Table Of ContentRESEARCHARTICLE
Enhanced Methane Emissions during
Amazonian Drought by Biomass Burning
MakotoSaito*☯,Heon-SookKim☯,AkihikoIto,TatsuyaYokota,ShamilMaksyutov
CenterforGlobalEnvironmentalResearch,NationalInstituteforEnvironmentalStudies,16-2Onogawa,
Tsukuba,Ibaraki305-8506,Japan
☯Theseauthorscontributedequallytothiswork.
*[email protected]
Abstract
a11111
TheAmazonisasignificantsourceofatmosphericmethane,butlittleisknownaboutthe
sourceresponsetoincreasingdroughtseverityandfrequency.Weinvestigatedsatellite
observationsofatmosphericcolumn-averagedmethaneforthe2010droughtandsubse-
quent2011wetyearintheAmazonusinganatmosphericinversionscheme.Ouranalysis
indicatesanincreaseinatmosphericmethaneoverthesouthernAmazonregionduringthe
drought,representinganincreaseinannualemissionsrelativetothewetyear.Weattribute
OPENACCESS
theincreasetoemissionsfrombiomassburningdrivenbyintensedrought,combinedwith
Citation:SaitoM,KimH-S,ItoA,YokotaT, carbonmonoxideshowingseasonalvariationscorrespondingtomethanevariations.We
MaksyutovS(2016)EnhancedMethaneEmissions
showthatthereisprobablyastrongcorrespondencebetweendroughtandmethaneemis-
duringAmazonianDroughtbyBiomassBurning.
PLoSONE11(11):e0166039.doi:10.1371/journal. sionsintheAmazon.
pone.0166039
Editor:YiguoHong,CAS,CHINA
Received:April21,2016
Accepted:October21,2016 Introduction
Published:November16,2016 TheAmazonregionplaysanimportantroleintheglobalcarboncycleasalargeanddynamic
Copyright:©2016Saitoetal.Thisisanopen reservoiroforganiccarbonstoredinforestbiomassandsoil[1],andasasignificantsourceof
accessarticledistributedunderthetermsofthe atmosphericmethane(CH ),accountingfor*10%ofatmosphericcontributionsglobally[2].
4
CreativeCommonsAttributionLicense,which TheAmazonregionsufferedseveredroughtsin2005and2010,causedbyfactorsrelatedto
permitsunrestricteduse,distribution,and
higherthanaverageseasurfacetemperaturesinthetropicalNorthAtlantic,weakertrade
reproductioninanymedium,providedtheoriginal
winds,lowerthanaveragewatervaportransportintothesouthernAmazonregion,anda
authorandsourcearecredited.
weakeningofupwardatmosphericflowovertheregion[3].Thedroughteventsillustratethe
DataAvailabilityStatement:Allrelevantdataare
vulnerabilityofforeststoclimatevariationsandtheimpactofintensemoisturedeficitsoncan-
withinthepaperanditsSupportingInformation
opystructure,leadingtoasignificantnetlossofcarbon[4].Theriskandoccurrenceofhigh-
files.
intensityforestfiresisincreasedduringdroughts,thusacceleratingcarbonemissions[5].Car-
Funding:ThisstudywassupportedbyGrantA-
bondioxide(CO )emittedtotheatmosphereisbalancedinpartbysubsequentregrowthof
2
1202ofEnvironmentResearchandTechnology
vegetation,whereasCH releaseisnot.Climatemodelspredictthattheintensityandfrequency
DevelopmentFund,MinistryofEnvironmentJapan. 4
ofAmazoniandroughtswillincreaserapidlyinthe21stcentury[6].Therefore,analysesofthe
Thefundershadnoroleinstudydesign,data
collectionandanalysis,decisiontopublish,or 2005and2010droughtscouldprovideabetterunderstandingoftheroleofAmazonianforests
preparationofthemanuscript. intheglobalcarboncycleundernear-futureclimateconditions.
AmazonianwetlandsareaprimarysourceofatmosphericCH [7].TheAmazonianCH
CompetingInterests:Theauthorshavedeclared 4 4
thatnocompetinginterestsexist. budgetincludesmultiplesourcesandsinks(i.e.,riversanduplandsoils)whosecontributions
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 1/12
MethaneEmissionsduringAmazonianDrought
aresensitivetofeedbackfromdroughtconditions.Fieldmeasurementsunderexperimental
droughtconditionsprovideestimatesofthedegreeofsensitivityonsomesources.However,
significantgapsremaininourunderstandingofhowCH budgetsintheAmazonregionwill
4
respondtodroughtevents,inpartbecauseobservationsrepresentativeoftheentireregionare
lacking,whicharerequiredtoreliablyassessregional-scaleCH budgets.
