Table Of ContentP1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
ENCYCLOPEDIA OF
SMART MATERIALS
VOLUME 1 and VOLUME 2
Mel Schwartz
TheEncyclopediaofSmartMaterialsisavailableOnlineat
www.interscience.wiley.com/reference/esm
AWiley-IntersciencePublication
John Wiley & Sons, Inc.
iii
P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
Thisbookisprintedonacid-freepaper.(cid:3)∞
Copyright(cid:3)C 2002byJohnWileyandSons,Inc.,NewYork.Allrightsreserved.
PublishedsimultaneouslyinCanada.
Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinany
formorbyanymeans,electronic,mechanical,photocopying,recording,scanningorotherwise,
exceptaspermittedunderSections107or108ofthe1976UnitedStatesCopyrightAct,without
eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe
appropriateper-copyfeetotheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA
01923,(978)750-8400,fax(978)750-4744.RequeststothePublisherforpermissionshouldbe
addressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,605ThirdAvenue,NewYork,
NY10158-0012,(212)850-6011,fax(212)850-6008,E-Mail:[email protected].
Fororderingandcustomerservice,call1-800-CALLWILEY.
LibraryofCongressCataloginginPublicationData
Encyclopediaofsmartmaterials/MelSchwartz,editor-in-chief.
p. cm.
“AWiley-Intersciencepublication.”
Includesindex.
ISBN0-471-17780-6(cloth:alk.paper)
1.Smartmaterials—Encyclopedias. I.Schwartz,MelM.
TA4189.S62E63 2002
620.1(cid:4)1—dc21 2001056795
PrintedintheUnitedStatesofAmerica.
10987654321
iv
P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
CONTRIBUTORS
D. Michelle Addington, Harvard University, Cambridge, MA, KojiFujita,KyotoUniversity,Sakyo-ku,Kyoto,Japan,Tribolumines-
Architecture cence,ApplicationsinSensors
YasuyukiAgari,OsakaMunicipalTechnicalResearchInstitute,Joto- TakehitoFukuda,OsakaCityUniversity,Sumiyoshi-ku,Osaka,Japan,
ku,Osaka,Japan,PolymerBlends,FunctionallyGraded CureandHealthMonitoring
U.O. Akpan,MartecLimited,Halifax,NS,Canada,VibrationControl C.R. Fuller, Virginia Polytechnic Institute and State University,
inShipStructures Blacksburg,VA,SoundControlwithSmartSkins
Samuel M. Allen, Massachusetts Institute of Technology, Cambridge, I.Yu.Galaev,LundUniversity,Lund,Sweden,Polymers,Biotechnology
MA, Shape-Memory Alloys, Magnetically Activated Ferromagnetic andMedicalApplications
Shape-MemoryMaterials David W. Galipeau, South Dakota State University, Brookings, SD,
J.M. Bell, Queensland University of Technology, Brisbane Qld, Sensors,SurfaceAcousticWaveSensors
Windows L.B.Glebov,UniversityofCentralFlorida,Orlando,FL,Photochromic
YvesBellouard,InstitutdeSyste`mesRobotiquesEcolePolytechnique andPhoto-Thermo-RefractiveGlasses
Fe´de´raledeLausanneSwitzerland,Microrobotics,MicrodevicesBased J.A.Gu¨emes,Univ.Politecnica,Madrid,Spain,IntelligentProcessing
onShape-MemoryAlloys ofMaterials(IPM)
DavideBernardini,Universita` diRoma“LaSapienza”,Rome,Italy, Andrew D. Hamilton, Yale University, New Haven, CT, Gelators,
Shape-MemoryMaterials,Modeling Organic
A.Berry,GAUS,UniversitydeSherbrroke,Sherbrooke,Quebec,Canada, TianHao,Rutgers—TheStateUniversityofNewJersey,Piscataway,NJ,
VibrationControlinShipStructures ElectrorheologicalFluids
O. Besslin, GAUS, University de Sherbrroke, Sherbrooke, Quebec, J.S.Harrison,NASALangleyResearchCenter,Hampton,VA,Polymers,
