Table Of ContentGeophysical Journal International
Geophys.J.Int.(2013)193,664–677 doi:10.1093/gji/ggt025
m
s
ti
e
n Electrical characterization of the North Anatolian Fault Zone
g
a
m underneath the Marmara Sea, Turkey by ocean bottom
o
e
a magnetotellurics
al
p
d
an Tu¨lay Kaya,1,2 Takafumi Kasaya,3 S. Bu¨lent Tank,2,4 Yasuo Ogawa,2 M. Kemal Tunc¸er,5
m Naoto Oshiman,6 Yoshimori Honkura1,2 and Masaki Matsushima1
s
ti
e 1EarthandPlanetaryScience,TokyoInstituteofTechnology,Tokyo,152-8551,Japan.E-mail:[email protected]
n D
g 2VolcanicFluidResearchCenter,TokyoInstituteofTechnology,Tokyo,152-8551,Japan o
ma 3IFREE,JapanAgencyforMarine-EarthScienceandTechnology,Yokosuka,237-0061,Japan wn
ck 45GGeeoopphhyyssiiccss,,IB˙sotagnabziucliUUnniivveerrssiittyy,,I˙I˙ssttaannbbuull,,3344362804,,TTuurrkkeeyy loade
m,ro 6DisasterPreventionResearchInstitute,KyotoUniversity,Kyoto,611-0011,Japan d from
etis Accepted2013January22.Received2013January21;inoriginalform2011December31 https
gn ://a
a ca
m d
o SUMMARY em
Ge The first magnetotelluric study in the Marmara Sea, Turkey, was undertaken to resolve the ic.o
GJI swtreustcwtuarredoefxttehnesciorunsotfanthdeuNppoertrhmAannatlteoliinanthFeaureltg(ioNnA,Fa)ndintothdeeCt¸eırnmarincıekthareealo.cLaotinogn-poefritohde up.co
m
oceanbottommagnetotelluricdatawereacquiredatsixsitesalongtwoprofilescrossingthe /g
C¸ınarcıkBasin,whereasignificantincreaseinmicroseismicactivitywasobservedfollowing ji/a
thedevastating1999˙IzmitandDu¨zceearthquakes.2-Dresistivitymodelsindicatetheexistence rtic
le
ofaconductoratadepthof∼10kminthemiddleofbothprofilesalongwithadeeperextension -a
b
intotheuppermantle,implyingthepresenceoffluidinthecrustandpartialmeltingintheupper stra
mantle. The northern and southern boundaries of this conductor are interpreted to represent c
t/1
the northern and southern branches of the NAF in the Marmara Sea, respectively. These 9
3
conductorshavebeenpreviouslyidentifiedfarthertotheeastalongtheNAF,suggestingthat /2
/6
theelectricalcharacteristicsofthisfaultarecontinuousfromonlandareasintotheMarmara 64
Sea. Microseismic activity in the C¸ınarcık area is located above the conductor documented /63
7
here,andindicatesapossibleseismogenicroleofcrustalfluidspresentintheconductivezone. 5
6
1
Incomparison,resistivezonesalongtheNAFmayactasasperitiesthatcouldeventuallyresult b
y
inalargeearthquake. g
u
e
s
Key words: Magnetotelluric; Marine electromagnetics; Earthquake source observations; t o
Fractures and faults; Kinematics of crustal and mantle deformation; Rheology: crust and n 1
9
lithosphere. N
o
v
e
m
b
e
r 2
1 INTRODUCTION ofthe1999˙Izmit(Mw7.4)earthquakeextendedintotheMarmara 018
Seahowever,thefaultsegmentbetweenthe1912Ganosand1999
The 1600-km-long North Anatolian Fault (NAF) is an interconti- ˙Izmitfracturezones(Fig.1b)hasnotrupturedsince1766(Tokso¨z
nentaldextralstrike-slipfaultthatislocatedbetweenthenorthern etal.1979);thissegmentintheMarmaraSeaisconsideredtobea
Eurasian Plate and the southern Anatolian block (Fig. 1a). After ‘seismicgap’thatmaybecapableofgeneratingaM≥7earthquake
closure of the Neo-Tethyan Ocean during the Late Mesozoic and (Hubert-Ferrarietal.2000).
Cenozoic, collision of the Arabian and Eurasian plates resulted The onland outcrop of the NAF is well known as a result of
inrelativewestwardmovementoftheAnatolianPlate(McKenzie previous geological and geophysical studies (Ketin 1948; Barka
1972;Tokso¨zetal.1979).Thiswestwardmovementisconsidered 1992;Yılmazetal.1997;Akyu¨zetal.2002;S¸engo¨retal.2005).
tobethemaincauseofmajortectoniceventsalongtheNAF.Dur- Around the Marmara Sea, the NAF crosses three tectonic zones
ingthepastcentury,theepicentresofdestructiveearthquakesalong fromnorthtosouth,withthenorthernzoneconsistingofPrecam-
theNAFhavemigratedwestwardstartingwiththe1939Erzincan briancrystallinebasementofthe˙Istanbul–ZonguldakZone,repre-
earthquake(Ms7.9)andextendingtothe1999˙Izmit(Mw7.4)and sentingasouth-facingLaurasiancontinentalmargin(Yılmazetal.