4
Here,weexaminetherelativeimportanceofdroughtontheCH budgetintheAmazon
4
region,withafocusonmajoremissionsources.Weusedretrievedatmosphericcolumn-aver-
agedCH (XCH ;V02.21)levelsfromGreenhousegasesObservingSATellite(GOSAT)mea-
4 4
surements[8]for2010and2011;in2010,theAmazonexperiencedaseveredrought,whereas
2011wasrelativelywet[5].TheGOSATmeasurementsprovideuniformglobalcoverageand
thusshowastandardizeddistributionofCH concentrationsovertheAmazon(Fig1a),allow-
4
inganassessmentofpotentialimpactsofAmazoniandroughtontheCH budget.
4
Methods
UsingaBayesianinversionscheme,surfaceCH fluxestimatesfor43regionsgloballywere
4
optimizedbymatchingXCH retrievalsandsurfaceobservations.Weexcludedthenorthern
4
AmazonregionfromtheanalysesbecauseonlyafewXCH retrievalswereobtainedforthis
4
region,owingtothepresenceofstationaryclouds(Fig1a).However,thesignatureofthe2010
droughtremainedstrongintheXCH retrievaldata,asthe2010droughtwasparticularly
4
severeinthesouthernAmazonregion(Fig1b).
OverviewofGOSATmeasurements
TheGOSAThasbeenmonitoringatmosphericCO andCH concentrationsfromspacesince
2 4
itslaunchinJanuary2009[11].MeasurementsaretakenbyanonboardThermalAndNear-
infraredSensorforcarbonObservation(TANSO),consistingofaFourierTransformSpec-
trometer(FTS)andaCloudandAerosolImager(CAI)[12].TheTANSO-FTSobservesinten-
sitiesofsunlightreflectedoremittedfromtheEarth’ssurfaceandatmosphereinfourspectral
bands:0.758–0.775,1.56–1.72,1.92–2.08,and5.5–14.3μm.Thenadirfootprintdiameterof
theTANSO-FTSis10.5km.TheTANSO-CAIrecordsanimageoftheatmosphereandthe
Earth’ssurfaceinfourspectralbands,fromthenear-ultraviolettonear-infrared:0.370–0.390,
0.664–0.684,0.860–0.880,and1.56–1.65μm,atspatialresolutionsof0.5,0.5,0.5,and1.5km,
respectively.TheTANSO-CAIdataareusedforcloudscreeningoftheTANSO-FTSdata.We
usedXCH valuesfromshort-wavelengthinfraredradiancespectrafromTANSO-FTS
4
bands1–3[8].
Atmosphericinversions
SurfaceCH fluxestimatesareoptimizedtodetectatmosphericCH concentrationsbymini-
4 4
mizingthedifferencebetweenobservedandmodeledvalues,J(s),usingaBayesianinversion:
1
JðsÞ¼ fðz(cid:0) HsÞTR(cid:0) 1ðz(cid:0) HsÞþðs(cid:0) s ÞTQ(cid:0) 1ðs(cid:0) s Þg ð1Þ
2 p p
wherezrepresentsanobservationvector;Hisamatrixofresponseateachmeasurementsite
toemissionsfromeachregion;sands arevectorsofestimatedandaprioriestimatedregional
p
fluxes,respectively;RandQareerrorcovariancematricesforthemodel–datamismatchanda
prioriflux,respectively;andTisthetransposeofamatrix.TheelementsofHwerecalculated
usingtheatmospherictracertransportmodelNIES-TM[13].Thevectoroftheposteriorflux
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 2/12
MethaneEmissionsduringAmazonianDrought
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 3/12
MethaneEmissionsduringAmazonianDrought
Fig1. (a)DistributionofaveragedconcentrationsofXCH (ppb)fromobservationaldataacquiredbyGOSAT
4
forAugustandSeptember2010ata1˚×1˚gridresolution,with479and1582observedconcentrationsfor
thesouthernAmazonandcentralSouthAmericaregions,respectively.Thetworegionsanalyzedareshown
indarkgreen(southernAmazonregion)andlightgreen(centralSouthAmericaregion).(b)Distributionofthe
standardizedReconnaissanceDroughtIndex(RDI )inOctober2009–September2010calculatedusingthe
std
methodof[9]withmonthlyprecipitationandpotentialevapotranspirationdatafromtheClimateResearchUnit
(CRU),UniversityofEastAnglia,UnitedKingdom,using0.5˚×0.5˚meanmonthlyclimatologyCRUTS3.22
[10].BothXCH concentrationsandRDI valuesarecolorcoded.