Canada,VibrationControlinShipStructures Piezoelectric
MaheshC.Bhardwaj,SecondWaveSystems,Boalsburg,PA,Nondes- Bradley R. Hart, University of California, Irvine, CA, Molecularly
tructiveEvaluation ImprintedPolymers
Vivek Bharti, Pennsylvania State University, University Park, PA, AlisaJ.MillarHenrie,BrighamYoungUniversity,Provo,UT,Magne-
Poly(VinylideneFluoride)(PVDF)andItsCopolymers torheologicalFluids
Rafael Bravo, Universidad del Zulia, Maracaibo, Venezuela, Truss KazuyukiHirao,KyotoUniversity,Sakyo-ku,Kyoto,Japan,Tribolumi-
StructureswithPiezoelectricActuatorsandSensors nescence,ApplicationsinSensors
ChristopherS.Brazel,UniversityofAlabama,Tuscaloosa,Alabama, Wesley P. Hoffman, Air Force Research Laboratory, AFRL/PRSM,
BiomedicalSensing EdwardsAFB,CA,Microtubes
W.A.Bullough,UniversityofSheffield,Sheffield,UK,FluidMachines J.VanHumbeeck,K.U.Leuven-MTM,KatholiekeUniversiteitLeuven,
Heverlee,Belgium,ShapeMemoryAlloys,TypesandFunctionalities
J. David Carlson, Lord Corporation, Cary, NC, Magnetorheological
Fluids Emile H. Ishida,INAXCorporation,Minatomachi,Tokoname,Aichi,
Japan, Soil-Ceramics (Earth), Self-Adjustment of Humidity and
AditiChattopadhyay,ArizonaStateUniversity,Tempe,AZ,Adaptive
Temperature
Systems,RotaryWingApplications
TsuguoIshihara,Hyogo,PrefecturalInstituteofIndustrialResearch
PeterC.Chen,Alexandria,VA,ShipHealthMonitoring
Suma-ku,Kobe,Japan,Triboluminescence,ApplicationsinSensors
Seung-BokChoi,InhaUniversity,Inchon,Korea,VibrationControl
YukioIto,ThePennsylvaniaStateUniversity,UniversityPark,PA,Ce-
D.D.L. Chung, State University of New York at Buffalo, Buffalo, NY,
ramics,Transducers
Composites,IntrinsicallySmartStructures
Bahram Jadidian, Rutgers University, Piscataway, NJ, Ceramics,
Juan L. Cormenzana, ETSII/Polytechnic University of Madrid,
PiezoelectricandElectrostrictive
Madrid,Spain,ComputationalTechniquesForSmartMaterials
AndreasJanshoff,Johannes-Gutenberg-Universita¨t,Mainz,Germany,
Marcelo J. Dapino, Ohio State University, Columbus, OH, Magne- Biosensors,PorousSilicon
tostrictiveMaterials
T.L.Jordan,NASALangleyResearchCenter,Hampton,VA,Character-
JerryA.Darsey,UniversityofArkansasatLittleRock,LittleRock,AR, izationofPiezoelectricCeramicMaterials
NeuralNetworks
GeorgeKavarnos,PennsylvaniaStateUniversity,UniversityPark,PA,
KambizDianatkhah,LennoxIndustries,Carrollton,TX,Highways Poly(VinylideneFluoride)(PVDF)andItsCopolymers
Mohamed Dokainish, McMaster University, Hamilton, Ontario, AndreiKholkin,RutgersUniversity,Piscataway,NJ,Ceramics,Piezo-
Canada,TrussStructureswithPiezoelectricActuatorsandSensors electricandElectrostrictive
SherryDraisey,GoodVibrationsEngineering,Ltd,Nobleton,Ontario, JasonS.Kiddy,Alexandria,VA,ShipHealthMonitoring
Canada,PestControlApplications
L.C.Klein,Rutgers—TheStateUniversityofNewJersey,Piscataway,
Michael Drake, University of Dayton Research, Dayton, OH, Vibra- NJ,ElectrochromicSol-GelCoatings
tionalDamping,DesignConsiderations
T.S.Koko,MartecLimited,Halifax,NS,Canada,VibrationControlin
ThomasD.Dziubla,DrexelUniversity,Philadelphia,PA,Gels ShipStructures
HiroshiEda,IBARAKIUniversity,Nakanarusawa,Japan,GiantMag- TatsuroKosaka,OsakaCityUniversity,Sumiyoshi-ku,Osaka,Japan,
netostrictiveMaterials CureandHealthMonitoring
