Table Of ContentHindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 457046, 12 pages
http://dx.doi.org/10.1155/2015/457046
Research Article
Stress Field Gradient Analysis Technique Using
πΆ0
Lower-Order Elements
JianweiXingandGangtieZheng
SchoolofAerospaceEngineering,TsinghuaUniversity,Beijing100084,China
CorrespondenceshouldbeaddressedtoGangtieZheng;[email protected]
Received1September2014;Accepted30September2014
AcademicEditor:SongCen
CopyrightΒ©2015J.XingandG.Zheng.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,
whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Forevaluatingthestressgradient,amathematicaltechniquebasedonthestressfieldoflower-orderπΆ0elementsisdevelopedin
thispaper.Withnodalstressresultsandlocationinformation,anoverdeterminedandinconsistentequationofstressgradientis
establishedandtheminimumnormleastsquaressolutionisobtainedbytheMoore-Penrosepseudoinverse.Thistechniquecanbe
appliedtoanyelementtypeincomparisonwiththesuperconvergentpatch(SCP)recoveryforthestressgradient,whichrequires
thequadraticelementsatleastandhastoinverttheJacobiandHessianmatrices.Theaccuracyandvalidityofthepresentedmethod
aredemonstratedbytwoexamples,especiallyitsmeritofachievinghighaccuracywithlower-orderlinearπΆ0elements.Thismethod
canbeconvenientlyintroducedintothegeneralfiniteelementanalysisprogramsasapostprocessingmodule.
1.Introduction theπΆ0-1 enhancedpatchtestofaconvergencecondition.In
addition to the reason that only a few types of πΆ1 elements
Effects and evaluations of the stress gradient have always are successful and effective, the limitation in the element
been important to the design of an engineering structure. shape and the number of DOFs all impede the practical
As nowadays the stress is usually calculated with a finite applications.
element method (FEM), the calculation technique of the In order to circumvent problems of the πΆ1 element,
stressgradienthasbeentheeffortofmanyresearchworks. a mixed or coupled formulation using lower-order ele-
The size effect on the stress/strain gradient has already ments (πΆ0) is implemented. Zhao et al. [13] proposed a
beenmanifestedinmanyexperiments[1β4].Toovercomethe mixedquadrilateralelement(CQ12+RDKQ)forthecouple
problem of the conventional elasticity theory in describing stress/strain gradient elasticity, in which one satisfies πΆ0
theeffectofsize,thecouplestress[5β7]andstraingradient continuitytocomputestrainsandtheotheronesatisfiesweak
plasticity [8, 9] theories have been developed and proved πΆ1 continuitytocalculatestraingradients.Amanatidouand
effectiveinintroducingstraingradienttermsintoconstitutive Aravas [14] developed an alternative mixed finite element
equations and yield functions. However, according to these formulation and studied the Mindlin [15] strain gradient
theories, the element should be at least πΆ1 continuity. This elasticity theories in detail. The πΆ1 continuous Hermitian
complicates the element construction. Dasgupta and Sen- shape functions for the plastic and damage multipliers and
gupta[10]developedan18-DOF(degree-of-freedom)trian- the πΆ0 continuousinterpolation functions for displacement
gular plate bending element, whose displacement function field were employed by Dorgan and Voyiadjis [16]. For
is fifth-order polynomial in the area coordinates. Zervos et reasonssuchastheadditionalandinevitablecomputational
al. [11] proposed a πΆ1 continuity elastoplasticity triangular cost and only a few available element types, the mixed
element with assumption that the stress increment consists elementsareinconvenienttopracticalapplications.
of both the strain increment and its Laplacian. Chen and Anothermotivationforthestressgradientanalysisisthe
Li [12] put forward a 24-DOF quadrilateral spline element fatigue life calculation and the fatigue behavior prediction.
forthecouplestress/straingradientelasticity,whichcanpass Neuber[17]developedawidelyadoptedmethodinpredicting
2 MathematicalProblemsinEngineering
thenotchfatiguelife;nevertheless,themethodonlyfocuses TheMoore-Penrosepseudoinverse,whichiscomputedwith
on the stress of dangerous point but without considering thesingularvaluedecomposition,isemployedtoobtainthe
the influence of stress gradient and multiaxial effects. Even minimum norm least squares solution [32, 33] of the stress
if the stresses of dangerous points for various structures gradient.Apopular2Dexampledemonstratesitssatisfactory
are the same, the fatigue life and behavior are different accuracyincomparisonwiththeSCPrecovery.Thepresented
becauseofdifferentstressgradientdistribution[18].Taking methodespeciallycanalsoachievehighaccuracywithlower-
into account the stress gradient for assessing the fatigue orderlinearπΆ0elements.Another3Dexampleshowsthatthe
strength [19], the stress field intensity method [20] and the method can be easily introduced into general FEAP (such
advancedvolumetricmethod[21]aretwoofthemostpopular as ANSYS, PATRAN, and ABUQUS) as a postprocessing
techniques. Although the stress field intensity method is module.