4 std
doi:10.1371/journal.pone.0166039.g001
s0anditscovariancematrixQ0aregivenby
s0 ¼s þðHTR(cid:0) 1HþQ(cid:0) 1Þ(cid:0) 1HTR(cid:0) 1ðz(cid:0) HsÞ ð2Þ
p
Q0 ¼ðHTR(cid:0) 1HþQ(cid:0) 1Þ(cid:0) 1 ð3Þ
TheinversematricesinEqs(2)and(3)weresolvedusingLUfactorization.Weestimated
monthlyCH fluxesfor43regions,including42landregionsatasub-continentalscaleand
4
oneglobaloceanregion(FigAinS1File).Adetaileddescriptionoftheinversionschemeis
givenby[14].
Observationsofsingle-shotXCH retrievalsandindividualground-basedobservations
4
fromtheWorldDataCenterforGreenhouseGases(WDCGG)[15]andamonitoringproject
ofgreenhousegasesoverSiberia[16]wereintegratedintheinversion(FigBinS1File).Biases
inXCH retrievalswerecorrectedtolatitudinalandmonthlyground-basedobservationsusing
4
asecond-orderpolynomialapproximation[17](themeanbiaswasassumedtobe-5.9ppb,
withastandarddeviationof12.6ppb(V02.XX)[8]).TheuncertaintyoftheXCH retrievals
4
wassetasthedifferencefromthepolynomial,withaminimumvalueof12ppb[18].The
uncertaintiesoftheground-basedobservationdataweregivenbythemeanresidualstandard
deviation(RSD)oftheGLOBALVIEW-CH 2009dataset[19],withminimumvaluesofthe
4
flasksamplingandcontinuousmeasurementdatasetas6and20ppb,respectively.
TheinversionschemeconsistsoftheNIES-TM,amoduleforCH destructionprocesses
4
causedbyhydroxylfreeradicals(OH)[20],andafixed-lagKalmansmootherwitha4-month
lagwindow[21].TheNIES-TMwasimplementedusinga2.5˚×2.5˚horizontalgridresolu-
tionand32verticallevels,usingahybridsigma-isentropiccoordinatesystem.TheNIES-TM
wasdrivenusing6-hourlyclimateforcingsfromtheJapanMeteorologicalAgencyClimate
DataAssimilationSystem(JCDAS)[22].
Theapriorifluxeswerecomposedofthreegroupsofemissionsources:anthropogenic,nat-
ural,andbiomassburning(TableAinS1File).Theanthropogenicsourceswerebasedonthe
emissioninventoriesoftheEmissionDatabaseforGlobalAtmosphericResearch(EDGAR)
v4.2[23],andincludefuelcombustionandfugitiveemissionsfromfuels,industrialprocesses,
andproductuse,aswellasagriculturalsources,includinganimalwasteandentericfermenta-
tion,wastetreatment,andfossilfuelfires,butexcludingricepaddies.Naturalsourcesinclude
emissionsfromwetlands,ricepaddies,andsoilsourcesandsinks,whichwerebasedonthe
VegetationIntegrativeSImulatorforTracegases(VISIT)terrestrialbiospheremodel[24],and
alsoincludeemissionsfromtermites,whichwerebasedonthetracertransportmodelGISS
[25].BiomassburningwasbasedontheGlobalFireEmissionsDatabase(GFED)v3.1product
[26].Theapriorimonthlyfluxesofthesethreesourcegroupswerepreparedata1˚×1˚spatial
resolution,andeachgroupwasoptimizedforthe43regionsintheinversionscheme.Uncer-
taintiesintheapriorifluxesweresetto20%ofthevaluesfortheanthropogenicandbiomass
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 4/12
MethaneEmissionsduringAmazonianDrought
burningsourcesand50%forthenaturalsources.Afterinversion,theoptimizedemission
sourcesinthefourregions(Numbers9,10,15and16inFigAinS1File)ofSouthAmerica
wereaggregatedovertwolargeregions:thesouthernAmazonandcentralSouthAmerica.
