Table Of ContentAstronomy&Astrophysicsmanuscriptno.w28˙aa c ESO20081
(cid:13)
February2,2008
Discovery of very high energy gamma-ray emission coincident with
−
molecular clouds in the W 28 (G6.4 0.1) field
F.Aharonian1,13,A.G.Akhperjanian2,A.R.Bazer-Bachi3,B.Behera14,M.Beilicke4,W.Benbow1,D.Berge1 ⋆,
K.Bernlo¨hr1,5,C.Boisson6,O.Bolz1,V.Borrel3,I.Braun1,E.Brion7,A.M.Brown8,R.Bu¨hler1,T.Bulik24,
I.Bu¨sching9,T.Boutelier17,S.Carrigan1,P.M.Chadwick8,L.-M.Chounet10,A.C.Clapson1,G.Coignet11,
8 R.Cornils4,L.Costamante1,25,B.Degrange10,H.J.Dickinson8,A.Djannati-Ata¨ı12,W.Domainko1,L.O’C.Drury13,
0 G.Dubus10,J.Dyks24,K.Egberts1,D.Emmanoulopoulos14,P.Espigat12,C.Farnier15,F.Feinstein15,A.Fiasson15,
0
A.Fo¨rster1,G.Fontaine10,Y.Fukui26,Seb.Funk5,S.Funk1,M.Fu¨ßling5,Y.A.Gallant15,B.Giebels10,
2
J.F.Glicenstein7,B.Glu¨ck16,P.Goret7,C.Hadjichristidis8,D.Hauser1,M.Hauser14,G.Heinzelmann4,G.Henri17,
n
a G.Hermann1,J.A.Hinton1,14 ⋆⋆,A.Hoffmann18,W.Hofmann1,M.Holleran9,S.Hoppe1,D.Horns18,
J A.Jacholkowska15,O.C.deJager9,E.Kendziorra18,M.Kerschhaggl5,B.Khe´lifi10,1,Nu.Komin15,K.Kosack1,
8 G.Lamanna11,I.J.Latham8,R.LeGallou8,A.Lemie`re12,M.Lemoine-Goumard10,J.-P.Lenain6,T.Lohse5,
2 J.M.Martin6,O.Martineau-Huynh19,A.Marcowith15,C.Masterson13,G.Maurin12,T.J.L.McComb8,R.Moderski24,
] Y.Moriguchi26,E.Moulin15,7,M.deNaurois19,D.Nedbal20,S.J.Nolan8,J-P.Olive3,K.J.Orford8,J.L.Osborne8,
h M.Ostrowski23,M.Panter1,G.Pedaletti14,G.Pelletier17,P.-O.Petrucci17,S.Pita12,G.Pu¨hlhofer14,M.Punch12,
p
S.Ranchon11,B.C.Raubenheimer9,M.Raue4,S.M.Rayner8,O.Reimer⋆⋆⋆,M.Renaud1,J.Ripken4,L.Rob20,
-
o L.Rolland7,S.Rosier-Lees11,G.Rowell1 ,B.Rudak24,J.Ruppel21,V.Sahakian2,A.Santangelo18,L.Sauge´17,
r †
t S.Schlenker5,R.Schlickeiser21,R.Schro¨der21,U.Schwanke5,S.Schwarzburg18,S.Schwemmer14,A.Shalchi21,
s
a H.Sol6,D.Spangler8,Ł.Stawarz23,R.Steenkamp22,C.Stegmann16,G.Superina10,T.Takeuchi26,P.H.Tam14,
[ J.-P.Tavernet19,R.Terrier12,C.vanEldik1,G.Vasileiadis15,C.Venter9,J.P.Vialle11,P.Vincent19,M.Vivier7,
3 H.J.Vo¨lk1,F.Volpe10,S.J.Wagner14,andM.Ward8
v
5 Correspondence to:[email protected], [email protected]
5
(Affiliationscanbefoundafterthereferences)
5
3
Received/Accepted
.
1
0
8 ABSTRACT
0
: Aims. Observations of shell-type supernova remnants (SNRs) in the GeV to multi-TeV γ-ray band, coupled with those at millimetre radio
v
wavelengths,aremotivatedbythesearchforcosmic-rayacceleratorsinourGalaxy.Theold-agemixed-morphologySNRW28(distance 2kpc)
i ∼
X isaprimetargetduetoitsinteractionwithmolecularcloudsalongitsnortheasternboundaryandothercloudssituatednearby.
Methods.WeobservedtheW28field(for 40h)atveryhighenergy(VHE)γ-rayenergies(E>0.1TeV)withtheH.E.S.S.Cherenkovtelescopes.
r ∼
AreanalysisofEGRETE >100MeVdatawasalsoundertaken. ResultsfromtheNANTEN4mtelescopeGalacticplanesurveyandotherCO
a
observationswereusedtostudymolecularclouds.
Results. We have discovered VHE γ-ray emission (HESS J1801 233) coincident with the northeastern boundary of W 28 and a complex
−
of sources (HESS J1800 240A, B and C) 0.5 south of W 28 in the Galactic disc. The EGRET source (GRO J1801 2320) is centred on
◦
HESSJ1801 233butma−yalsoberelatedtoH∼ESSJ1800 240giventhelargeEGRETpointspreadfunction.TheVHEdiffe−rentialphotonspectra
arewellfitb−ypurepowerlawswithindicesΓ 2.3to2.−7.ThespectralindicesofHESSJ1800 240A,B,andCareconsistentwithinstatistical
errors.AllVHE sourcesare 10 inintrinsicr∼adiusexcept forHESSJ1800 240C, whichapp−ears pointlike. TheNANTEN12CO(J=1-0)data
′
revealmolecularcloudspositi∼onallyassociatingwiththeVHEemission,span−ninga 15kms 1rangeinlocalstandardofrestvelocity.