simple, it needs experiment to provide the size of notch This paper is organized as follows. First, the super-
damaged zone. The advanced volumetric method requires convergent patch recovery method is briefly introduced in
theaccuratecalculationofstressgradientsnearnotchroots; Section2. Then, the stress filed gradient analysis technique
however, it is usually difficult to guarantee the calculation and the error estimation are presented in Section3. In
accuracy. Section4,twonumericalexamplesareemployedtoevaluate
Thetechniqueoffiniteelementpostprocessingisanother theperformanceofthepresentedmethod.Thelastsectionof
approach to calculating continuous stress and its gradient. thepaperistheconclusions.
The superconvergent patch (SCP) recovery is known as
the most effective technique [22], which can obtain higher
accuracy than any other points at the Gauss integration 2.SCPStressGradientRecovery
point within an element. Utilizing the patches of elements
2.1.SecondDerivativesinFEM. Takingtheisotropicnormal
in FEM, Zienkiewicz and Zhu [23, 24] obtained continu-
ous stress field with data at the superconvergent points. A stress ππ₯, for example, the gradient vector G(ππ₯) can be
writtenas
detailed analysis of the SCP recovery technique and error
estimation was presented in [25, 26]. Since then, Wiberg
andAbdulwahab[27],Wibergetal.[28],andParkandShin G(ππ₯)=[ππ₯(ππ₯),ππ¦(ππ₯)]
[29] improved the SCP approach using the method of least
square for fitting the residuals of the equilibrium equation πΈ π π2π π2π
andapplyingtheprincipleofvirtualwork.Recently,theSCP = 0 [β( ππ’ +π πV),
technique has been extended to recover the higher-order (1βπ0) π=1 ππ₯2 π 0ππ₯ππ¦ π (1)
derivatives.UsingQ8(8-nodequadratic,9-pointquadrature)
π π2π π2π
quadrilateralelement,T6(6-nodequadratic,4-pointquadra- β( ππ’ +π πV)],
ture) triangular element, and the mixed mesh of Q8 and ππ¦ππ₯ π 0 ππ¦2 π
π=1
T6, Gan and Akin [30] developed an element patch based
superconvergentsecondderivativerecoverytechniquefora
lower-orderstraingradientplasticitymodel.Banketal.[31] whereππ₯ andππ¦ arethecomponentsofthestressgradient,
proposedasuperconvergentderivativerecoveryschemewith ππ istheshapefunction,πisthenumberofelementnodes,
the Lagrange triangular element and the superconvergence and(π’π,Vπ)isthenodaldisplacementvector;πΈ0 = πΈ,π0 = π
estimation of the πth derivatives. Nevertheless, the higher- fortheplanestress,πΈ0 = πΈ/(1βπ2),π0 = π/(1βπ)forthe
order derivatives such as stress gradients also need higher- planestrain;πΈandπareYoungβsmodulusandPoissonβsratio,
order element shape functions, which lead to additional respectively.
DOFsandcalculationcost,especiallyforcomplexstructures Firstly,thesecondderivativesoftheshapefunctionsare
orlargesystems. necessary for evaluating the stress gradient, but they are all
Therefore, the effort is still required to enhance tech- equal to zero for lower-order linear πΆ0 elements, such as
niques for calculating stress gradient in such aspects as Q4(4-nodequadrilateralelement)andT3(3-nodetriangular
reducingcomputationcost,developingmoreelementtypes, element).
and providing codes for engineering applications. In the Assumingusingparametricelements,thefirstderivative
rest of this paper, a mathematical technique based on the transformationsfromtheparametriccoordinatetothephys-
stress field results of general finite element analysis pro- icalcoordinateare
grams (FEAP) is proposed to calculate the stress gradient.
