................ 71
5.5.4 Targets’ thickness and weight influence on ballistic response ................................... 73
5.5.5 Microstructural analysis and mechanisms of energy absorption................................. 75
5.6 Conclusions ..................................................................................................................... 79
viii
Chapter 6 : The Effects of Micro- and Nano-fillers’ Additions on the Dynamic Impact
Response of Hybrid Composite Armors Made of HDPE Reinforced with
Kevlar Short Fiber .............................................................................................. 81
6.1 Overview ......................................................................................................................... 81
6.2 Abstract ........................................................................................................................... 82
6.3 Introduction ..................................................................................................................... 82
6.4 Results and Discussions ................................................................................................... 84
6.4.1 Target configuration ................................................................................................. 84
6.4.2 Tensile test results .................................................................................................... 88
6.4.3 X-Ray Diffraction (XRD) analysis ............................................................................ 90
6.4.4 Dynamic mechanical behavior under impact loading ................................................ 91
6.5 Conclusions ................................................................................................................... 101
Chapter 7 : Reinforcing Effects of Natural Micro-particles on the Dynamic Impact
Behaviour of Hybrid Bio-composites Made of Short Kevlar Fibers
Reinforced Thermoplastic Composite Armor ................................................. 102
7.1 Overview ....................................................................................................................... 102
7.2 Abstract ......................................................................................................................... 103
7.3 Introduction ................................................................................................................... 103
7.4 Results and Discussions ................................................................................................. 105
7.4.1 Microstructure and physical properties .................................................................... 105
7.4.2 Mechanical properties of hybrid bio-composites ..................................................... 108
7.4.3 X-Ray Diffraction (XRD) analysis .......................................................................... 110
7.4.4 Dynamic mechanical behavior of hybrid bio-composites under impact loading ....... 111
7.5 Conclusions ................................................................................................................... 118
ix
Description:Improving the ballistic impact resistance of hybrid polymer matrix composites through addition of micro- and nano-particles as fillers is the principal