Du¨zce(Mw 7.2)earthquakes(Pınaretal.2010).Thefaultrupture 1997).Thesouthernzone,heretermedtheSakaryaContinent,isa
664 (cid:4)C TheAuthors2013.PublishedbyOxfordUniversityPressonbehalfofTheRoyalAstronomicalSociety.
ResistivityoftheNAFunderneaththeMarmaraSea 665
D
o
w
n
lo
a
d
e
d
fro
m
h
ttp
Figure1. (a)SimplifiedtectonicmapofTurkey,indicatingthestudyareaasdelineatedbyapinkrectangle.Blacklinesandarrowsindicatefaultlinesand s
platemotionsinandaroundTurkey,respectively.(b)LocationmapofOBEMinstruments(yellowsquares)andMT(yellowtriangles)siteswithinandaround ://a
c
theMarmaraSea.BluelinesshowpreviousMTprofiles(GI,Gu¨rer;HE,Honkuraetal.;OE,Oshimanetal.;KE,Kayaetal.;TE,Tanketal.).Bluedashed a
d
rectanglesshowthelocationoftheP1andP2profiles.The1912Ganosandthe1999˙IzmitandDu¨zceearthquakerupturesareshownbysolidredlines.Dashed em
blacklinesarepossibletracesoftheNAFintheMarmaraSea.Redstarsshowepicentresofthe1999˙IzmitandDu¨zceearthquakes.AP,ArmutluPeninsula;KP, ic
KocaeliPeninsula;C¸B,C¸ınarcıkBasin;˙IFR,˙IzmitFaultRupture;DFR,Du¨zceFaultRupture;GFR,GanosFaultRupture;˙II,˙ImralıIsland;˙IB,˙ImralıBasin. .ou
p
.c
o
fragmentofcontinentallithospherethatrupturedfromGondwana- theMarmaraSeaandwithpresent-daydeformationcontrolledby m
/g
landduringtheTriassic(Yılmazetal.1997).TheArmutlu–Almacık a right-lateral strike-slipregime (O¨rgu¨lu¨ 2010). Local earthquake ji/a
ZonecontainstheremnantsoftheIntra-Pontidesuturebetweenthe tomography(Karabulutetal.2003;Barıs¸etal.2005)hasimaged rtic
˙Istanbul–ZonguldakZoneandtheSakaryaContinent,andconsists lowP-wavevelocity(Vp)andlowVp/Vs(whereVs=S-waveveloc- le
-a
ofatectonicmelangeoftwozones(Fig.1).Allofthesetectonic ity)ratiozonesdownto15kmdepthbeneaththeMarmaraSea,in b
s
zones form constituent parts of the Western Pontides, a series of additiontohighVpandVp/Vsratiozonestowardsthenorthernand tra
c
east–westtrendingTethyanorogenicbelts;thismeansthatallthree southernedgesoftheC¸B.Althoughpreviousstudieshaveprovided t/1
zoneskeepalmosttheentireevolutionaryrecordoftheTethysides valuableinformationrelatedtotheformandtectonismoftheNAF, 9
3
(Yılmazetal.1997).Theoccurrenceofthe˙IzmitandDu¨zceearth- thewestwardextensionofthisfaultzoneandthedeeperstructure /2
/6
quakesonthenorthernsideofthesetectoniczones(Tanketal.2003, beneaththeMarmaraSearemaincontroversial. 6
4
2005;Kayaetal.2009;Tank2012)indicatesthesignificanceofthe Magnetotellurics(MT)isanelectromagneticmethodthatutilizes /6
3
extensionofthesezonesintotheMarmaraSea,intermsofpossible naturallyoccurringelectricandmagneticfieldstomapthesubsur- 75
6
locationsforthenextdevastatingearthquakealongtheNAF. face electrical resistivity at depths ranging from the near surface 1
b
However,thejuxtapositionofthesezonesbeneaththeMarmara totheuppermantle(Vozoff1991).Sincefluidssignificantlylower y
g
SeaandtherelationshipbetweenthesezonesandtheNAFarecur- theelectricalresistivityofrocks,thistechniqueishighlyusefulin u
e
rentlypoorlyunderstood.Anumberofmarinestudiesundertaken fault zone investigations (Ritter et al. 2005; Becken et al. 2011). st o
afterthe˙Izmitearthquakeenabledtheformulationofvarioustec- Previous MT research undertaken around active fault zones indi- n
1
tonicmodelsfortheMarmaraSea,namelypull-apart(Armijoetal. catesastrongcorrelationbetweenthepresenceoffluidsandseis- 9
N
1999),singledextralstrike-slipfault(LePichonetal.2001),and micactivity(Unsworthetal.2000;Ogawaetal.2001;Ogawa& o
v
extensional,crustalthinningmodels(Beceletal.2009).Thepull- Honkura2004;Wannamakeretal.2009;Beckenetal.2011),with em
apart model suggests that the Marmara Sea is a large pull-apart themajorityoffaultzonesbeingassociatedwithresistor–conductor b
e
basinthatincludesanumberofsmallerpull-apartbasinsformedin boundaries,anddevastatingearthquakesoccurringinoraroundas- r 2
0
atranstensionaltectonicregime(Armijoetal.2002).Thismodel perityzonesidentifiedbylocalresistiveareasspatiallyassociated 1
8
requiressegmentedfaultingoftheNAFwithintheMarmaraSea. withzonesoflowresistivity(Honkuraetal.2000;Oshimanetal.