Because it works with the stress field results, this method
π ππ₯ ππ¦ π
cttoeacnhpnhbyieqsuiccoea.nlAscisdoneororedtdirnaaanstsefaoirssmtrreaeqtsisuoinfireefdlrdo,mtghripasadrtieeacnmhten(tiSrqiFcuGeco)doaornedasilnynasotiest {{{{{{πππ}}}}}}=[[[[πππ₯π πππ¦π]]]]{{{{{{πππ₯}}}}}}, (2)
involve Jacobi and Hessian matrices and hence does not {ππ} [ππ ππ]{ππ¦}
need to calculate their inverses. With the location and
stress information of the central node and its surrounding
samplenodes,anoverdeterminedandinconsistentequation whereπandπaretheparametriccoordinates,andthematrix
of the stress gradient at the central node is established. istheso-calledJacobimatrix.
MathematicalProblemsinEngineering 3
y
x
Global coordinates
(a) Q4 (b) Q8
Gauss quadrature points Gauss quadrature points
Stress sample points Stress sample points
Central points Central points
(c) T3 (d) T6
Figure1:Constructionof2Dpatcheswithquadrilateralandtriangularelements.
Therelationshipbetweenthesecondparametricderiva- wherethesecondsquarematrixontherighthandsideisthe
tivesandthesecondphysicalderivativescanbewrittenas Hessianmatrix.From(3),thephysicalsecondderivativescan
be expressed by the first and second parametric derivatives
andtheinverseoftheJacobiandHessianmatrices.
π2 π2π₯ π2π¦
{{{{{{{{{ πππ22 }}}}}}}}} [[[[ ππ2ππ₯2 ππ2ππ¦2 ]]]]{{{πππ₯}}} t2i.o2n.SpCoPinRtsecaorevearlysoanthdeEsrurpoerrEcostnimveartgieonnt.pThoinetGsafourssthinetsetgrreass-
=[ ]
{{{{{{{{{ πππ22 }}}}}}}}} [[[[ ππ2ππ₯2 ππ2ππ¦2 ]]]]{{{{πππ¦}}}} gsmhruaodswtinesnaitnt,isFafniygduqrtuehased1r(sabut)picaenracdto1nl(evdae)sr.tgTheinnettephlaeetmcSheCenPstscshatanrpesebsefugbnruacditliitoennasst
{ππππ} [ππππ ππππ] recoverybecauseoftherequirementontheexistenceofthe
secondderivatives.
[(ππ₯)2 (ππ¦)2 2ππ₯ππ¦ ] WiththeSCPrecovery,therecoveredstressgradientππ₯β,π¦
[[ ππ ππ ππ ππ ]] canbeexpressedas
+[[[[[(πππ₯π)2 (πππ₯π)2 2πππ₯ππππ¦π ]]]]] (3) ππ₯β,π¦ =Pa, (4)
[ππ₯ππ₯ ππ¦ππ¦ ππ₯ππ¦ ππ₯ππ¦]
+
[ ππ ππ ππππ ππππ ππππ] where P is the polynomial vector and a is the coefficient
columnvectortobedetermined.
π2
Γ{{{{{{{{{ πππ₯22 }}}}}}}}}, ForquadraticPel=em[1entπ₯sliπ¦keπ₯Q28π₯anπ¦dπ¦T26],,Pisassumeda(s5)
{{{{{{{{{ πππ¦22 }}}}}}}}} where the recovered stress gradient has the same order of
{ππ₯ππ¦} displacementfiled[29],andthena=[π1 π2 β
β
β
π6]π.
4 MathematicalProblemsinEngineering
The functional integral of the difference between the
stressgradientcalculatedfromtheSCPrecoveryπβ andthe
π₯,π¦
stressgradientobtainedbytheFEMπΜπ₯,π¦canbeexpressedas
y
π
πΉ(πβ ,πΜ )= ββ« (πβ βπΜ )2ππ
π₯,π¦ π₯,π¦ π₯,π¦ π₯,π¦
π=1 ππ x
(6) z
π
2
= ββ« (PaβπΜπ₯,π¦) ππ,
π=1 ππ
whereπisthenumberofpatchelementsandππistheelement
area.
Stress sample points
The assumed coefficient vector a can be obtained by
minimizingthefunctionalintegralin(6),whichyields Central points
π π Figure2:Constructionof3Dpatchwithhexahedralelement.
ββ« PπPππa= ββ« PππΜπ₯,π¦ππ, (7)
π=1 ππ π=1 ππ
wheresuperscriptπdenotesthetranspose,andbothsidesof In this section, a simple and convenient mathematical
technique for calculating the stress gradient will be devel-
(7)canbecalculatedbytheGaussintegral:
oped.Thismethodissuitableforanyelementtypesandonly
π π needstheinformationofnodallocationandstress.