ShigenoriEgusa(Deceased),JapanAtomicEnergyResearchInstitute, JosephKost,Ben-GurionUniversityoftheNegev,BeerSheva,ISRAEL,
Takasaki-shi,Gunma,Japan,Paints DrugDeliverySystems
HaroldD.Eidson,SouthwesternUniversity,Georgetown,TXUSA,Fish D.Kranbuehl,CollegeofWilliamandMary,Williamsburg,Virginia,
AquaticStudies FrequencyDependentElectromagneticSensing(FDEMS)
ArthurJ.Epstein,TheOhioStateUniversity,Columbus,OH,Magnets, SmadarA.Lapidot,Ben-GurionUniversityoftheNegev,BeerSheva,
Organic/Polymer Israel,DrugDeliverySystems
JohnS.O.Evans,UniversityofDurham,Durham,UK,Thermorespon- ManuelLaso,ETSII/PolytechnicUniversityofMadrid,Madrid,Spain,
siveInorganicMaterials ComputationalTechniquesForSmartMaterials
FrankFilisko,UniversityofMichigan,AnnArbor,MI,Electrorheolog- Christine M. Lee, Unilever Research US Edgewater, NJ, Langmuir–
icalMaterials BlodgettFilms
ix
P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
x CONTRIBUTORS
F.Rodriguez-Lence,EADS-CASAGetafe,Madrid,Spain,Intelligent Jeffrey Schoess, Honeywell Technology Center, Minneapolis, MN,
ProcessingofMaterials(IPM) SensorArrayTechnology,Army
MalgorzataM.Lencka,OLISystems,Inc.MorrisPlains,NJ,Intelligent JohannesSchweiger,EuropeanAeronauticDefenseandSpaceCom-
SynthesisofSmartCeramicMaterials pany,MilitaryAircraftBusinessUnit,Muenchen,Germany,Aircraft
T.W.Lewis,UniversityofWollongong,Wollongong,Australia,Conduc- Control,ApplicationsofSmartStructures
tivePolymers K.H. Searles, Oregon Graduate Institute of Science and Technology,
FangLi,TianjinUniversity,Tianjin,China,Chitosan-BasedGels Beaverton,OR,Composites,Survey
AnthonyM.Lowman,DrexelUniversity,Philadelphia,PA,Gels Kenneth J. Shea, University of California, Irvine, CA, Molecularly
DaoqiangLu,InstituteofTechnology,Atlanta,GA,ElectricallyConduc- ImprintedPolymers
tiveAdhesivesforElectronicApplications SonghuaShi,InstituteofTechnology,Atlanta,GA,Flip-ChipApplica-
ShijianLuo,GeorgiaInstituteofTechnology,Atlanta,GA,Conductive tions,UnderfillMaterials
PolymerCompositeswithLargePositiveTemperatureCoefficients
I.L. Skryabin, Queensland University of Technology, Brisbane Qld,
L.A.P.Kane-Maguire,UniversityofWollongong,Wollongong,Australia, Windows
ConductivePolymers
N.Sponagle,DREA,Dartmouth,NS,Canada,VibrationControlinShip
A.Maignan,LaboratoireCRISMAT,ISMRA,CAENCedex,FRANCE,
Structures
ColossalMagnetoresistiveMaterials
R.Stalmans,Flexmet,Aarschot,Belgium,ShapeMemoryAlloys,Types
ArumugamManthiram,TheUniversityofTexasatAustin,Austin,TX,
andFunctionalities
BatteryApplications
DaveS.Steinberg,WestlakeVillage,CA,VibrationalAnalysis
P. Masson, GAUS, University de Sherbrroke, Sherbrooke, Quebec,
Canada,VibrationControlinShipStructures Claudia Steinem, Universita¨t Regensburg, Regensburg, Germany,
Hideaki Matsubara, Atsuta-ku, Nagoya, Japan, Self-diagnosing of Biosensors,PorousSilicon
DamageinCeramicsandLarge-ScaleStructures MorleyO.Stone,Wright-PattersonAirForceBase,Dayton,Ohio,Bio-
J.P. Matthews, Queensland University of Technology, Brisbane Qld, mimeticElectromagneticDevices
Windows J.Stringer,EPRI,PaloAlto,CA,PowerIndustryApplications
B.Mattiasson,LundUniversity,Lund,Sweden,Polymers,Biotechno- A. Suleman, Instituto Superior Te´cnico, Lisbon, Portugal, Adaptive
logyandMedicalApplications CompositeSystems:ModelingandApplications
