Table Of ContentEnergetics Science and
Technology
An integrated approach
Online at: https://doi.org/10.1088/978-0-7503-3943-8
Energetics Science and
Technology
An integrated approach
Edited by
Adam S Cumming
School of Chemistry, University of Edinburgh, Edinburgh, UK
IOP Publishing, Bristol, UK
ªIOPPublishingLtd2022
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem
ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording
orotherwise,withoutthepriorpermissionofthepublisher,orasexpresslypermittedbylawor
undertermsagreedwiththeappropriaterightsorganization.Multiplecopyingispermittedin
accordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgency,theCopyright
ClearanceCentreandotherreproductionrightsorganizations.
PermissiontomakeuseofIOPPublishingcontentotherthanassetoutabovemaybesought
[email protected].
AdamSCumminghasassertedhisrighttobeidentifiedastheeditorofthisworkinaccordance
withsections77and78oftheCopyright,DesignsandPatentsAct1988.
ISBN 978-0-7503-3943-8(ebook)
ISBN 978-0-7503-3941-4(print)
ISBN 978-0-7503-3944-5(myPrint)
ISBN 978-0-7503-3942-1(mobi)
DOI 10.1088/978-0-7503-3943-8
Version:20221201
IOPebooks
BritishLibraryCataloguing-in-PublicationData:Acataloguerecordforthisbookisavailable
fromtheBritishLibrary.
PublishedbyIOPPublishing,whollyownedbyTheInstituteofPhysics,London
IOPPublishing,No.2TheDistillery,Glassfields,AvonStreet,Bristol,BS20GR,UK
USOffice:IOPPublishing,Inc.,190NorthIndependenceMallWest,Suite601,Philadelphia,
PA19106,USA
Contents
Foreword xiv
Editor biography xvi
List of contributors xvii
1 Introduction: formulation design—an integrated approach 1-1
Adam S Cumming
1.1 Introduction 1-1
1.2 Designing formulations for applications 1-2
1.3 Approach 1-2
1.4 Summary 1-3
1.5 Methods of approach 1-3
1.6 Basic properties and management 1-5
1.7 Conclusions 1-6
References 1-6
2 From raw ingredients to energetic materials 2-1
Eleftheria (known as Licia) Dossi
2.1 Introduction 2-1
2.2 Manufacturing of energetic materials: a short overview 2-2
2.2.1 Manufacturing logistics 2-2
2.2.2 Nitration reaction 2-4
2.2.3 Batch process 2-7
2.2.4 Continuous process 2-8
2.2.5 Flow chemistry 2-9
2.3 Classes of energetics 2-10
2.3.1 Nitro compounds 2-10
2.3.2 Nitroesters 2-14
2.3.3 Nitramines 2-18
2.3.4 High-nitrogen-content explosives 2-22
2.3.5 Polymers in energetics 2-28
2.3.6 Primaries 2-32
2.4 Replacement of isocyanates 2-32
2.5 Replacement of nitrocellulose 2-36
2.6 Conclusions 2-38
References 2-38
v
EnergeticsScienceandTechnology
3 Crystal form and morphology 3-1
Ruth M Doherty
3.1 Introduction 3-1
3.2 Polymorphism and phase diagrams 3-2
3.2.1 Differences in physical properties of polymorphs 3-5
3.2.2 Prediction of crystal structures 3-6
3.3 Polymorphism in energetic materials 3-8
3.3.1 Hexanitrohexaazaisowurtzitane (HNIW, CL-20) 3-8
3.3.2 2,4-Dinitroanisole 3-11
3.3.3 Ammonium nitrate 3-13
3.4 Physical particle characteristics 3-15
3.4.1 Crystal size and morphology 3-15
3.4.2 Crystal quality 3-17
3.4.3 Cocrystallization 3-19
3.5 Summary 3-22
Abbreviations 3-22
References 3-22
4 Application of machine learning and artificial intelligence 4-1
methods to energetics science and technology
William H Wilson, Peter W Chung, Zois Boukouvalas and Elan Moritz
4.1 Introduction 4-1
4.2 Background 4-5
4.3 Machine learning for new energetics 4-9
4.4 Energetics applications of natural language processing 4-14
4.5 Approaches for ‘small data’: data fusion based on independent 4-17
vector analysis
4.6 Conclusions 4-17
References 4-18
5 The impact of resonance acoustic mixing on the production 5-1
of solid propellants and explosives
Ning Ma, Song Chen, Zhe Zhang, Xiaopeng Sun, Zhongyuan Xie,
Weiqiang Pang and Guangbin Zhang
5.1 Background 5-1
5.2 Reliability and challenges of RAM mixtures 5-3
5.3 Experimental 5-8
5.3.1 Raw materials and formulations 5-8
vi
EnergeticsScienceandTechnology
5.3.2 Instruments and equipments 5-9
5.3.3 Impact test devices 5-9