ResultsandDiscussion
ThedryseasoninthesouthernAmazonoccursbetweenJulyandOctober.Thelargestpositive
temperatureandthelargestnegativeprecipitationanomaliesbetween2010and2011occurred
inAugustandSeptember2010[5].TheXCH retrievalsforthisperiodshowstronglatitudinal
4
gradients(Fig1a)duetodifferencesbetweenCH emissionratesintheNorthernandSouth-
4
ernHemispheres.ThisagreeswithpreviousmeasurementsfromtheSCanningImaging
AbsorptionSpectroMeterforAtmosphericCHartographY(SCIAMACHY)satellite[27].As
confirmedbyinsitusurfacemeasurements[28],longitudinalgradientswerealsoobservedin
theXCH retrievals.InthesouthernAmazon,low-levelnortheasterlyairflowsweredomi-
4
natedbyyear-roundtradewindinflowsacrossthenortheasterncoastofBrazil,flowingfrom
thetropicalNorthAtlanticregion[29].LevelsofCH inthesouthernAmazonweregenerally
4
enhancedcomparedwiththoseinthecentralSouthAmericaregion,indicatingthecontribu-
tionsofupwindemissionsources.
Fig2showstherelativeeffectsofdroughtonatmosphericCH concentrations,bycompar-
4
ingthevariabilityofXCH withthatofabackgroundregion.TheAtlanticareabetween
4
0–20˚Sand20–50˚Wwasdeterminedasthebackgroundregionforthedominanttradewind.
AftercomparingXCH withthebackgroundobservationstoobtaintherelativeeffects
4
(ΔXCH ),wefoundastatisticallysignificantdifference(P<0.01)betweentheXCH variabil-
4 4
ityforJuly–Octoberin2010and2011inboththesouthernAmazonandthecentralSouth
Americaregions.MonthlyaveragedΔXCH valuesincreasedfromJulytoSeptember2010in
4
bothregions,withmedianΔXCH valuesof+14.8and+7.6ppbforthesouthernAmazonand
4
thecentralSouthAmericaregions,respectively.Incontrast,during2011theΔXCH levels
4
increasedinthesouthernAmazonregioninAugustanddecreasedinSeptember.Additionally,
inthecentralSouthAmericaregion,changesinΔXCH levelsduring2011werenotdetect-
4
able.Theanalysissuggeststhatthe2010droughtenhancedCH emissionsinthesouthern
4
Amazonregion.
TheinversemodelshowsthatdifferencesinXCH variabilitybetween2010and2011were
4
closelyrelatedtoyear-to-yearchangesinemissionsfrombiomassburning(Fig3).Inthe
southernAmazonregion,estimatedCH emissionsfrombiomassburningduring2010were
4
sixtimeshigherthanin2011(7.0±1.0versus1.1±0.2TgCH yr−1,respectively,oralterna-
4
tivelygivenas1.46±0.21versus0.24±0.04gCH m−2yr−1,respectively).Thisresultedina
4
22%increaseinannualCH fluxesin2010relativetothosein2011(26.6±7.5versus
4
21.8±6.4TgCH yr−1,respectively)despiteareductioninnaturalemissions(16.5±6.0versus
4
17.5±5.6TgCH yr−1,respectively)andnochangesinanthropogenicemissions(3.2±0.5Tg
4
CH yr−1).EnhancedemissionsfrombiomassburningwerealsodetectedinthecentralSouth
4
Americaregionin2010comparedwith2011(1.5±0.3verses0.5±0.1TgCH yr−1,respec-
4
tively),butacomparableincreaseinannualCH fluxesin2010(43.9±11.2TgCH in2010
4 4
verses45.0±10.9in2011TgCH )wasnotdiscernablebecause2011includedincreasednatu-
4
ralemissions.AnnualCH fluxesoverthenorthernAmazonregionin2010and2011were
4
estimatedas23.9and23.0TgCH yr−1,respectively,forreference.In2010,theposteriorfluxes
4
ledtoincreasesintotalemissionsof17%and9%inthesouthernAmazonandthecentral
SouthAmericaregions,respectively,comparedwiththeapriorifluxes(22.6±8.7and
40.0±13.6TgCH yr−1,respectively)(TableAinS1File).