βPπ(π₯π,π¦π)P(π₯π,π¦π)π€πa=βPπ(π₯π,π¦π)πΜπ₯,π¦(π₯π,π¦π)π€π,
π=1 π=1
(8) 3.1.GeneralFormulation. AsshowninFigure1for2Dprob-
lem, the central point ππ(π₯0,π¦0) is surrounded by sample
where π = π β
ππ, ππ is the number of Gauss points per points ππ(π₯π,π¦π), π = 1,2,...,ππ (ππ is number of sample
element,π€πistheweightcoefficientofeachintegrationpoint, points).Thevectorfromππ toππ isnππ = (π₯π βπ₯0,π¦π βπ¦0);
and (π₯π,π¦π) is the global coordinates of each Gauss point. thus,theunitvectorcanbewrittenasnππ = (1/βππππβ)(π₯π β
Finally,thereis π₯0,π¦π βπ¦0),whereβππππβ = β2(π₯πβπ₯0)2+(π¦πβπ¦0)2 isthe
a=Cβ1D, (9) vectorlength.
Thedirectionalderivativealongnππatthecentralpointππ
inwhich canbeexpressedas
π
C=βπ=1Pπ(π₯π,π¦π)P(π₯π,π¦π)π€π, (10) ππnπΜππ₯π (ππ)=ππlβiβmnπππΜσ΅©σ΅©σ΅©σ΅©π₯ππβπππΜσ΅©σ΅©σ΅©σ΅©π₯ππ
π ππ
D= βPπ(π₯π,π¦π)πΜπ₯,π¦(π₯π,π¦π)π€π. 1 ππΜ
π=1 = σ΅©σ΅©σ΅©σ΅©σ΅©ππππσ΅©σ΅©σ΅©σ΅©σ΅©[(π₯ππ βπ₯ππ) ππ₯π₯ (ππ) (11)
In[25,26],utilizingthequadraticcompletenesspolyno-
mial, the SCP recovery for stress gradient has the order of +(π¦ βπ¦ )ππΜπ₯ (π)],
accuracyπ(β3)(βistheelementcharacteristiclength).And ππ ππ ππ¦ π
then, it is easy to verifythat the errorofthe stress gradient
recoveryisoforderπ(β2)bythesameprocedure.Ithasbeen where πΜπ₯ is the stress result of commercial finite element
found that the recovered variable field is more accurate at software.Thelimitcanbeapproximatelywrittenas
nodepoints.
3.StressFieldGradientAnalysis ππlβiβmnπππΜσ΅©σ΅©σ΅©σ΅©π₯ππβπππΜσ΅©σ΅©σ΅©σ΅©π₯ππ β πΜσ΅©σ΅©σ΅©σ΅©σ΅©π₯ππππβπππΜσ΅©σ΅©σ΅©σ΅©σ΅©π₯ππ. (12)
ππ
It is known that the SCP recovery for the stress gradient
needs quadratic elements at least, and the shape functions Substituting(12)into(11)yields
should be determined beforehand to compute the second
derivatives of the displacement field. All of this leads to nππβ
Gπ(πΜπ₯)π =πΜπ₯ππ βπΜπ₯ππ. (13)
π
an additional calculation cost and difficulty, especially to
thoseengineerswhoareusedtoworkwithcommercialfinite Forallsamplepoints,thestressgradientequationcanbe
elementsoftware,andprovidingthepreliminaryanalysisby writtenas
lower-orderlinearelements,wheretheSCPtechniquecannot
beimplementedyet. Aβ
Gπ(πΜπ₯)π =b, (14)
π
MathematicalProblemsinEngineering 5
y
y
C
B
B C
P0 A P0 5r0 P0
r0 E D x
A
O E D x
r0 10r0
(a) (b)
Figure3:Aninfiniteplatewithacentralholesubjectedtoaremotelyuniformtension:(a)theorymodel,(b)finiteelementmodel.