RaymondM.Measures,Ontario,Canada,FiberOptics,BraggGrating J. Szabo,DREA,Dartmouth,NS,Canada,VibrationControlinShip
Sensors Structures
RosaE.Mele´ndez,YaleUniversity,NewHaven,CT,Gelators,Organic
DanielR.Talham,UniversityofFlorida,Gainesville,FL,Langmuir–
J.M.Menendez,EADS-CASAGetafe,Madrid,Spain,IntelligentPro- BlodgettFilms
cessingofMaterials(IPM)
Katsuhisa Tanaka, Kyoto Institute of Technology, Sakyo-ku, Kyoto,
ZhongyanMeng,ShanghaiUniversity,Shanghai,People’sRepublicof
Japan,Triboluminescence,ApplicationsinSensors
China,Actuators,PiezoelectricCeramic,FunctionalGradient
MamiTanaka,TohokuUniversitySendai,Japan,BiomedicalApplica-
Joel S. Miller, University of Utah, Salt Lake City, UT, Magnets, Or-
tions
ganic/Polymer;Spin-CrossoverMaterials
BrianS.Thompson,MichiganStateUniversity,EastLansing,MI,Com-
NezihMrad,InstituteforAerospaceResearch,Ottawa,Ontario,Canada,
posites,FutureConcepts
Optical Fiber Sensor Technology: Introduction and Evaluation and
Application HarryTuller,MassachusettsInstituteofTechnology,Cambridge,MA,
Electroceramics
RajeshR.Naik,Wright-PattersonAirForceBase,Dayton,Ohio,Biomi-
meticElectromagneticDevices KenjiUchino,ThePennsylvaniaStateUniversity,UniversityPark,PA,
R.C.O’Handley,MassachusettsInstituteofTechnology,Cambridge,MA, Ceramics,Transducers
Shape-MemoryAlloys,MagneticallyActivatedFerromagneticShape- EricUdd,BlueRoadResearch,Fairview,Oregon,Fiberoptics,Theory
MemoryMaterials andApplications
Yoshiki Okuhara, Atsuta-ku, Nagoya, Japan, Self-diagnosing of AnthonyFariaVaz,AppliedComputingEnterprisesInc.,Mississauga,
DamageinCeramicsandLarge-scaleStructures Ontario,Canada&UniversityofWaterloo,Waterloo,Ontario,Canada,
Christopher O. Oriakhi, Hewlett-Packard Company, Corvallis, OR, TrussStructureswithPiezoelectricActuatorsandSensors
ChemicalIndicatingDevices A.G. Vedeshwar, University of Delhi, Delhi, India, Optical Storage
Z. Ounaies, ICASE/NASA Langley Research Center, Hampton, VA, Films,ChalcogenideCompoundFilms
CharacterizationofPiezoelectricCeramicMaterials;Polymers,Piezo- Aleksandra Vinogradov, Montana State University, Bozeman, MT,
electric PiezoelectricityinPolymers
ThomasJ.Pence,MichiganStateUniversity,EastLansing,MI,Shape-
G.G.Wallace,UniversityofWollongong,Wollongong,Australia,Conduc-
MemoryMaterials,Modeling
tivePolymers
Darryll J. Pines, University of Maryland, College Park, MD, Health
LejunWang,InstituteofTechnology,Atlanta,GA,Flip-ChipApplica-
Monitoring(Structural)UsingWaveDynamics
tions,UnderfillMaterials
JesseE.Purdy,SouthwesternUniversity,Georgetown,TX,FishAquatic
Zhong L. Wang,GeorgiaInstituteofTechnology,Atlanta,GA,Smart
Studies
Perovskites
JinhaoQiu,TohokuUniversitySendai,Japan,BiomedicalApplications
PhillipG.Wapner,ERCInc.,EdwardsAFB,CA,Microtubes
JohnRajadas,ArizonaStateUniversity,Tempe,AZ,AdaptiveSystems,
RotaryWingApplications ZhongguoWei,DalianUniversityofTechnology,Dalian,China,Hybrid
CarolynRice,Cordis-NDC,Fremont,CA,ShapeMemoryAlloys,Appli- Composites
cations MichaelO.Wolf,TheUniversityofBritishColumbia,Vancouver,British
R.H.Richman,DaedalusAssociates,MountainView,CA,PowerIndus- Columbia,Canada,Poly(P-Phenylenevinylene)
tryApplications C.P. Wong, Georgia Institute of Technology, Atlanta, GA, Conductive