4
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 5/12
MethaneEmissionsduringAmazonianDrought
Fig2.TimeseriesofCH andCOconcentrationsfor2010and2011.(a)VariabilityinXCH
4 4
concentrations(ppb)inthesouthernAmazonregion(darkgreencircles),centralSouthAmericaregion(light
greencircles),andbackgroundregion(oceanareabetween0˚–20˚Sand20˚–50˚W;redline).Dailydataof
thebackgroundregionwereconstructedfromdiscreteXCH datausingaHummingwindowwithawindow-
4
widthof80days.Thestandarderrors(onesigma)ofXCH dataaregivenbythegrayboundary.The
4
discontinuityatthebackgroundregionforMay22–June20in2011reflectsalackofXCH data.(b)Monthly
4
variabilityinXCH values(ppb)withthebackgroundsubtracted(ΔXCH)inthesouthernAmazonregion(dark
4 4
greenbox-and-whiskers)andthecentralSouthAmericaregion(lightgreenbox-and-whiskers).Upperand
lowervaluesoftheboxesaremonthlyquartilesofΔXCH ,barsthroughtheboxesaremedians,andwhiskers
4
representtherangeofthe10thand90thpercentiles(dataarenotshownformonthsinwhichthenumberof
datapointswas<25).(c)Sameas(b),butshowingsurfaceCOconcentrations(ppb)fromtheMOPITTL3
product.
doi:10.1371/journal.pone.0166039.g002
InthesouthernAmazonregion,theCH emissionratefrombiomassburningin2010
4
exceededpreviousestimatesfortheLegalAmazonregionbetween1992and1993of0.84g
CH m−2yr−1[30],andforthenorthernAmazonin2001–2005of0.20gCH m−2yr−1(assum-
4 4
ingthatfireoccursononethirdofthedaysduringthe4-month-longdryseason)[28],andare
comparabletolocal-scaleemissionsforprimaryAmazonianforestbetween1986and1992
(*2gCH m−2yr−1)[31].Recently[32]estimatedthebiomassburningemissioninthesouth-
4
ernAmazonregionduring2010tobe6.8TgCH yr−1,usingaCH assimilationsystemCar-
4 4
bonTracker-CH .Additionally,[33]reportedthebiomassburningemissionoftheAmazon
4
Basinduring2010and2011tobe5.4and0.5TgCH yr−1,respectively,basedontheGFED
4
v3.1product.
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 6/12
MethaneEmissionsduringAmazonianDrought
Fig3.TotalannualCH flux(upper)andrelativecontributionsofanthropogenic(magenta),natural
4
(blue),andbiomass-burning(red)fluxes(lower)inthesouthernAmazonregion(left)andcentral
SouthAmericaregion(right)for2010and2011(inTgCH region−1yr−1).Errorbarsrepresentflux
4
uncertainties.
doi:10.1371/journal.pone.0166039.g003
TheprobabilitydistributionforXCH estimatedwiththeseposteriorfluxes(PST)for
4
2010–2011wascomparedwithXCH retrievalsusingtheχ2goodness-of-fittest,aswellas
4
thoseestimatedwithapriorifluxes(APR)andposteriorfluxesforinversionusingground-
basedobservationsonly(GB)(FigCinS1File).ThetestforXCH wasdividedinto14classes
4
andyieldsχ2=151,643forXCH _APR,χ2=1051forXCH _GB,andχ2=451forXCH _PST.
4 4 4
Theestimateduncertaintyoftheaveragetotalemissionsfor2010–2011inthesouthernAma-
zonandthecentralSouthAmericaregionswas7.9and13.3TgCH yr−1forAPR,7.7(-2%for
4
APR)and13.0TgCH yr−1(-2%)forGB,and7.0(-12%)and11.0TgCH yr−1(-16%)for
4 4
PST,respectively.Theseχ2statisticsanduncertaintyreductionsindicatethatthesatelliteand
ground-basedobservationsconstrainthetotalCH budgetmoretightlythantheground-
4
basedobservationsalone,duetotheirregionalandglobalcoverage.Theprecisionimprove-
mentoffluxestimatesprovidesconfidenceinourinterpretationofobservedXCH variability
4
relativetopreviousstudiesthatonlyusedground-basedobservations.Therefore,theimpor-
tanceofsatelliteobservationsforerrorreductionininversemodelingisconfirmed,especially
overregionswithfewerground-basedobservations,suchasthetropics[34].
