Table Of ContentEFFICIENT COMMUNICATION PROTOCOLS FOR
UNDERWATER ACOUSTIC SENSOR NETWORKS
AThesis
Presentedto
TheAcademicFaculty
by
DarioPompili
InPartialFulfillment
oftheRequirementsfortheDegree
DoctorofPhilosophyinthe
SchoolofElectricalandComputerEngineering
GeorgiaInstituteofTechnology
August2007
EFFICIENT COMMUNICATION PROTOCOLS FOR
UNDERWATER ACOUSTIC SENSOR NETWORKS
Approvedby:
ProfessorIanF.Akyildiz,Advisor ProfessorWilliamD.Hunt
SchoolofElectricalandComputer SchoolofElectricalandComputer
Engineering Engineering
GeorgiaInstituteofTechnology GeorgiaInstituteofTechnology
ProfessorFaramarzFekri ProfessorMostafaH.Ammar
SchoolofElectricalandComputer CollegeofComputing
Engineering GeorgiaInstituteofTechnology
GeorgiaInstituteofTechnology
ProfessorRaghupathySivakumar DateApproved: June5th,2007
SchoolofElectricalandComputer
Engineering
GeorgiaInstituteofTechnology
Ad Alessandra
iii
ACKNOWLEDGEMENTS
The author wishes to thank most sincerely Prof. Ian F. Akyildiz for his continuing guid-
ance in the completion of this work, as well as for his valuable support as advisor during
the entire Ph.D. program. His mentorship was paramount in providing a well rounded ex-
perience,whichIwilltreasureinmycareer.
To all the academic members of the Electrical and Computer Engineering Department
attheGeorgiaInstituteofTechnology,Iwishtoexpressmydeepestgratitudeforexcellent
advice,constructivecriticism,helpfulandcriticalreviewsthroughoutthePh.D.program.
A special thank goes to Drs. Fekri, Sivakumar, Hunt, and Ammar, who kindly agreed
toserveinmyPh.D.DefenseCommittee.
The author is indebt to his friend and colleague Tommaso Melodia for all the valuable
workdonetogetherduringthecompletionofthePh.D.program. Aswell,theauthorwould
like to thank all former and current members of the Broadband and Wireless Networking
Laboratoryforsharingthislearningexperience.
Last but not least, the author is grateful to the many anonymous reviewers that with
theirunselfishcommentsgreatlyimprovedthecontentofthepapersfromwhichthisthesis
hasbeenpartlyextracted.
iv
TABLE OF CONTENTS
DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 OrganizationoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
II RESEARCHCHALLENGESFORUNDERWATERACOUSTICSENSORNET-
WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 CommunicationArchitectures . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 DesignChallenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 BasicsofUnderwaterAcousticPropagation . . . . . . . . . . . . . . . . 21
2.5 PhysicalLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 DataLinkLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 NetworkLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 TransportLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.9 ApplicationLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.10 ExperimentalImplementationsofUnderwaterSensorNetworks . . . . . 40
III DEPLOYMENTANALYSISFORUNDERWATERACOUSTICSENSORNET-
WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 CommunicationArchitectures . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Deploymentina2DEnvironment . . . . . . . . . . . . . . . . . . . . . 45
v
3.5 Deploymentina3DEnvironment . . . . . . . . . . . . . . . . . . . . . 62
IV DISTRIBUTEDROUTINGALGORITHMSFORUNDERWATERACOUSTIC
SENSORNETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 NetworkModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 PacketTrainandOptimalPacketSize . . . . . . . . . . . . . . . . . . . 73
4.5 Delay-insensitiveRoutingAlgorithm . . . . . . . . . . . . . . . . . . . 85
4.6 Delay-sensitiveRoutingAlgorithm . . . . . . . . . . . . . . . . . . . . 89
4.7 PerformanceEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 94
V ARESILIENTROUTINGALGORITHMFORLONG-TERMUNDERWATER
MONITORINGMISSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 BasicsoftheResilientRoutingAlgorithm . . . . . . . . . . . . . . . . . 108
5.3 PerformanceEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 114
VI A CDMA MEDIUM ACCESS CONTROL PROTOCOL FOR UNDERWATER
ACOUSTICSENSORNETWORKS . . . . . . . . . . . . . . . . . . . . . . 122
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 UW-MAC:ADistributedCDMAMACforUW-ASNs . . . . . . . . . . 126
6.4 PowerandCodeSelf-assignmentProblem . . . . . . . . . . . . . . . . . 130
6.5 PerformanceEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 136
VII CROSS-LAYER COMMUNICATION FOR MULTIMEDIA APPLICATIONS
INUNDERWATERACOUSTICSENSORNETWORKS . . . . . . . . . . . 150
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Cross-layerResourceAllocationFramework . . . . . . . . . . . . . . . 153
7.3 Cross-layerRouting/MAC/PHYSolutionforDelay-tolerantApplications 161
7.4 Cross-layerRouting/MAC/PHYSolutionforDelay-sensitiveApplications168
7.5 ProtocolOperationoftheCross-layerSolution . . . . . . . . . . . . . . 171
vi
VIII CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
LISTOFACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
vii
LIST OF TABLES
1 AvailablebandwidthfordifferentrangesinUW-Achannels . . . . . . . . . 21
2 Evolutionofmodulationtechnique . . . . . . . . . . . . . . . . . . . . . . 26
3 Redundantsensors ∆N∗ tocompensateforfailures . . . . . . . . . . . . . 62
4 Simulationperformanceparameters . . . . . . . . . . . . . . . . . . . . . 94