AccordingtoLePichonetal.(2001),theNAFcrossestheMarmara 2002;Tanketal.2003,2005;Kayaetal.2009).
Seaasasingledextralstrike-slipfaultthatfollowsthenorthernes- PreviousonshoreMTstudiesoftheNAFhaveidentifiedconduc-
carpmentoftheC¸ınarcıkBasin(C¸B)intheeastandcutstheCentral torsatandbelowadepthof10kmalongtheNAF,withnorthernand
Basintothewest.Incomparison,crustalthinningmodelsuggests southernedgesoftheconductorcoincidingwiththesurfacetraces
thepresenceofanextensionalregimeintheMarmaraSeathatis oftheNAF.Theoccurrenceofmainshocksandmajoraftershocks
dependent on both normal and strike-slip faulting regime (Becel within brittle resistive zones (Tank et al. 2003, 2005; Kaya et al.
etal.2009).Crustalthinninghasbeendocumentedinthesouthern 2009),andearthquakeswarmactivityaroundmoreductileconduc-
partoftheCentralBasinandisalsoobservedbeneaththe˙Imralıand tiveregions(Tanketal.2003)emphasizestheimportanceoffluids
C¸Bs(Laigleetal.2008;Beceletal.2009).Theprecisehypocentral duringseismicevents.Ourobjectivehereistoimagethewestern
distributionofmicroseismicactivity(Bulutetal.2009)isconsistent extensionoftheNAFundertheMarmaraSeainanareaknownto
withthedown-dippingstructuresimagedbyCartonetal.(2007)in beaseismicgap.
666 T.Kayaetal.
103, 104 and 105 together with land site 106. The short period
2 DATA range (<∼250 s) at sites 101, 102 and 103 contains clear phase
Fig.1bshowsthelocationsofmagnetotelluricstationsusedduring rollingoutofquadrant(PROQ;Chouteau&Tournerie2000),with
thisstudy.Weused12landsites(yellowtriangles)andsixocean nosuchphaseresponsesrecordedatoceanbottomsite105.These
bottom sites (yellow squares) in the eastern part of the Marmara differences can be explained by changes in bathymetry, with site
Sea,anddefinedtwoprofiles(P1andP2)forlater2-Dmodelling, 105locatedonashallow(50-mwaterdepth),flat-lyingsectionof
asidentifiedbydashedbluerectanglesinthefigure.TheNE–SW seafloor,whereastheotheroceanbottomsitesarelocatednearsharp
orientedprofile(P1)includesfiveoceanbottomsites,fourofwhich changesinbathymetry.Electriccurrentsintheocean,perpendicu-
arelocatedintheImralıandC¸Bs,togetherwithasinglelandsite lartobathymetricgradients,cangeneratesecondarymagneticfields
inthesouthernMarmararegion.ThesecondN–Sorientedprofile thatarecomparabletoorevenstrongerthantheprimarymagnetic
(P2)iscomposedoftwooceanbottomsitesand11landsites.The field(Constableetal.2009;Worzewskietal.2010).Giventhis,the
northernmostoceanbottomsiteiscommoninbothprofiles. modelling discussed here did not incorporate short-period ocean
Ocean bottom magnetotelluric sites deployed during this study bottomdatathatwereaffectedbybathymetry-derivedPROQ.
used ocean bottom electromagnetic instruments (OBEM) devel- Thedimensionalityofthedatasetneedstobedefinedpriorto2-D D
o
opedbyKasaya&Goto(2009).Wemeasuredtwohorizontalelec- or3-Dmodelling.Here,weusethetensor-decompositioncodeof w
n
tricfieldsusing4mdipoleswithAg–AgClelectrodes,andthree- McNeice&Jones(2001),anexpandedversionoftheGroom–Bailey lo
a
componentmagneticfieldsusingflux-gatesensors.Thedatawere decomposition(Groom&Bailey1989)thatincorporatesmultiple de
d
awceqrueisreudccweistshfualnly8rHeczosvaemrepdlinafgterartdeaftoaraacbqouuits3itiwoene.kTsimaned-saelrliOesBdEaMta spietreisodan-ddeppeernidoednst,wdeitchomstpriokseitdioirnecptaioranmseintefersrrsehdofwronminthFeigs.it4e.-Tanhde from
acquiredduringdeploymentwereanalysedusingarobustprocess- optimumstrikedirectionsinthe100–11000speriodbandswere h
ingcode(Chaveetal.1987)andusableMTtransferfunctionswere N90◦EandN62◦EforprofilesP1andP2,respectively.Thesees- ttps
obtainedforaperiodrangeof10–11000s,asshowninFigs2and3. timated 2-D strike directions were used to decompose the profile ://a
c
Landsitedeploymentsduringthisstudyusedbroad-bandPhoenix data,enablingthedefinitionofTEandTMmodes,whichrepresent ad
MTU5MTinstrumentsthatcoveraperiodrangebetween0.003and flows of electric current along and perpendicular to these strike em
2000 s. However, in order to match the ocean bottom MT period directions. ic.o
range,datafromthelandMTsiteswereusedatperiods>10sas up
shown in Figs 2 and 3. One land site at the southwestern end of .co
m
profileP1wasanewdeployment,withtheother11landsiteson /g
pwriothfilteheP2nefwromocTeaannkboetttaolm.(d2a0t0a3a)c.qTuhieresedddautrainwgetrheisjositnutdlyy.inverted 3 MODELLING ji/artic
Figs2and3showthedataobtainedduringthisstudyassounding Weinvertedthedataby2-Dmodellingusingtheappropriatestrike le
-a
curves,incorporatingbothdiagonalandoff-diagonalcomponents. directionsdefinedwithintheprecedingsection.Althoughthestrike b
s
Fig.2showsobserveddatasoundingcurvesacrossprofileP1,com- directionsalongprofilesP1andP2differbysome28◦,weassumed tra
c
prising,fromnortheasttosouthwest,oceanbottomsites101,102, aquasi-2-Dstructureforthestudyarea. t/1
9
3
/2
/6
6
4
/6
3
7
5
6
1
b
y
g
u
e
s
t o
n
1
9
N
o
v
e
m
b
e
r 2
0
1
8
Figure2. Observedapparentresistivity(Logρa)andphase((cid:3))valuesversusperiod(LogT)withtheirerrorbarsestimatedforXX(∗),XY(-·),YX(-◦)and
YY((cid:2))componentsofthesitesonP1.XandYrepresentthenorthandeastincoordinatesystem.