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 7/12
MethaneEmissionsduringAmazonianDrought
However,thevalueofχ2=451showsthattheXCH _PSTdistributionissignificantlydiffer-
4
enttothatoftheXCH retrievals(P<0.01),likelyduetoacombinationoffactors.Thesam-
4
plingofsatelliteobservationsinthesouthernAmazonregionisrestrictedinthedryseason
andthespatialdistributiondiffersbetween2010and2011.Thesespatio-temporalsampling
biasesmaydisturbannualandinterannualbalancesbetweenthedryandwetseasonsinthe
posteriorfluxes[35].TheXCH retrievalsalsohaveahigherscatterthanground-basedobser-
4
vationsbecauseoftheinherentlimitationsofretrievalalgorithms[36]andthedetectionper-
formanceofsatelliteinstruments[12],leadingtoerrorsinposteriorfluxes.Errorsalsooccur
inthemodels,suchasuncertaintiesinapriorifluxesandintheatmospherictransportmodel.
Forinstance,theaprioritotalannualfluxesacrossthesouthernAmazonandcentralSouth
Americaregionsfor2010werehigherthanthoseofCarbonTracker-CH (14.1and36.3Tg
4
CH yr−1,respectively),althoughposteriorfluxesinCarbonTracker-CH wereclosertoour
4 4
results(19.9and45.8TgCH yr−1).Weassignedarelativelysmallmagnitudetothepriorflux
4
uncertaintyofbiomassburningemissionsinordertohandleprominentfireeventsinthe2010
dryseason.Thismeansthattheposteriorfluxofbiomassburninglargelyreliedonthegiven
priorflux.Thechoiceofpriorfluxuncertaintiesiscriticalforposteriorfluxese.g.,[37],and
previousstudieshaveinvestigatedmethodstocharacterizetheuncertaintye.g.,[38–40].How-
ever,statisticsrelatedtotheuncertaintyarenotfullyunderstoodandremainamajorchallenge
ininversionschemes.
TohelpinterpretdifferencesinXCH variabilitybetween2010and2011anddependence
4
ofposteriorfluxesonpriorones,werantheinversemodelwithidenticalpriorfluxesand
uncertainties(TableBinS1File).Insteadofpriorfluxeswithinterannualvariations,average
seasonalcycleofindividualemissionsourcesfortheperiodof2000–2004wereusedasidenti-
calpriorfluxesforboth2010and2011.Uncertaintiesintheidenticalpriorfluxesweresetto
20%ofthevaluesfortheanthropogenicsourcesand50%forthenaturalandbiomassburning
sourcesbasedonGOSATLevel4CH dataproductscheme.Theresultsshowenhancementof
4
totalemissionsof1.4and2.6TgCH yr−1inthesouthernAmazonandcentralSouthAmerica
4
regionsin2010comparedwith2011.Theenhancementismainlyrelatedtochangesinnatural
emissionsourcesinposteriorfluxesduetothelargestuncertaintyofpriorfluxesinthree
sourcegroups,andthereisnocleardifferenceinbiomassburningemissionsbetween2010
and2011.Althoughtheinversemodelwithidenticalpriorfluxesperformlesswellinthistest
asshowninsmalluncertaintyreductions,thetestrevealsthelimitationofourabilitytoquan-
tifybiomassburningemissionsduringAmazoniandroughtin2010.Astheseissuesassociated
witherrorsinposteriorfluxesaredifficulttotakeintoaccountandarekeylimitationsinthis
study,itshouldbeemphasizedthattheposteriorfluxescanvarywiththedistributionofsatel-
litesampling,theretrievalalgorithms,andthemodelsthatwereused.
Toestimatebiomassburningemissionswithadifferentway,weanalyzedcarbonmonoxide
(CO)concentrationsretrievedfromtheMeasurementsOfPollutionInTheTroposphere
(MOPITT)satelliteobservations[41](Fig2c),asCOservesasaproxyforCH emittedduring
4
smoldering[42].MonthlyCOlevelsincreasedmarkedlyinthesouthernAmazonregionin
2010,peakingat290–312ppb(medianmonthlyvalues)inAugustandSeptember.Addition-
ally,seasonalvariationsinthetworegionscorrespondtotheΔXCH variationsforthetwo
4
years.Thesedatasupportthecorrelationbetweenhigh-intensityfiresandenhancedCH emis-
4
sionsbybiomassburninginthesouthernAmazonregionduringthe2010drought.Smoke
fromfiresintheregionwasalsodetectablebyvisualinspectionofcoarse-pixelGOSATcloud
imagerydata(FigDinS1File).