RichardE.Riman,RutgersUniversity,Piscataway,NJ,IntelligentSyn- Polymer Composites with Large Positive Temperature Coefficients;
thesisofSmartCeramicMaterials ElectricallyConductiveAdhesivesforElectronicApplications
PaulRoss, Alexandria,VA,ShipHealthMonitoring C.P. Wong, Georgia Institute of Technology, Atlanta, GA, Flip-Chip
Ahmad Safari, Rutgers University, Piscataway, NJ, Ceramics, Piezo- Applications,UnderfillMaterials
electricandElectrostrictive Chao-NanXu,NationalInstituteofAdvancedIndustrialScienceand
DanielS.Schodek,HarvardUniversity,Cambridge,MA,Architecture Technology(AIST),Tosu,Saga,Japan,Coatings
P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
CONTRIBUTORS xi
Hiroaki Yanagida, University of Tokyo, Mutuno, Atsuta-ku, RudolfZentel,UniversityofMainz,Mainz,Germany,Polymers,Ferro-
Nagoya, Japan, Environmental and People Applications; Ken- electricliquidCrystallineElastomers
Materials; Self-diagnosing of Damage in Ceramics and Large-scale Q.M. Zhang, Pennsylvania State University, University Park, PA,
Structures Poly(VinylideneFluoride)(PVDF)andItsCopolymers
Dazhi Yang,DalianUniversityofTechnology,Dalian,China,Hybrid FengZhao,TianjinUniversity,Tianjin,China,Chitosan-BasedGels
Composites LiboZhou,IBARAKIUniversity,Nakanarusawa,Japan,GiantMagne-
Kang De Yao, Tianjin University, Tianjin, China, Chitosan-Based tostrictiveMaterials
Gels XinhuaZhu,NanjingUniversity,Nanjing,People’sRepublicofChina,
YuJiYin,TianjinUniversity,Tianjin,China,Chitosan-BasedGels Actuators,PiezoelectricCeramic,FunctionalGradient
P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
ENCYCLOPEDIAOFSMARTMATERIALS
Editor-in-Chief CraigA.Rogers
MelSchwartz
JamesSirkis
EditorialBoard CiDRACorporation
AlokDas
AirForceResearchLaboratory/VSD JunjiTani
USAirForce TohokuUniversity
MichaelL.Drake
C.P.Wong
UniversityofDaytonResearchInstitute
GeorgiaInstituteofTechnology
CarolineDry
NaturalProcessDesign
EditorialStaff
SchoolofArchitecture
Vice-President,STMBooks:JanetBailey
UniversityofIllinois
Vice-PresidentandPublisher:PaulaKepos
LisaC.Klein
Rutgers—TheStateUniversityofNewJersey ExecutiveEditor:JacquelineI.Kroschwitz
S.EswarPrasad Director,BookProductionandManufacturing:
SensorTechnologyLimited CamilleP.Carter
ManagingEditor:ShirleyThomas
BuddyD.Ratner
UniversityofWashington EditorialAssistant:SurlanMurrell
ii
P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
PREFACE
TheEncyclopediaofSmartMaterials(ESM)containsthe environments,suchasathightemperaturesorincorrosive
writings, thoughts, and work of many of the world’s fore- atmospheres.
most people (scientists, educators, chemists, engineers, Automotive companies are investigating the use of
laboratory and innovative practitioners) who work in the smart materials to control vehicles in panels, such as
fieldofsmartmaterials.Theauthorsdiscusstheory,funda- damping vibration in roof panels, engine mounts, etc.
mentals,fabrication,processing,application,applications Aerospaceapplicationsincludethetestingofaircraftand
andusesoftheseveryspecial,andinsomeinstancesrare, satellitesforthestrenuousenvironmentsinwhichtheyare
materials. used, both in the design phase and in use, as well as for
Theterm“smartstructure”and“smartmaterials”are actuatorsordevicestoreacttoorcontrolvibrations,orto
muchusedandabused. changetheshapeofstructures.