ResistivityoftheNAFunderneaththeMarmaraSea 667
D
o
w
n
lo
a
d
e
d
fro
m
h
ttp
s
://a
c
a
d
e
m
Figure3. Observedapparentresistivity(Logρa)andphase((cid:3))valuesversusperiod(LogT)withtheirerrorbarsestimatedforXX(∗),XY(-·),YX(-◦)andYY ic.o
((cid:2))componentsofthesitesonP2.XandYrepresentthenorthandeastincoordinatesystem. up
.c
o
m
/g
ji/a
rtic
le
-a
b
s
tra
c
t/1
9
3
/2
/6
6
4
/6
3
7
5
6
1
b
y
g
u
e
s
t o
n
Figure4. Site-dependent(a),frequency-dependent(b)andsite-andfrequency-independent(c)forthewholefrequencyrangeof100–11000sstrikesofP1 1
andP2. 9 N
o
v
e
m
It is known that TM mode 2-D modelling over a 3-D anomaly strongelectricalcurrentintheseaorientedparalleltothecoastline, b
e
can robustly recover the resistivity section under the profile which can generate a large secondary horizontal magnetic field r 2
0
(Wannamakeretal.1984).WetestedsuchsituationforanOBEM componentwiththeoppositepolaritytotheprimarymagneticfield 1
8
datasetbeneaththeMarmaraSea.Fig.5showsasimplified2-D (Constableetal.2009;Worzewskietal.2010).Thedifferencein
and3-DresistivitymodelthatmimicstheMarmaraSea;thismodel TEandthecorresponding3-Dresponseisevidentforbothocean
hasauniformearthof100(cid:4)mandabox-shapedoceanof0.3(cid:4)m bottomandlandsites;incomparison,theTMandthecorrespond-
withdimensions180km(E–W)×60km(N–S)×1.2km(depth). ing3-Dresponsesareingoodagreement.TheTMresponsesfrom
Fig.6comparesthe2-D(Ogawa&Uchida1996)andcorrespond- the modelled sea are dominated by a galvanic charge build-up at
ing3-D(Mackieetal.1994)responsesalongtheprofile.Thetwo theverticalocean–landinterface,providingagoodapproximation,
northernstations(402and404)areonland,withthefollowingtwo even for 3-D structures. Given this, we decided to use TM mode
oceanbottomstations(406and408)closetothecoastintheMar- responsesthat,asshownhere,arerobustevenin3-Dsituations.
mara Sea, respectively. Solid lines denote 2-D TE (red) and TM We used a modified version of the code of Ogawa & Uchida
(blue)responses,withasterisksdenotingthecorresponding3-Dre- (1996) for 2-D inversion, with modifications detailed below. The
sponses.ItisinterestingtonotethatbothTEandthecorresponding Ogawa and Uchida code used Rodi’s (1976) algorithm (MOM’s
3-DresponseshaveshorterperiodPROQ,primarilycausedbythe method)tocalculatespatialderivativesontheground.Thismethod
668 T.Kayaetal.
Laplacianoperator.Themodifiedversionhasa|C(m−m )|2norm,
0
wherem isavectorcomprisingthelogresistivityoftheapriori
o
model.Thestaticshiftwasusedasaconstraintininversionasin
theoriginalversionofOgawa&Uchida(1996)code.
Westartedwiththeinitialmodelconstructionasdescribedhere.