Globally,wetlandCH emissionsemergeastheprimarydriverofvariabilityinatmospheric
4
CH [43].Inwetlands,thewatertabledepthisakeydeterminantofemissionrates,alongwith
4
temperatureandsubstrateavailability[44].Increasedlevelsofsolarradiationduringdroughts
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 8/12
MethaneEmissionsduringAmazonianDrought
maypartlyincreaseCH emissionsfromwetlands,byincreasingtheamountofsubstrateavail-
4
ableformethanogenesisduetoAmazonianforestsgreen-up[45]andincreasingtemperature
inthesoilandwater.However,duringthe2010drought,lowwaterlevelscausedbyunusually
lowprecipitationresultedinasmallerfloodedarea[46],thuspromotingaerobicsoilcondi-
tionsandreducingCH production.Inourestimate,thereducedCH emissionsfromwet-
4 4
landscausedbythedroughtoccurredbeyondthedryseasoninthesouthernAmazonregion
(10.2±4.2and11.1±3.9TgCH for2010and2011respectively).Consequently,wetland
4
dynamicsisunlikelytoexplaintheenhancedCH emissionsin2010.Driersoilconditions
4
maystimulatetermiteactivitybypresentinggreatervolumesofdecayingrootbiomass,possi-
blyleadingtoincreasedCH emissionstotheatmosphere.However,acurrentestimateof
4
globalemissionsfromthissourceisonly*10TgCH yr−1,andtheemissionsinSouthAmer-
4
icaaccountforabout30%ofthistotal[2,44].Thus,thiscontributionalonecannotexplainthe
increasedCH emissionsof*4.8TgCH yr−1inthesouthernAmazonregionin2010.
4 4
AnthropogenicemissionsareanotherimportantsourceofatmosphericCH .InBrazil,
4
whichconstitutesthegreaterpartofthesouthernAmazonregion,anthropogenicCH sources
4
aredominatedbyemissionsfromruminants,whichin2005accountedfor57%(11.5TgCH
4
yr−1)oftotalCH emissions[47].InBrazil,bothtotalandruminantemissionsdecreased
4
slightlyfrom2005to2010,by6%and13%,respectively,probablybecauseoftheglobaleco-
nomicrecession.Overall,anthropogenicemissionsappeartohaveaminorinfluenceonthe
CH budgetinthesouthernAmazonregion.
4
Summary
AlthoughnodefiniteconclusionsaboutCH emissionsarepossiblebecauseoftheuncertainty
4
inourestimates,ouranalysesraisethepossibilitythatseveredroughteventsin2010influenced
CH emissionsintheAmazon.Thisisapparentasenhancedbiomassburningrelatedtoland
4
clearingandpasturemaintenance[48].TheCH emittedfrombiomassburningaccumulates
4
asgreenhousegasesintheatmosphere,whichmayfurtherenhancetheseverityandfrequency
ofdrought(althoughdroughtcanalsocauseadeclineingreenhousegasemissionsfromtropi-
calsoils,viachangesinsoilredoxpotentialandnutrientavailability[49]).Thesatelliteobser-
vationsprovideasolutionformappingXCH distributionsovertheAmazonregion,allowing
4
improvementstoourknowledgeofthecarbonbudget.Improvementsindataacquirement
overcloud-coveredareascouldleadtofurtherconstraintsoftheCH budgetintheregion.
4
TheoveralleffectsofAmazoniandroughtongreenhousegasbudgetsarenotyetfullyunder-
stood.Furtherresearch,suchasmulti-siteinvestigationsoffireregimesandpreciseground-
basedobservationsofatmosphericCH emissions,arekeytoimprovingourunderstanding
4
thecontributionofAmazoniandroughttogreenhousegasemissions.
SupportingInformation
S1File.Thesupplementarymaterialsforthisstudy.