ConsiderationofthelexicologyoftheEnglishlanguage Incivilengineering,especiallyinearthquake-pronear-
shouldprovidesomeguidelines,althoughengineersoften eas,anumberofprojectsareunderwaytoinvestigatethe
forget the dictionary and evolve a language of their own. useofmaterialssuchasactivecompositestoallowsupport
Here is what the abbreviated Oxford English Dictionary systems of bridges (and the like) to handle such shocks
says: withoutcatastrophicfailure.Thesematerialscanbeused
(cid:1) inmanystructuresthathavetowithstandseverestresses,
Smart:severeenoughtocausepain,sharp,vigorous, suchasoffshoreoilrigs,bridges,flyovers,andmanytypes
lively,brisk...clever,ingenious,showingquickwitor ofbuildings.
ingenuity...selfishly clever to the verge of dishon- The ESM will serve the rapidly expanding demand
esty; for information on technological developments of smart
(cid:1)
Material:matterfromwhichathingismade; materialsanddevices.Inadditiontoinformationformanu-
(cid:1)
Structure: material configured to do mechanical facturersandassemblersofsmartmaterials,components,
work...athingconstructed,complexwhole. systems, and structures, ESM is aimed at managers re-
sponsible for technology development, research projects,
The concept of “smart” or “intelligent” materials, sys- R&D programs, business development, and strategic
tems, and structures has been around for many years. planning in the various industries that are considering
A great deal of progress has been made recently in the thesetechnologies.Theseindustries,aswellasaerospace
developmentofstructuresthatcontinuouslyandactively and automotive industries, include mass transit, marine,
monitor and optimize themselves and their performance computer-relatedandotherelectronicequipment,aswell
throughemulatingbiologicalsystemswiththeiradaptive as industrial equipment (including rotating machinery,
capabilitiesandintegrateddesigns.Thefieldofsmartma- consumer goods, civil engineering, and medical applica-
terialsismultidisciplinaryandinterdisciplinary,andthere tions).
areanumberofenablingtechnologies—materials,control, Smart material and system developments are diversi-
informationprocessing,sensing,actuation,anddamping— fied and have covered many fields, from medical and bio-
and system integration across a wide range of industrial logicaltoelectronicandmechanical.Forexample,amanu-
applications. facturerofspinalimplantsandprostheticcomponentshas
Thediversetechnologiesthatmakeupthefieldofsmart produced a prosthetic device that dramatically improves
materials and structures are at varying stages of com- themobilityoflegamputeesbycloselyrecreatinganatu-
mercialization. Piezoelectric and electrostrictive ceram- ralgait.
ics,piezoelectricpolymers,andfiber-opticsensorsystems Scientistsanddoctorshaveengineeredforamputeesa
arewell-establishedcommercialtechnologies,whereasmi- solutionwithcontrollablemagneto-rheological(MR)tech-
cromachinedelectromechanicalsystems(MEMS),magne- nologytosignificantlyimprovestability,gaitbalance,and
tostrictivematerials,shapememoryalloys(SMA)andpoly- energyefficiencyforamputees.Combiningelectronicsand
mers, and conductive polymers are in the early stages of software, the MR-enabled responsiveness of the device
commercialization. The next wave of smart technologies is 20 times faster than that of the prior state-of-the-art
willlikelyseethewiderintroductionofchromogenicmate- devices,andthereforeallowstheclosestneuralhumanre-
rialsandsystems,electro-andmagneto-rheologicalfluids, actiontimeofmovementfortheuser.Thenewlydesigned
andbiometricpolymersandgels. prostheticdevicethereforemorecloselymimicstheprocess
Piezoelectric transducers are widely used in automo- ofnaturalthoughtandlocomotionthanearlierprosthetic
tive, aerospace, and other industries to measure vibra- designs.
tionandshock,includingmonitoringofmachinerysuchas Another example is the single-axis accelerometer/
pumpsandturbomachinery,andnoiseandvibrationcon- sensor technology, now available in the very low-profile,
trol. MEMS sensors are starting to be used where they surface-mount LCC-8 package. This ceramic package al-
offer advantages over current technologies, particularly lows users to surface-mount the state-of-the-art MEMS-
forstaticorlowfrequencymeasurements.Fiber-opticsys- based sensors. Through utilization of this standard
temsareincreasinglybeingusedinhazardousordifficult packaging profile, one is now able to use the lowest
v
P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
vi PREFACE
profile, smallest surface-mountable accelerometer/sensor lowermanufacturingcosts,andoperationatspeedsupto
currently available. This sensor/accelerometer product 1000timeshigherthansensorsfabricatedfrommagnetic
technologyofferson-chipmixedsignalprocessing,MEMS materials.
sensor, and full flexibility in circuit integration on a sin- Envisioned are numerous other applications of EMR
gle chip. Features of the sensor itself include continuous sensors in areas such as consumer electronics, wireless
self-test as well as both ratiometric and absolute output. telephones, and automobiles, which utilize magnetic sen-
Othersensorattributesincludehighlong-termreliability sors in their products. Future EMR sensors will deliver
resultingfromnomovingparts,whicheliminatesstriction dramatically greater sensitivity, and will be considerably
andtap-sensitive/stickyqualityissues. lessexpensivetoproduce.