Initially, sea water was assigned a fixed value of 0.3(cid:4)m by ref-
erencing the bathymetric data. It is also important to include a
sedimentary layer as a priori information, as we do not have the
short-perioddatarequiredtoconstraintheresistivityofshallowar-
easimmediatelyunderindividualoceanbottomsites.Duringthis
study,weusedthedistributionofsedimentsidentifiedusingseis-
mic reflection data (Carton et al. 2007), with Fig. 7 showing the
shallowresistivitydistributionthatwasincorporatedintothemodel
as a constraint. During modelling, a thick sedimentary layer was D
o
assigned a fixed resistivity of 10(cid:4)m, extending to a depth of 4– w
n
5 km below the C¸B (Okay et al. 2000; Carton et al. 2007), with lo
a
theinitialmodelhavingauniformbelow-sedimentresistivity.Error de
floorvaluesof10percentand3◦wereusedforapparentresistivity d fro
andphasevalues,respectively,withtheinitialmodelalsousedas m
Figure5. Initialmodelsfor3-Dand2-Dforwardmodellingtests.Abox anapriorimodel. h
type(depth:1.2km,width:60km)bathymetrywith0.3(cid:4)mresistivityis ttp
We formulated three initial models that used uniform below- s
setintothe100(cid:4)mhalf-spaceresistivity.Whitesquaresshowthelocation sedimentresistivitiesof10,100and1000(cid:4)m,withthefinalmod- ://a
ofsites(402,404,406and408fromnorthtosouth)comparedinFig.6. c
elsdependentontheinitial(apriori)models.Ofthethreeinitial ad
models,the100(cid:4)mmodelshowedthebestfitwiththedata,with em
isusedformultiplelevelsofseafloorsinthisstudy.Inaddition,we rootmeansquaremisfitvaluesof2.1and1.9forprofilesP1andP2, ic.o
modified the definition of roughness norm to include an a priori respectively. up
model in order to stabilize the inversion. The original roughness The identified 2-D electrical resistivity structures in the east- .co
norm was |Cm|2, where m is a model vector representing the log ern Marmara Sea along profiles P1 and P2 are shown in m/g
resistivity of the model, and C is the roughening matrix of the Figs 8(a) and (b). The electrical resistivity models have similar ji/a
rtic
le
-a
b
s
tra
c
t/1
9
3
/2
/6
6
4
/6
3
7
5
6
1
b
y
g
u
e
s
t o
n
1
9
N
o
v
e
m
b
e
r 2
0
1
8
Figure6. Apparentresistivity(left-handcolumn)andphase(right-handcolumn)responsesof3-D(asterisk)and2-D(solidline)forwardmodellingaregiven
forthenortheast(blue)mode,whichmeanselectricfieldinthenorthandmagneticfieldintheeastdirectionisused,andeast–north(red)mode,theopposite
casewiththenortheastmode.Sincethemodelissymmetric,onlysamplesites(402,404,406and408)fromnorth(toppanel)tothecentre(bottompanel)of
theprofileareshown.RobustnessoftheTMmodeisclearespeciallyforthelongerperiods.
ResistivityoftheNAFunderneaththeMarmaraSea 669
D
o
w
n
lo
a
Figure7. InitialmodelsofP1(a)andP2(b)for2-Dinversionareshownupto6km.Whiterectanglesrepresentthesitelocations.Bathymetrywasfixedto d
e
0.3(cid:4)mwhileunderlyingsedimentwasfixedto10(cid:4)m.Theresistivityofthehalf-spacewassetas100(cid:4)m. d
fro
resistivitydistributionsbeneathbothprofiles,withashallowcon- m
ductor(C1)startingafewkilometresbeneaththesedimentarylayer http
andmergingwithadeeperconductor(C2)inthecentralpartofthe s
profiles. Another shallow conductor (C3) in P1, located between ://a
c
tworesistivelayers,isalsopresentbeneaththeArmutluPeninsula ad
e
inP2.Bothmodelscontaindeepresistorsthathorizontallybound m
thedeepC2conductorinthenorth(R1)andinthesouth(R2).The ic.o
u
shallowresistivelayerunderlainbyaconductiveanomaly(C3)be- p
neaththeArmutluPeninsulawasalsoobservedinthepreviousMT .co
m
studybyTanketal.(2003)inwhichthestructuresdowntoalmost /g
20kmwereinvestigated. ji/a
Acomparisonofobservedandcalculatedresponsesisshownin rtic
Figs 9 and 10, for profiles P1 and P2, respectively. These curves le-a
b
s
tra
c
t/1
9
3
/2
/6
6
4
/6
3
7
5
6
1
b
y
g
u
e
s
t o
n
1
9
N
o
v
e
m
b
e
r 2
0
1
8
Figure8. Final2-Delectricalresistivitymodelsobtainedfrominversionof
TMmodedataforP1(a)andP2(b)profiles.Invertedtrianglesshowsite
locations,redarrowsindicatepossiblebranchesoftheNAF,whitecircles
represent microseismic activity from 2007 to 2010 (Bulut, GFZ) in and
aroundtheC¸B.Blacklinebeneaththebasinsindicatesdepthofthefixed
sedimentinmodelling.Thewhiteandgreydashedlinesindicatetheupper Figure9. Fittingcurvesoftheobserved(plussign)andcalculated(straight
crust–lowercrustboundary(brittle-ductiletransitionzone)andMohodepth line)dataofP1aredemonstratedforsitesfromnorth(toppanel)tosouth
(Laigleetal.2008;Beceletal.2010). (bottompanel).
670 T.Kayaetal.
Wealsotestedthemainfeaturesidentifiedwithinthefinalmodels
byforwardmodellingusingresistivitychanges.Figs13and14show
sensitivitytestsforthemajoranomalies[R1(a),C1(b),C2(c)and
R2(d)]beneathprofilesP1andP2,respectively.Thesetestsconfirm
thatthemodellingaccuratelyrepresentsthedata.Accordingtothese
tests,bothconductiveanomaliesC1andC2inbothprofileshave
resistivityvaluesthatrangebetween1and10(cid:4)m.