(a) Quadrilateralcoarsemesh400elements: (b) Quadrilateral fine mesh 1600 elements: (c) Quadrilateraldouble-finemesh6400ele-
441nodes(Q4),1281nodes(Q8) 1681nodes(Q4),4961nodes(Q8) ments:6561nodes(Q4),19521nodes(Q8)
(d) Trianglecoarsemesh564elements:323 (e) Triangle fine mesh 2220 elements: 1191 (f) Triangle double-fine mesh 9040 ele-
nodes(T3),1209nodes(T6) nodes(T3),4601nodes(T6) ments:4681nodes(T3),18401nodes(T6)
Figure4:Meshesofquadrilateralandtriangularelements.
where In general, ππ > 2; hence, the coefficient matrix A is
notsquareand(14)isoverdeterminedandinconsistent.An
nπ1 [πΜπ₯π1 βπΜπ₯ππ] ePffenecrtoisveepwseauydtooinsovlevresethoefAeqππ uΓa2.tiThoneipssteoudemoipnlvoeyrstehMeM2Γπoπ ocraen-
[ ] [ ] πΓ2
A=[[[n...π2]]], b=[[[[πΜπ₯π2 β... πΜπ₯ππ]]]]. (15) tbheactaislc,ulated by the singular value decomposition of A π ;
[nπππ ] [πΜπ₯πππ βπΜπ₯ππ] A=UΞ£Vπ, (16)
6 MathematicalProblemsinEngineering
200 200 250
200
150 150
150
Error (%) 10500 CoLairnsee- m45eβsh Error (%) 10500 FLininee m-4e5sβh Error (%) 100 D-Lfiinnee -m45eβsh
50
0 0 0
β50 β50 β50
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
r/r r/r r/r
0 0 0
(a) (b) (c)
150 75 150
100 50
100
Line-Y
50 25
%) %) %) D-fine mesh
or ( or ( or ( 50
Err 0 Err 0 Err
β50 Line-Y β25 Line-Y 0
Coarse mesh
Fine mesh
β100 β50 β50
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
r/r0 r/r0 r/r0
SFG-Q4 SFG-Q4 SFG-Q4
SFG-Q8 SFG-Q8 SFG-Q8
SCP-Q8 SCP-Q8 SCP-Q8
(d) (e) (f)
Figure5:Stressgradientsofsamplelineswithquadrilateralelements.
whereU β π
ππ Γππ andV β π
2Γ2areorthogonalmatrices,Ξ£ β 3.2. Error Estimation. The Moore-Penrose pseudoinverse
π
ππ Γ2isadiagonalmatrixwithnonnegativerealnumbers,and Mπ0Γππ (π0 = 2 or 3 for 2D or 3D case) of Aππ Γπ0 β π
ππ Γπ0
thediagonalentriesareknownasthesingularvalues.Then, isuniqueandsatisfiesallofthefollowingfourcriteria:
M=VΞ£β Uπ, (17)
AMA=A,
whereΞ£β isthetransposeofΞ£anditsdiagonalentriesarethe MAM=M,
inversesofthosenonzerodiagonalelementsofΞ£.
(19)
Finally,thestressgradientatthecentralpointππ canbe (AM)π =AM,
expressedby
(MA)π =MA,
Gπ(πΜπ₯)π =Mβ
b. (18)
π
Asthesameprocedureas2Dproblem,thestressgradient whichyields
equationof3Dproblemcanalsobewrittenas(14),inwhich
π₯th0e,π¦dπirβecπ¦t0io,π§nπvβecπ§t0o)raannddGstπre(sπΜsπ₯g)r=ad(iπeπnΜπ₯t/vπeπ₯ct,oπrπΜaπ₯r/eππ¦n,ππππ=Μπ₯(/π₯πππ§β), (AMA)π =Aπ(AM)π =AπAM=Aπ,
π (20)
respectively.Asanexample,the3Delementpatchisshown
(MAM)π =Mπ(MA)π =MπMA=Mπ.
inFigure2with8-nodelinearhexahedralelements.
MathematicalProblemsinEngineering 7
200 220000 115500
150 115500
110000
Line-45β
%) 100 Line-45β %)%) 110000 Fine mesh %)%) Line-45β
or ( Coarse mesh or (or ( or (or ( D-fine mesh
Err 50 ErrErr 5500 ErrErr 5500
0 00
00
β50 ββ5500
0 1 2 3 4 5 6 00 11 22 33 44 55 66 00 11 22 33 44 55 66
r/r rr//rr rr//rr
0 00 00
(a) (b) (c)
150 100 50
100
50
50
%) %) %)
Error ( 0 Error ( 0 Error ( 0
β50 Line-Y
β50 Line-Y
Line-Y D-fine mesh
Coarse mesh
Fine mesh
β100 β100 β50
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
r/r r/r r/r
0 0 0
SFG-T3 SFG-T3 SFG-T3
SFG-T6 SFG-T6 SFG-T6
SCP-T6 SCP-T6 SCP-T6
(d) (e) (f)
Figure6:Stressgradientsofsamplelineswithtriangularelements.
y
z
o x
h
d W=20mm
H=20mmmm
L
=
100 1692 nodes
m
m
1220 elements
F=1600N
(a) (b)
Figure7:Geometry,loadingcondition,andmeshof3Dproblem.