5.3.4 Impact sensitivity and equivalent impact force tests 5-10
5.3.5 Safety evaluation 5-10
5.4 Results and discussion 5-11
5.4.1 Impact force of different formulations 5-11
5.4.2 Impact force of sodium sulphate powder 5-12
5.4.3 Equivalence of ‘impact sensitivity’ and ‘process impact force’ 5-13
5.4.4 Safety evaluation of impact 5-15
5.5 Prospects and drawbacks of RAM 5-17
5.6 Conclusions 5-18
Acknowledgements 5-18
References 5-18
6 Reducing vulnerability and insensitive munitions 6-1
Adam S Cumming
6.1 Introduction 6-1
6.2 Energetic materials and IMs 6-3
6.3 Research priorities 6-5
6.4 Areas of active work 6-5
6.4.1 Detonics 6-6
6.4.2 Testing 6-6
6.4.3 Hazard analysis 6-8
6.4.4 Ingredients 6-9
6.4.5 Formulation 6-10
6.4.6 Processing 6-11
6.4.7 Components 6-12
6.4.8 Performance 6-12
6.4.9 Fundamental science 6-12
6.4.10 System issues 6-13
6.5 Conclusions 6-13
References 6-14
7 Ignition and detonation in energetic materials: an introduction 7-1
William G Proud
7.1 Energetic materials 7-1
7.2 Hot-spot formation 7-2
vii
EnergeticsScienceandTechnology
7.3 Detonation 7-3
7.4 Deflagration-to-detonation transition 7-5
7.5 Process of deflagration-to-detonation transition 7-5
7.6 Process of shock-to-detonation transition 7-7
7.7 Deflagration-to-detonation studies 7-7
7.8 Drop-weight studies 7-9
7.9 Second harmonic generation 7-10
7.10 Impact ignition 7-13
7.11 Small-scale gap test 7-15
7.12 The cylinder test 7-17
7.13 Conclusions 7-22
Acknowledgements 7-22
References 7-22
8 Submillimetre spatially resolved observation of detonation 8-1
phenomena
R Mendes, L Rodrigues, J Pimenta, J Quaresma and J Ribeiro
8.1 Introduction 8-1
8.2 Experimental equipment components and arrangements 8-2
8.3 Measurement of steady-state detonation velocity and pressure 8-4
8.4 Detonation reaction zone performance tests 8-7
8.5 Detonation failure cone test 8-9
8.6 Shock-to-detonation transition: wedge test 8-11
8.7 Shock-to-detonation transition: flyer plate impact test 8-13
8.8 Single crystal reaction observation 8-14
8.9 Conclusions 8-17
Acknowledgement 8-17
References 8-17
9 A traditional approach to munition life management 9-1
Mark Ashcroft
9.1 Principles and life-management phases 9-2
9.1.1 Phase 1: design assessment and environmental exposure 9-2
9.1.2 Phase 2: life-limiting failure mechanisms 9-7
9.1.3 Phase 3: assessment methods 9-11
9.1.4 Phase 4: trials 9-13
9.1.5 Phase 5: life assessment 9-16
viii
EnergeticsScienceandTechnology
9.2 Conclusions 9-20
Acknowledgments 9-21
References 9-21
10 Improved systematic life management of munitions 10-1
Ruth Pettifer, Claire Hobman, Jenna Hulme, Ian Tinsley and Dave Tod
10.1 Introduction 10-2
10.2 Systems engineering and its approach to weapons development 10-3
10.2.1 Introduction 10-3
10.2.2 Systems engineering and the life management of munitions 10-3
10.2.3 Systems engineering, failure modes, and risk management 10-4
10.2.4 Systems engineering and spiral development of weapons 10-12
10.3 Smart through-life management 10-14
10.3.1 United Kingdom research 10-14
10.3.2 Global research 10-17
10.4 Energetic materials analysis 10-21
10.4.1 Accelerated ageing and data analysis 10-21
10.4.2 Life assessment testing: considerations and advances 10-23
10.4.3 Uniaxial, baxial and triaxial mechanical testing 10-26
10.4.4 Crack growth failure 10-29
10.4.5 Data for constitutive material models 10-30
10.4.6 Bond testing 10-30
10.4.7 Nondestructive evaluation 10-31
10.5 Modelling 10-32
10.5.1 Service life prediction modelling 10-34
10.5.2 Ab initio or physics-based modelling 10-38
10.5.3 Companion assets and trepanning 10-39
10.6 Digital threads and twins 10-42
10.7 Conclusions 10-45
Acknowledgements 10-45
Glossary 10-46
References 10-47
11 Recursive molecular similarity (R.Mo.S): an innovative 11-1
algorithm for selecting a subset useful for toxicology prediction
C Alliod, R Denis, G Jacob and R Terreux
11.1 Introduction 11-1
ix