4 DISCUSSION
Theresultsofthisstudyprovidethefirstelectricalimagesofstruc-
turesbetweentheseafloorandtheuppermantlebeneaththeMar-
mara Sea. The tectonic and geological implications of the major
D
anomaliesidentifiedabovearediscussedinthisnextsection. o
w
n
lo
a
d
e
4.1 Implicationsfortectonicconfigurations d
fro
ThefinalmodelsgiveninFigs8(a)and(b)showthreedomains;one m
h
isconsistingoftwocentralsubverticalconductors(C1,C2),andoth- ttp
eisrscoinncsliusdteinntgwthitehstuhrerokunnodwinngtreecstiosntoicrsp(rRov1i,nRce2s).inThthisedsitsutdriybuatrieoan. s://ac
a
Thenorthernresistor(R1)andtheoverlying10-km-thickconductor d
e
which belong to the ˙Istanbul–Zonguldak Zone represent Precam- m
ic
brianbedrockandOrdoviciantoCarboniferoussediments(Yılmaz .o
u
etal.1997).Thesouthernresistor(R2)correspondstotheSakarya p
.c
and Armutlu zones, and represents Paleozoic metamorphic rocks o
m
oftheSakaryaContinent.Thezonewiththesubverticalconductive /g
anomaly corresponds to the collision zone between the ˙Istanbul– ji/a
ZonguldakZoneandtheSakaryaContinent. rtic
le
-a
b
s
4.2 Sourcesofconductiveanomalies trac
t/1
9
4.2.1 Uppercrustalconductor(C1) 3/2
/6
Anuppercrustalshallow conductive anomaly, herenamed C1,is 64
presentinthemiddleofbothprofileswitharesistivityof1–10(cid:4)m. /6
3
7
Experimental data indicate that electrical resistivity of aqueous 5
6
crustalfluidsisintherangeof0.01–0.1(cid:4)m(Nesbitt1993);meaning 1
b
that,usingtheHashin–Shtrikmanupperbound(Hashin&Shtrik- y
g
man1962),abulkresistivityof1–10(cid:4)mcanbeexplainedbyporos- u
e
s
ityof0.15–15.0percent.Inaddition,aseismictomographystudy t o
detected low Vp and Vp/Vs ratio zones at depths of 5–15 km be- n
1
neaththeC¸B(Barıs¸etal.2005).Thesezoneswerealsointerpreted 9
N
asareasofhigh-fluidcontent.Thedistributionofmicroseismicepi- o
v
centres around the C¸B is shown in Fig. 1(b). In Fig. 8, projected em
hypocentresofearthquakesthatwereatadistanceof±10kmfrom be
theprofilesP1andP2aregiven.Thisprojectionindicatesagood r 2
0
correlationbetweenresistivityandseismicity,withthemajorityof 1
8
themicroseismicactivityclusteringoutsidetherimsoftheC1con-
ductorbeneaththeprofileP1,andclosetotheC1andC3conductors
beneaththeprofileP2(Fig.8).
Thisconfigurationcanbeexplainedbytheexistenceofaninter-
Figure10. Fittingcurvesoftheobserved(plussign)andcalculated(straight connectedfluidnetworkandtheassociatedtriggeringofearthquakes
line)dataofP2aredemonstratedforsitesfromnorth(toppanel)tosouth by the migration of fluids into the surrounding crust. Migration
(bottompanel). offluidintoless-permeablecrustcanreducetheeffectivenormal
stressandtriggerearthquakes(Sibsonetal.1988;Cox1999;Sib-
indicate a generally good recovery of the observed data. The ap- son2000).Suchseismicity–resistivityrelationshipsareknownina
parent resistivity and phase responses are compared in pseudo- numberofseismicallyactiveregions(Ogawaetal.2001;Ogawa&
sectionsinFigs11and12,confirmingtherecoveryoftheobserved Honkura2004;Wannamakeretal.2004,2009;Jiraceketal.2007;
data. Mitsuhataetal.2001).