8 MathematicalProblemsinEngineering
Table1:Stressgradientsatpointπwithdifferentmeshesandmethods.
Numericalsolution Exactsolution Error
Mesh-Method-Element
ππ₯π₯/108 ππ₯π¦/108 ππ₯π₯/108 ππ₯π¦/108 ππ₯π₯ ππ₯π¦ Average
C-SFG-Q4 β10.3667 4.0309 2.3524% 8.2482% 5.3003%
C-SCP-Q8 β8.7140 3.3071 β13.9646% β11.1893% 12.5769%
C-SFG-Q8 β1.0908 4.1159 β10.1284 3.7238 7.6936% 10.5311% 9.1123%
C-SFG-T3 β9.2718 4.8073 β8.4575% 29.0992% 18.7783%
C-SCP-T6 β10.1010 3.9277 β0.2813% 5.4765% 2.8789%
C-SFG-T6 β10.2858 3.6292 1.5533% β2.5402% 2.0467%
F-SFG-Q4 β10.1920 3.6648 2.2362% 0.5960% 1.4161%
F-SCP-Q8 β9.54347 3.2959 β4.2689% β9.5305% 6.8997%
F-SFG-Q8 β10.4925 3.8314 β9.9690 3.6431 5.2506% 5.1685% 5.2096%
F-SFG-T3 β10.1635 3.7822 1.9511% 3.8174% 2.8842%
F-SCP-T6 β10.2152 3.6521 2.4697% 0.2479% 1.3588%
F-SFG-T6 β10.1343 3.5049 1.6575% β3.7928% 2.7251%
DF-SFG-Q4 β10.1587 3.6648 2.6837% 1.6590% 2.1714%
DF-SCP-Q8 β9.8485 3.3578 β0.4519% β6.8582% 3.6551%
DF-SFG-Q8 β10.2297 3.5939 β9.8932 3.6050 3.4010% β0.3094% 1.8552%
DF-SFG-T3 β9.9612 3.7442 0.6875% 3.8603% 2.2739%
DF-SCP-T6 β10.1757 3.5357 2.8555% β1.9237% 2.3896%
DF-SFG-T6 β10.1554 3.5479 2.6497% β1.5834% 2.1166%
Meshes:C:coarse;F:fine;DF:double-fine.
Methods:SFG:stressfieldgradient;SCP:superconvergentpatch.
Forallgβπ
π0Γ1,thereis Apparently,theconstraintconditionsof(25)and(26)are
σ΅©σ΅©σ΅©σ΅©Agβbσ΅©σ΅©σ΅©σ΅©=σ΅©σ΅©σ΅©σ΅©Agβb+AMbβAMbσ΅©σ΅©σ΅©σ΅© thesameasthefourcriterialistedin(19),sothatthematrixMΜ
mustbetheMoore-PenrosepseudoinverseM.Inthisway,it
=βAMbβb+Awβ (21) isshownthattheMoore-Penrosepseudoinversecanprovide
theuniqueminimumnormleastsquaressolutionof (14).
=β(AMβI)b+Awβ, The error of (14) consists of two parts, one is the
where w=gβMb β π
π0Γ1. With the first equation of (20), limit approximation of order π(β) in (12) and the other
Aπ(AMβI)=Oandthusthereisarelationship.Consider one is the stress field πΜπ₯. The stress calculated with FEM
is not continuous across elements, and the general FEAP
β¨(AMβI)b,Awβ©=0, (22) commonlycalculatesthecontinuousstressbythemethodof
nodalstressweightedaverage:
in which β¨,β© denotes the inner product. With this relation-
ship,wecanhave
β(AMβI)b+Awβ=β(AMβI)bβ+βAwβ
(23) π€ π +π€ π +β
β
β
+π€ π
β₯β(AMβI)bβ, πΜπ₯ = 1 π₯(1π€ +2π€π₯2+β
β
β
+π€ π) π₯π, (27)
1 2 π
or
βAMbβbββ€σ΅©σ΅©σ΅©σ΅©Agβbσ΅©σ΅©σ΅©σ΅©, (24)
whichmeansthatMoore-Penrosepseudoinverseprovidesthe
in which π isthenumberofsurroundingelementsforone
linearleastsquaressolution.