Application areas include automotive, computer de- Another recent development is an infrared (IR) gas
vices, gaming, industrial control, event detection, as well sensor based on MEMS manufacturing techniques. The
asmedicalandhomeappliances.Inhigh-speedtrainstrav- MEMS IR gas SensorChip will be sensitive enough to
eling at 200 km/h, a droning or rumbling is often heard compete with larger, more complex gas sensors, but in-
bypassengers.Tinyimperfectionsintheroundnessofthe expensiveenoughtopenetratemass-marketapplications.
wheelsgeneratevibrationsinthetrainthatarethesource MEMS technology should simplify the construction of IR
ofthisnoise.Inadditiontoincreasingthenoiselevel,these gas sensors by integrating all the active functions onto a
imperfectwheelsleadtoacceleratedmaterialfatigue.An singleintegratedcircuit.
effective countermeasure is the use of actively controlled Tiny electronic devices called “smart dust,” which are
dampers. Here a mechanical concept—a specific counter- designedtocapturelargeamountsofdataabouttheirsur-
weight combined with an adjustable sprint and a power- roundings while floating in the air, have been developed.
fulforce-actuator—iscoupledwithelectroniccomponents. Theprojectcouldleadtowidearrayofapplications,from
Simulationsshowwhatweightsshouldbeappliedatwhich following enemy troop movements and detecting missiles
pointsonthewheeltooptimallyoffsetthevibrations.Sen- beforelaunchtodetectingtoxicchemicalsintheenviron-
sorsdetectthedegreeofvibration,whichvarieswiththe mentsandmonitoringweatherpatterns.The“SmartDust”
train’sspeed.Theelectronicregulatorthenadjuststheten- project aims to create massively distributed sensor net-
sioninthespringsandpreciselysynchronizesthetiming works, consisting of hundreds to many thousands of sen-
and the location of the counter-vibration as needed. Un- sornodes,andoneormoreinterrogatorstoquerythenet-
desirablevibrationenergyisdiffused,andthewheelrolls work and read out sensor data. The sensor nodes will be
quietly and smoothly. In this way, wear on the wheels is completely autonomous, and quite small. Each node will
considerablyreduced. containasensor,electronics,powersupply,andcommuni-
The prospects of minimized material fatigue, a higher cationhardware,allinavolumeof1mm3.
leveloftravelcomfortforpassengers,andlowernoiseemis- The idea behind “smart dust” is to pack sophisticated
sions are compelling reasons for continuing this develop- sensors, tiny computers, and wireless communications
ment. onto minuscule “motes” of silicon that are light enough
Novel composite materials discovered by researchers to remain suspended in air for hours at a time. As the
exhibit dramatically high levels of magneto-resistance, motesdriftonthewind,theycanmonitortheenvironment
and have the potential to significantly increase the per- for light, sound, temperature, chemical composition, and
formance of magnetic sensors used in a wide variety of awiderangeofotherinformation,andtransmitthedata
important technologies, as well as dramatically increase backtoadistantbasestation.Eachmoteofsmartdustis
datastorageinmagneticdiskdrives.Thenewlydeveloped composedofanumberofMEMS,wiredtogethertoforma
extraordinarymagnetoresistance(EMR)materialscanbe simple computer. Each mote contains a solar cell to gen-
applied in the read heads of disk drives, which, together erate power, sensors that can be programmed to look for
with the write heads and disk materials, determine the specificinformation,atinycomputerthatcanstorethein-
overallcapacity,speed,andefficiencyofmagneticrecord- formationandsortoutwhichdataareworthreporting,and
ingandstoragedevices.EMRcompositematerialswillbe acommunicatorthatenablesthemotetobeinterrogated
abletorespondupto1000timesfasterthanthematerials bythebaseunit.Thegoalsaretoexplorethefundamental
usedinconventionalreadheads,thussignificantlyadvanc- limitstothesizeofautonomoussensorplatforms,andthe
ingmagneticstoragetechnologyandbringingtheindustry newapplicationswhichbecomepossiblewhenautonomous
closertoitslong-rangetargetofadiskdrivethatwillstore sensorscanbemadeonamillimeterscale.