ResistivityoftheNAFunderneaththeMarmaraSea 671
D
o
w
n
lo
a
d
e
d
fro
m
h
ttp
s
://a
c
a
d
e
m
ic
.o
u
p
.c
o
m
/g
ji/a
rtic
le
-a
b
s
tra
FTiMgumreod1e1.. Calculated(toppanel)andobserved(bottompanel)apparentresistivity(left-handpanel)andphase(right-handpanel)pseudo-sectionsofP1for ct/19
3
/2
/6
gionswithhighheatflow(100–140mWm−2)intheMarmaraSea 6
4.2.2 Lowercrusttoupper-mantleconductorC2 (˙Ilkıs¸ık 1995; Tezcan 1995) and mantle-derived He (>50percent 4/6
3
The research discussed here identified a vertical conductor, here of total He concentration) along the west to central segment of 75
6
namedC2,runsfromthelowercrusttotheuppermantle.Thiscon- the NAF (Gu¨lec¸ et al. 2002) may indicate the presence of zones 1
b
ductormaybeassociatedwiththepresenceofhigh-salinityfluids withsignificantextensionandhightemperaturethatmayberelated y
g
and/or the partial melting of mantle material due to the astheno- totheupwellingofasthenosphericmaterial.Dilek&Altunkaynak u
e
sphericupwelling.Thebulkresistivity(1–10(cid:4)m)oftheC2zone (2007,2009)suggestedpartialmeltingasasourceoftheEocene st o
indicateseither0.15–15.0percentfluidor1.5–39volpercentmelt volcanism in and around the Marmara Sea; as well, Altunkaynak n
1
fractionbytheHashin–Shtrikmanupperbound,usingpuremeltand (2007) showed that the geochemistry of the Marmara granitoids 9
N
aqueousfluidresistivitiesof0.1–0.3and0.01–0.1(cid:4)m,respectively wasindicativeofsignificantcrustalcontaminationduringmagma o
v
(Presnalletal.1972;Waff1974;Tyburczy&Waff1983;Nesbitt ascent. em
1993;Yoshinoetal.2010;Pommier&LeTrong2011;Evans2012). Thesedatasuggestthatfluidsaremigratingfromadeepductile be
Thepresenceofpartialmeltissupportedbytheupwellingofas- region to the upper brittle zone beneath the Marmara Sea. If this r 2
0
thenosphericmaterialbyothermagnetotelluricstudiesdocumented conductordoesrepresentpartialmelting,onepossibilityisthatthe 1
8
for the onland extent of the NAF (Gu¨rer 1996; Tank et al. 2005; hightemperatures,partialmeltingandfluid-releasingdehydration
Tu¨rkog˘lu et al. 2008). In addition, seismological studies indicate reactionsdocumentedinthisareamayberelatedtoasthenospheric
thatthecrustalthicknessaroundtheMarmaraSeavariesbetween upwellingcausedbysubductionofNeo-Tethyanoceaniclithosphere
29 and 32 km (Gu¨rbu¨z et al. 2003; Zor et al. 2006). Within the beneaththeSakaryaContinent,whichwasfollowedbyslabbreak-
Marmara Sea, it is almost 31 km (grey dashed line in Fig. 8), off.
except areas to the south of the Central Basin and beneath the TheformofthedeepC2conductorchangesbeneathbothprofiles,
C¸ınarcık and ˙Imralı basins. Here, the crustal thickness decreases withtheconductorappearingnarrower,butwithahigherresistivity,
to 26 km due to the thinning of the upper crust associated with beneathprofileP2thanbeneathprofileP1.Onepossiblereasonfor
lithospheric-scaleextension(Laigleetal.2008;Beceletal.2009). this is that profile P2 crosses the easternmost part of the C¸B and
In addition to that, Straub & Kahle (1994) documented a NE– the Armutlu Peninsula, and does not intersect structures beneath
SWorientedextensionalregimealongthenorthernbranchofthe the˙ImralıBasinwhichisassociatedwithhighlyconductiveaque-
NAF, in the present study area. Furthermore, the presence of re- ousfluidsand/ormoltencrustalandmantlematerial.Thebasement
672 T.Kayaetal.
D
o
w
n
lo
a
d
e
d
fro
m
h
ttp
s
://a
c
a
d
e
m
ic
.o
u
p
.c
o
m
/g
ji/a
rtic
le
-a
b
s
tra
c
t/1
9
3
/2
/6
6
4
Figure12. Calculated(toppanel)andobserved(bottompanel)apparentresistivity(left-handpanel)andphase(right-handpanel)pseudo-sectionsofP2for /6
3
TMmode. 7
5
6
1
b
rocks of the Armutlu Peninsula consist of a succession of high- y
4.3 RelationshipwiththeNAF g
and low-grade metamorphics overlain by sedimentary rocks—a u
e
similar lithological sequence to that found within the ˙Istanbul– 4.3.1 ContinuoustectonicfeaturesalongtheNAF st o
ZonguldakunitsandSakaryaContinent(YılmazandTu¨ysu¨z1991; n
1
Yılmazetal.1995).ThisindicatesthatprofileP1includesstruc- We have documented significant similarities between the features 9
N
turesbeneathboththe˙ImralıandC¸Bs,leadingtoawiderconductive resolvedinMTmodelsobtainedfortheMarmaraSeaarea,andin o
v
anomalythanobservedintheprofileP2. modelsfortheregiontotheeastofthestudyareaalongtheNAF. em
Deepsubverticalconductorsbeneathlargestrike-slipfaultshave TheMarmaraSeaprofiles,P1andP2,aredominatedbyaconductor be
also been recently imaged along the NAF (Tank et al. 2005), the thatishorizontallyboundedbyresistivezonestothenorthandsouth r 2
0
AlpineFaultinNewZealand(Wannamakeretal.2002)andtheSan (Fig.15).ThisstructurewasalsoobservedinpreviousonshoreMT 1
8
AndreasFault(Beckenetal.2011),suggestingthattheseconduc- studiesintheeasternpartofthepresentstudyareaalongtheNAF
torsmaybeacommonfeatureinareascontainingmajorstrike-slip (Gu¨rer1996;Honkuraetal.2000;Oshimanetal.2002;Tanketal.
faults. The existence of this type of conductor extending to 50- 2005;Kayaetal.2009;Kaya2010).Thedistributionofgeothermal
km depth below the NAF near ˙Izmit was documented by Tank fieldsfromeasttowestalongtheNAF(Aydınetal.2005)isalso
etal.(2005),whointerpretedthedeeperpartoftheconductorto consistentwiththelocationofthedeepconductors,suggestingthat
be a region of partial melt, and the shallow part (just under the similar structures may also be present along the western part of
brittle–ductiletransition)tobearegioncontainingsalinefluids.A the NAF in the Marmara Sea area. In terms of extending geo-
similar interpretation, combining regions of fluid and underlying electrical structures from the eastern Marmara region to the C¸B,
partialmelt,wasalsoprovidedinTibetbyLietal.(2003).Wan- wesuggestthat,fromnorthtosouth,theIstanbul–Zonguldakand
namakeretal.(2002)andBeckenetal.(2011),ontheotherhand, Armutlu–AlmacikzonesandtheSakaryaContinenttectoniczones
showedthatdeepverticalconductorisfluidsourcesupplyingcrustal arecontinuousfromthepreviouslydocumentedonlandareastothe
fluid. areabeneaththeMarmaraSea.