Theleastsquaressolutionisusuallynotunique,andthe node, π€π (π = 1,2,...,π) is the weight (element area or
generalsolutioncanbeexpressedas volume),and ππ₯π (π = 1,2,...,π)isthestresscalculatedby
the node displacements of each element. The stress field πΜπ₯
gΜ=MΜb+(IβMΜA)z, βzβRπ0Γ1, MΜβRπ0Γππ (25) evaluated by (27) has the order of accuracy π(β) at least.
Therefore, the order of the minimum norm least squares
inwhichAMΜA=Aand(AMΜ)π =AMΜ. solution of (14) is of π(β) at least. Moreover, it should not
Similarly,itcanbeverifiedthatifMΜAMΜ = MΜ,(MΜA)π = be ignored that the least squares processing has the strong
Μ
MA,then abilitytoimprovetheaccuracy.Thefollowingexampleshows
σ΅©σ΅©σ΅©σ΅©σ΅©MΜbσ΅©σ΅©σ΅©σ΅©σ΅©β€σ΅©σ΅©σ΅©σ΅©σ΅©MΜb+(IβMΜA)zσ΅©σ΅©σ΅©σ΅©σ΅©. (26) thattheaccuracyofthesuggestedmethod,evenemploying
thelower-orderlinearelements,isequaltoorhigherthanthe
Itindicatesthissolutionhastheminimumnorm. SCPrecoveryusingquadraticelements.
MathematicalProblemsinEngineering 9
areshowninFigure4,includingthenumbersofnodesand
elements.
Start
Firstly, a checking point π around (2.2π0,2.2π0) is used
to compare the results of different methods as shown
in Figure4. The exact locations are (2.212π0,2.212π0),
(2.225π0,2.225π0),and(2.232π0,2.232π0)forcoarse,fine,and
ANSYS APDL files input
double-finemeshes,respectively.Resultsfromtheproposed
(Including model, mesh, load, and solve)
stress field gradient (SFG) analysis technique and the SCP
recovery method with various element types and meshes
are compared in Table1. The average error is the root sum
square of π₯-direction gradient (ππ₯π₯) error and π¦-direction
Output gradient (ππ₯π¦) error. The accuracy of these methods is all
improvedwiththemeshrefinementnomatterwhichelement
(1) Nodes location and nodal Von-Mises stress
is employed, especially for quadrilateral elements. Except
(2) Elements information (types and nodes)
fine mesh T6 element (F-T6) only, the presented method
is always more accurate than the SCP recovery technique.
For lower-order linear elements Q4, it is clear that the SFG
technique can still provide a better result than the SCP
Stress field gradient analysis (Matlab)
methodinallthemeshtypes.Ontheotherhand,usingT3
(1) Import ANSYS output files element, results of the SFG get closer to those of the SCP
(2) Confirm nodes and elements information withthemeshrefinement,andfinallyahigheraccuratestress
(3) Find the surrounding elements for each node gradient can be obtained in the double-fine mesh. In the
(4) Identify the sample nodes for each node stress field gradient (SFG) analysis, higher-order elements
do not always correspond to higher accuracy because of
(5) Solve the stress gradient equation
the treatment of minimum norm least squares solution. In
(6) Output the nodal location and stress gradient
otherwords,alower-orderelement,whichgenerallymeans
lowcomputationcost,canprovidealmostthesameaccuracy
as a higher-order element. This is particularly important to
practicalapplications.
Contour figures (Tecplot)
Furthermore, results from the two methods along two
(import the Matlab output files and plot) checking lines, π = 45β and π = 90β, are shown in Figures
5and6,respectively.Bothfiguresindicatethattheyhavethe
uniformaccuracyinmostareas,includingtheSFGprocedure
employinglinearT3andQ4elements.Althoughtheresults
attheedgeoftheholehavethelowestprecisionforallcases,
End
the accuracy is very high once not at the edge. Specifically,
at the edge of the hole, the SFG method using linear πΆ0
Figure 8: The flowchart of postprocessing using the presented elementsprovidestheworststressgradientforlineπ = 45β
method. (Line-45β) as well as the SCP method using quadratic Q8
element for line π = 90β (Line-π). Utilizing quadrilateral
elements,thetwoapproacheshavealmostidenticalstability
4.NumericalExampleandDiscussions foreachmesh.Ontheotherhand,theSCPrecoverymethod
with triangular elements works better in the stability and
4.1. Example 1: 2D Problem. For existing exact solution convergencecomparingwiththeSFGmethod.
andexhibitingstrongstressconcentrationphenomenon,the
infiniteplatewithacenterholeunderunidirectionaltensile
stress as shown in Figure3 becomes a classic and popular
two-dimensionalexampleusedinpreviouspapers[13β15,24, 4.2.Example2:3DProblem. Athree-dimensionalcantilever
29]. beam with a groove under vertical end load is modeled
In this case, the normal stress ππ₯ is dominant and the using8-nodehexahedralelements,anditsgeometry,loading
exactsolutionisgivenas condition,andmeshareshowninFigure7.AllDOFsonthe
π₯=0surfacearefixed.