aterabit(1000gigabits)ofdatapersquareinch. Laserlightcanquicklyandaccuratelyflexfluid-swollen
The new materials are composites of nonmagnetic, plasticscalledpolymergels.Thesepotentialpolymermus-
semiconducting,andmetalliccomponents,andexhibitan cles could be used to power robot arms, because they ex-
EMR at room temperature of the order of 1,000,000% at pand and contract when stimulated by heat or certain
highfields.Moreimportantly,thenewmaterialsgivehigh chemicals. Gel/laser combinations could find applications
valuesofroom-temperaturemagnetoresistanceatlowand rangingfromactuatorstosensors,andpreciselytargeted
moderate fields. Embedding a highly conducting meal, laser light could allow very specific shape changes. Poly-
such as gold, into a thin disc of a nonmagnetic semicon- mer gels have been made to shrink and swell in a frac-
ductor,suchasindiumantimonide,booststhemagnetore- tion of a second. Targeting laser light at the center of a
sistance,andoffersanumberofotheradvantages.These cylindermadeof N-isopropylacrylamidepinchestogether
includeveryhighthermalstability,thepotentialformuch the tube’s edges to form a dumb-bell shape. The cylinder
P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX
PB091-FMI-Final January24,2002 15:33
PREFACE vii
returns to its original shape when the laser is switched ofend-usersectorsindustries.Notonlyaretheorganiza-
off. This movement is possible because in polymer gels, tions involved in research and preliminary development
the attractive and repulsive forces between neighboring keentogrowtheirmarketsinordertocapitalizeontheir
molecules are finely balanced. Small chemical and phys- R&Dinvestment,butothertechnologicallyawarecompa-
ical changes can disrupt this balance, making the whole niesarealertedtonewbusinessopportunitiesfortheirown
polymer to violently expand or collapse. Also it has been productsandskillsets.
shownthatradiationforcesfromfocusedlaserlightdisturb The readers of this ESM will appreciate the efforts of
this delicate equilibrium, and induce a reversible phase a multitude of researchers, academia, and industry peo-
transition. Repeated cycling did not change the thresh- ple who have contributed to this endeavor. The editor is
oldsofshrinkageandexpansion;also,theshrinkingisnot thankful to Dr. James Harvey and Mr. Arthur Biderman
causedbytemperatureincreasesaccompanyingthelaser fortheirinitialeffortsingettingtheprojectofftheground
radiation. andmovingtheprogram.
Thefieldofsmartmaterialsoffersenormouspotential
forrapidintroductionandimplementationinawiderange MelSchwartz
Table of Contents
Preface vii
Actuators to Architecture
Actuators, Piezoelectric Ceramic, Functional Gradient 1
Introduction 1
Actuators 1
Piezoelectric Ceramics 2
Functionally Graded Materials 7
Summary 1
Acknowledgments 14
Bibliography 15
Adaptive Composite Systems: Modeling and Applications 16
Introduction 16
Actuators and Sensors 16
Adaptive Composite Modeling 18
Applications 20
Concluding Remarks 25
Bibliography 25
Adaptive Systems, Rotary Wing Applications 28
Introduction 28
Active / Passive Control of Structural Response 29
Passive / Active Control of Damping 30
Trailing Edge Flaps 32
Servoflap 34
Active Twist 35
Modeling 37
Future Directions 39
Bibliography 40
Aircraft Control, Applications of Smart Structures 42
Introduction 42
Smart Structures for Flight in Nature 43
General Remarks on Aspects of Aircraft Design 44
Traditional Active or Adaptive Aircraft Control Concepts 44
The Range of Active Structures and Materials Applications
in Aeronautics 45
Aircraft Structures 45
Smart Materials for Active Structures 47
The Role of Aeroelasticity 47
Overview of Smart Structural Concepts for Aircraft Control 50
Quality of the Deformations 54
Achievable Amount of Deformation and Effectiveness of
Different Active Aeroelastic Concepts 55
Need for Analyzing and Optimizing the Design of
Active Structural Concepts 56
Summary, Conclusions, and Predictions 57
Bibliography 58
This page has been reformatted by Knovel for easier navigation.