ResistivityoftheNAFunderneaththeMarmaraSea 673
D
o
w
n
lo
a
d
e
d
fro
m
h
ttp
s
://a
c
a
d
e
m
ic
.o
u
p
.c
o
m
/g
ji/a
rtic
le
Figure13. ResolutiontestsfortheanomaliesR1(a),C1(b),C2(c)andR2(d)ofP1.Theresponsesatthestationsmostlysensitivetotheanomaliesare -a
b
srehsopwenct.ivBelluye.Pcloulsousrigrnep(+re)sednetmsothnestmraotedselthreesopbosnesrevewdhdilaetar.eIdn,yalelllaonwo,mgarleyentesatnsd,bbelsatckfitciosloobutrasinsheodwbyremspoodneslersestpootnhsee.anomalywith1,10,100and1000(cid:4)m, strac
t/1
9
4.3.2 BranchesoftheNAF improveourknowledgeoftheextensionofthesestructuresfarther 3/2
tothewest,moreOBEMinstrumentdatafromoffshoreareastothe /6
Previous MT studies identified a correlation between resistor– 6
conductorboundariesandonlandbranchesoftheNAF(Tanketal. westarerequired. 4/6
2003,2005;Kayaetal.2009).Inthisrespect,subverticalresistor– 199R9es˙IizsmtivitityansdtrDucu¨tzucreesedaretfihnqeudakaersoushnodwtehdetrhuapttuthreezmoanienssohfocthkes 3756
conductorboundariesbeneaththeMarmaraSeamayalsoindicate 1
occurred within high-resistivity zones that were bounded to the b
thelocationofNAFbranches,suggestingthatthenorthernresistor– y
southbylower-resistivityzones(Tanketal.2003;Kayaetal.2009). g
conductorboundaryinthestudyarearepresentsanorthernbranch u
of the NAF (NAF1) that extends west from the ˙Izmit earthquake TsthruisctsuurgesgebsetnsetahtahttahleonMgatrhmeaNraASFe,acaonmdptahreiseopniscebnettrweseeonftrheesi1s9ti9v9e est o
rupturezonetotheMarmaraSea.Fig.15showsbothextensionof n
earthquakes may be crucial in relating high-resistivity zones to 1
theNAFbranchesandresistivitydistributionalongtheNAFfrom 9
possibleasperityzonesthatmayinitiatealargedevastatingevent N
Du¨zceregiontotheMarmaraSea. o
withintheMarmaraSea,whichisanareaofincreasedseismicity v
Thesecondboundary,locatedatthesouthernescarpmentofthe after the ˙Izmit earthquake. This indicates that more MT research em
C¸BbeneathprofileP2,isalsoobservedbeneathprofileP1,suggest- b
ingthatthisminorbranchoftheNAFextendsfarthertothewest. needstobeundertakenontheresistivezoneatsitesfarthertothe er 2
northintheC¸B. 0
TheboundaryatthesouthernpartoftheC2zone,beneathprofile 1
8
P1,impliestheexistenceofanotherbranchoftheNAF,asshown
byadashedlineinFigs1and15.Thishasoftenbeenreferredtoas
4.3.3 TectonicmodelsundertheMarmaraSea
themiddlebranchthoughitisonestrandofthesouthernbranchof
theNAF(Yilmazetal.2010).HerewerefertothisbranchasNAF2 Thesingledextralstrike-slipfaultmodelintheMarmaraSeasug-
whichmeanstheextensionofthesouthernbranchoftheNAFin gestswestwardextensionofthenorthernbranchoftheNAFalong
theMarmaraSea(Fig.15).Extensionofthesesubverticalresistor– thenorthernescarpmentoftheC¸B(LePichonetal.2001)corre-
conductorboundariestoatleast50kmdepthsuggestsdeeplyrooted spondingtothenorthernresistor–conductorboundaryinourfinal
NAFthatisalsosuppliedbyateleseismictomographystudyindi- models.Inordertobeabletosupportordeclinecontinuationofa
cating a P-wave velocity contrast, represented by relatively high singlefaultinthismodel,moreOBEMinstrumentdatafromoff-
P-wave velocity perturbations (δVp)tothe northoftheNAFand shoreareastothewestareneededtofigureoutifthereexistseither
low P-wave velocity perturbations to the south, down to a depth many or a single resistivity boundary corresponding to the fault
of 150 km in the Marmara Sea (Biryol et al. 2011). In order to branch.
Description:the electrical characteristics of this fault are continuous from onland areas into the Marmara. Sea the electrical resistivity of rocks, this technique is highly useful in fault zone On some variational principles in . fluid-pressure cycling and mesothermal gold deposits, Geology, 16, 551–. 555.