π2 3 3π4
ππ₯ =π0[1β π02 (2cos2π+cos4π)+ 2π04 cos4π], (28) of pBoasstepdroocensstihnegswoiftthwatrheepplarotfpoormsedAmNeStYhSo,dthise sflhoowwcnhairnt
Figure8. The code of the stress field gradient analysis is
whereπandπarethepolarcoordinates. developed by Matlab language and the contour figures are
Due to the symmetry in the geometry, only a quarter generatedusingsoftwareTecplot.Thegeneralfiniteelement
areaismodeledusingquadrilateralandtriangularelements, analysis program (FEAP), which provides the preliminary
suchasT3,Q4,T6,andQ8elements.Threedifferentmeshes analysisofthestressfield,isnotjustlimitedtoANSYS,and
10 MathematicalProblemsinEngineering
y y y
z x z x z x
(a) (b) (c)
y
y y
z x
z x z x
(d) (e) (f)
Figure9:Von-Misesstressanditsgradientsof3Dproblem:(a)Von-Misesstress,(b)Von-Misesstressgradient-total,(c)stressgradient
slices-total,(d)stressgradient-π,(e)stressgradient-π,and(f)stressgradient-π.
Table 2: Maximal Von-Mises stresses and gradients of different thewidth,andthemaximumofthestressgradientisreduced
groovewidthsanddepths. from 4.15πΈ + 10 to 2.52πΈ + 10. The distribution of stress
gradientbecomesmoreandmoreuniformandsmoothwith
β/mm π/mm Max-Von-Mises/Pa Max Totalgradient
thewidthincreasing,whichisbeneficialtopreventstructural
5 5 1.4339E+08 4.1542E+10
failure.Asthedepthincreases,thetotalstressgradientgoes
10 5 1.2381E+08 2.4833E+10 upfrom4.0531πΈ+10to2.3719πΈ+11andthehigh-gradient
20 5 1.1546E+08 2.5172E+10 zone in the bottom of the groove becomes more and more
4 4 1.3163E+08 4.0531E+10 concentrated.MoredetailsareshowninFigure11,inwhich
4 8 2.3143E+08 9.2233E+10 themiddlelinescrossthebottomsurfacesofthegrooveswith
4 12 4.6672E+08 2.3719E+11 differentwidthsanddepthsalongtheπ₯-direction.
5.Conclusions
the proposed method can also be applied to other software
An FEAP-based mathematical technique is developed for
platformsasPATRANandABUQUS,andsoforth.
accurately extracting stress gradient. Comparing with the
Details of the stress gradients are shown in Figure9 for
SCP recovery method, which needs the quadratic elements
β = 4mm and π = 5mm, in which the total gradient
atleastandmustinverttheJacobiandHessianmatrices,this
πΊ(πΜ) =β2(ππΜ/ππ₯)2+(ππΜ/ππ¦)2+(ππΜ/ππ§)2.Itcanbeseen methodonlyrequiresnodalstressresultsaswellaslocation
Total
that the stress gradient in Figure9(b) is more powerful in informationandcanbeimplementedtoanyelementtypes.
characterizingandidentifyingthestressconcentrationthan The classic plane example shows that the suggested
thestressitselfinFigure9(a). Thegradientslicesshowthat method can achieve more accurate stress gradient than the
thestressgradientmaximumappearsaroundthesurfacesand SCPrecoverytechniquewiththesameelements.Inaddition,
corners of the groove, which are the sensitive or dangerous its performance in calculating the stress gradient with the
areastothefatiguefailureandtheplasticdeformation. linear πΆ0 elements is proved better than the SCP recovery
Resultsofdifferentgroovewidthsanddepthsobtainedby method.Itisalsoobservedthatwiththismethodthequadri-
theSFGtechniquearecomparedinFigure10andTable2.The lateral elements can provide better stability than the trian-
high-gradientzonemovestothefixedendwiththeincreaseof gularelements.Besides,basedontheproposedtechnique,a
Description:as ANSYS, PATRAN, and ABUQUS) as a postprocessing .. ANSYS APDL files input . analysis of the stress field, is not just limited to ANSYS, and