5 Scenarios2and3: SurfaceStationandAverageEnergyperBit . . . . . . . 101
6 SourceBlockProbability(SBP)vs. ObservationTime . . . . . . . . . . . . 114
viii
LIST OF FIGURES
1 Architecturefor2Dunderwatersensornetworks . . . . . . . . . . . . . . . 10
2 Architecturefor3Dunderwatersensornetworks . . . . . . . . . . . . . . . 12
3 Architecturefor3DunderwatersensornetworkswithAUVs . . . . . . . . 13
4 Internalorganizationofanunderwatersensornode . . . . . . . . . . . . . 17
5 PathlossofshortrangeshallowUW-Achannelsvs. distanceandfrequency
inband 1−50kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Triangular-griddeployment. Gridstructureandsidemargins . . . . . . . . 47
7 Triangular-griddeployment. Uncoveredarea . . . . . . . . . . . . . . . . 47
8 Triangular-griddeployment. Sensingcoverage . . . . . . . . . . . . . . . 49
9 Minimum number of sensors in triangular-grid deployment vs. sensor dis-
tanceoversensingrange. A = 100x100m2 . . . . . . . . . . . . . . . . . 51
1
10 Minimum number of sensors in triangular-grid deployment vs. sensor dis-
tanceoversensingrange. A = 300x200m2 . . . . . . . . . . . . . . . . . 51
2
11 Minimum number of sensors in triangular-grid deployment vs. sensor dis-
tanceoversensingrange. A = 1000x1000m2 . . . . . . . . . . . . . . . 52
3
12 Trajectoryofasinkingobject . . . . . . . . . . . . . . . . . . . . . . . . . 53
13 Average horizontal displacement of sensors and uw-gateways vs. current
velocity(forthreedifferentdepths) . . . . . . . . . . . . . . . . . . . . . . 58
14 Maximum and average sensor-gateway distance vs. number of deployed
gateways(inthreedifferentvolumes,andwith vmax = 1m/s) . . . . . . . 59
c
15 Normalized average and standard deviation of number of sensors per uw-
gateway vs. number of deployed gateways (for grid and random deploy-
mentstrategies,inthreedifferentvolumes,andwith vmax = 1m/s) . . . . 59
c
16 Deployment surface area for unknown (a) and known (b) current direction
β,givenabottomtargetarea lxh . . . . . . . . . . . . . . . . . . . . . . . 61
17 Three-dimensionalscenario. 3Dcoveragewitha3Drandomdeployment . 65
18 Three-dimensional scenario. Optimized 3D coverage with a 2D bottom-
randomdeployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
19 Three-dimensional scenario. Optimized 3D coverage with a 2D bottom-
griddeployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20 Theoreticalandexperimentalsensingrange . . . . . . . . . . . . . . . . . 66
ix
21 Theoretical, Fisher&Simon’s, and Thorp’s medium absorption coefficient
α(f)vs. frequencyf ∈ [10−1,102]kHz . . . . . . . . . . . . . . . . . . . 74
22 Single-packettransmissionscheme . . . . . . . . . . . . . . . . . . . . . . 75
23 Underwater and terrestrial channel utilization efficiency for different dis-
tances(100m−500m). Underwaterchannelefficiencyvs. packetpayload
sizewithoutFEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
24 Underwater and terrestrial channel utilization efficiency for different dis-
tances(100m−500m). Underwaterchannelefficiencyvs. packetpayload
sizewith (255,239)Reed-SolomonFEC . . . . . . . . . . . . . . . . . . . 78
25 Underwater and terrestrial channel utilization efficiency for different dis-
tances (100m−500m). Terrestrial channel efficiency vs. packet payload
sizewithoutFEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
26 Packet-trainperformance. Packet-traintransmissionscheme . . . . . . . . 80
27 Packet-train performance. Underwater packet efficiency vs. packet pay-
loadsizefordifferentdistances(100mand500m) . . . . . . . . . . . . . 84
28 Packet-train performance. Packet-train efficiency vs. packet-train payload
lengthfordifferentdistances(100m-500m) . . . . . . . . . . . . . . . . . 85
29 Scenario 1: Delay-insensitive routing. Average node residual energy vs.
time,fordifferentlinkmetrics . . . . . . . . . . . . . . . . . . . . . . . . 96
30 Scenario 1: Delay-insensitive routing. Average and standard deviation of
numberofhopsvs. time,fordifferentlinkmetrics . . . . . . . . . . . . . . 97
31 Scenario 1: Delay-insensitive routing. Average packet delay vs. time, for
differentlinkmetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
32 Scenario 1: Delay-insensitive routing. Distribution of data delivery delays
fortheFullMetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
33 Scenario 1: Delay-insensitive routing. Average and standard deviation
nodequeueingdelays,fordifferentlinkmetrics . . . . . . . . . . . . . . . 99
34 Scenario 1: Delay-insensitive routing. Average and standard deviation of
numberofpackettransmissions,fordifferentlinkmetrics . . . . . . . . . . 99
35 Scenario 2: Delay-insensitive routing. Packet delay and average delay vs.
timeforsourcerateequalto 150bps . . . . . . . . . . . . . . . . . . . . . 101
36 Scenario 2: Delay-insensitive routing. Packet delay and average delay vs.
timeforsourcerateequalto 300bps . . . . . . . . . . . . . . . . . . . . . 102
37 Scenario 2: Delay-insensitive routing. Packet delay and average delay vs.
timeforsourcerateequalto 600bps . . . . . . . . . . . . . . . . . . . . . 102
x
Description:6.3 UW-MAC: A Distributed CDMA MAC for UW-ASNs 126 the application of the theory in [62] on a fleet of autonomous underwater gliders during the experiment on thought to be a potential terrorism agent.