(PDF)
Acknowledgments
ThisstudywassupportedbyGrantA-1202ofEnvironmentResearchandTechnologyDevel-
opmentFund,MinistryofEnvironmentJapan.WethankI.Morino,O.Uchino,Y.Yoshida,
T.Machida,M.Sasakawa,theGOSATprojectbyNIES,CarbonTracker-CH ,CRU,EDGAR,
4
GFED,GLOBALVIEW,JCDAS,MOPITT,andWDGCCforprovidingdata.GOSATdatawas
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 9/12
MethaneEmissionsduringAmazonianDrought
obtainedfromtheGOSATUserInterfaceGatewayathttp://www.gosat.nies.go.jp/en/.Map-
toolusestheGenericMappingTools,version5.2.1(http://gmt.soest.hawaii.edu/).
AuthorContributions
Conceptualization:MS.
Formalanalysis:MSHSK.
Fundingacquisition:SMTY.
Investigation:MS.
Methodology:MSHSKAISM.
Projectadministration:SMTY.
Resources:SM.
Supervision:SMTY.
Validation:HSK.
Visualization:MS.
Writing–originaldraft:MS.
Writing–review&editing:MS.
References
1. MalhiY,WoodD,BakerTR,WrightJ,PhillipsOL,CochraneT,etal.Theregionalvariationofabove-
groundlivebiomassinold-growthAmazonianforests.GlobalChangeBiol.2006;12:1107–1138.doi:
10.1111/j.1365-2486.2006.01120.x
2. KirschkeS,BousquetP,CiaisP,SaunoisM,CanadellJG,DlugokenckyEJ,etal.Threedecadesof
globalmethanesourcesandsinks.NatureGeosci.2013;6:813–823.doi:10.1038/ngeo1955
3. MarengoJA,TomasellaJ,AlvesLM,SoaresWR,RodriguezDA.Thedroughtof2010inthecontextof
historicaldroughtsintheAmazonregion.GeophysResLett.2011;38.doi:10.1029/2011GL047436
4. PhillipsOL,AragãoLEOC,LewisSL,FisherJB,LloydJ,Lo´pez-Gonza´lezG,etal.Droughtsensitivityof
theAmazonrainforest.Science.2009;323:1344–1347.doi:10.1126/science.1164033PMID:
19265020
5. GattiLV,GloorM,MillerJB,DoughtyCE,MalhiY,DominguesLG,etal.DroughtsensitivityofAmazo-
niancarbonbalancerevealedbyatmosphericmeasurements.Nature.2014;506:76–80.doi:10.1038/
nature12957PMID:24499918
6. CoxPM,HarrisPP,HuntingfordC,BettsRA,CollinsM,JonesCD,etal.IncreasingriskofAmazonian
droughtduetodecreasingaerosolpollution.Nature.2008;453:212–215.doi:10.1038/nature06960
PMID:18464740
7. MelackJM,HessLL,GastilM,ForsbergBR,HamiltonSK,LimaIBT,etal.Regionalizationofmethane
emissionsintheAmazonBasinwithmicrowaveremotesensing.GlobalChangeBiol.2004;10:530–
544.doi:10.1111/j.1365-2486.2004.00763.x
8. YoshidaY,KikuchiN,MorinoI,UchinoO,OshchepkovS,BrilA,etal.Improvementoftheretrievalalgo-
rithmforGOSATSWIRXCO andXCH andtheirvalidationusingTCCONdata.AtmosMeasTech.
2 4
2013;6:1533–1547.doi:10.5194/amt-6-1533-2013
9. TsakirisG,PangalouD,VangelisH.RegionaldroughtassessmentbasedontheReconnaissance
DroughtIndex(RDI).WaterResourManage.2007;21:821–833.doi:10.1007/s11269-006-9105-4
10. HarrisI,JonesPD,OsbornTJ,ListerDH.Updatedhigh-resolutiongridsofmonthlyclimaticobserva-
tions–theCRUTS3.10Dataset.IntJClimatol.2014;34:623–642.doi:10.1002/joc.3711
11. YokotaT,YoshidaY,EguchiN,OtaY,TanakaT,WatanabeH,etal.GlobalconcentrationsofCO and
2
CH retrievedfromGOSAT:firstpreliminaryresults.SOLA.2009;5:160–163.doi:10.2151/sola.2009-
4
041
PLOSONE|DOI:10.1371/journal.pone.0166039 November16,2016 10/12
Description:drought remained strong in the XCH4 retrieval data, as the 2010 drought was particularly severe in the southern Amazon region (Fig 1b). Overview of GOSAT measurements. The GOSAT has been monitoring atmospheric CO2 and CH4 concentrations from space since its launch in January 2009 [11].