−
Conclusions. TheVHE/molecularcloudassociationcouldindicateahadronicorig∼inforHESSJ1801 233andHESSJ1800 240,andseveral
− −
cloudcomponentsinprojectionmaycontributetotheVHEemission.Thecloudshavecomponentscoveringabroadvelocityrangeencompassing
thedistanceestimatesforW28( 2kpc)andextendingupto 4kpc.Assuminghadronicoriginanddistancesof2and4kpcforcloudcomponents,
∼ ∼
therequiredcosmic-raydensityenhancement factors(withrespecttothesolarvalue)areintherange 10to 30.Ifsituatedat2kpcdistance,
suchcosmic-raydensitiesmaybesuppliedbySNRslikeW28. Additionallyand/or alternatively, part∼icleacc∼elerationmaycomefromseveral
catalogued SNRsand SNR candidates, the energetic ultra compact HII region W 28A2, and the HII regions M 8 and M 20, along with their
associatedopenclusters.Furthersub-mmobservationswouldberecommendedtoprobeindetailthedynamicsofthemolecularcloudsatvelocites
>10kms 1andtheirpossibleconnectiontoW28.
−
Keywords.gammarays:observations–stars:supernova-remnants–interstellarmedium:HIIregions–individualobjects:W28
1. Introduction:W28andsurroundings at the northern and northeastern boundaries where interaction
withthemolecularcloudisestablished.Furtherindicationofthe
Thestudyofshell-typesupernovaremnants(SNRs)atγ-rayen-
influenceofW28onitssurroundingsistheexpandingHIvoid
ergiesismotivatedbythelong-heldideathattheyarethedom-
atadistance 1.9kpc(Vela´zquezetal.2002).TheX-rayemis-
inant sites of hadronic Galactic cosmic-ray (CR) acceleration ∼
sion,whichoveralliswell-explainedbyathermalmodel,peaks
to energies approaching the knee ( 1015 eV) (e.g. Ginzburg
∼ intheSNRcentrebuthaslocalenhancementsinaregionover-
& Syrovatskii1964, Blandford& Eichler1987). CRs (hadrons
lappingthenortheasternSNR/molecularcloudinteraction(Rho
and electrons) are injected into the SNR shock front, and are
&Borkowski2002).
thenacceleratedviathediffusiveshockacceleration(DSA)pro-
In the neighbourhoodof W 28 are the radio-brightHII re-
cess(forareviewseeDrury1983).Subsequentγ-rayproduction
gions M 20 (Trifid Nebula at d 1.7 kpc Lynds etal. 1985
from the interaction of these CRs with ambient matter and/or ∼
– with open cluster NGC 6514), M 8 (Lagoon Nebula at
electromagnetic fields is a tracer of such non-thermal particle
d 2 kpc Tothill etal. 2002 — containing the open clus-
acceleration, and establishing the hadronicor electronic nature ∼
ters NGC 6523 and NGC 6530) and the ultra-compact HII
oftheparentCRsinanyγ-raysourceremainsakeyissue.Two
region W 28A2, all of which are representative of the mas-
SNRs,RXJ1713.7 3946andRXJ0852.0 4622,havesofares-
− − sive star formation taking place in the region. Further discus-
tablishedshell-likemorphologyinVHEγ-rays(Aharonianetal.
sion concerningthe active star formationin thisregionmay be
2004a,2005c,2006b, 2007b,2007a),withspectraextendingto
found in van den Ancker etal. (1997) and references therein.
20 TeV and beyond. In particular for RX J1713.7 3946, par-
− Additional SNRs in the vicinity of W 28 have also been iden-
ticle acceleration up to at least 100 TeV is inferred from the
tified: G6.67 0.42 and G7.06 0.12 (Yusef-Zadeh etal. 2000),
H.E.S.S.observations.AlthoughahadronicoriginoftheVHEγ- − −
G5.55+0.32,G6.10+0.53andG7.20+0.20(Broganetal.2006).
rayemissionishighlylikelyintheabovecases(Aharonianetal. The pulsar PSR J1801 23 with spin-down luminosity E˙
2006b, 2007b, Berezhko&Vo¨lk 2006, Berezhko,Pu¨hlhofer& 6.2 1034ergs 1anddis−tanced =13.5kpc(basedonitsdisper∼-
Vo¨lk2007),anelectronicoriginisnotruledout. × −
sionmeasure)isatthenorthernradioedge(Kaspi1993).More
Disentangling the electronic and hadronic components in
recentdiscussion(Claussenetal.2002)assignsalowerlimitof
TeVSNRsmaybemadeeasierbystudying:(1)SNRγ-rayspec-
9.4 2.4kpcforthepulsardistance.
trawellbeyond 10TeV,anenergyregimewhereelectronssuf- ±
∼ W 28 has also been linked to γ-ray emission detected at
fer strong radiative energy losses and due to Klein-Nishina ef-
E > 300MeVbyCOS-B(Pollock1985)andE > 100MeVby
fectstheresultinginverse-Comptonspectratendtoshowacut-
EGRET (Sturner & Dermer 1995, Esposito etal. 1996, Zhang
off; (2) older SNRs (age approaching 105 yr) in which accel-
etal. 1998). The EGRET source, listed in the 3rd catalogue
erated electrons have lost much of their energy through radia-
(Hartmanetal. 1999) as 3EGJ1800 2338,ispositionedatthe
tivecoolinganddonotreachmulti-TeVenergies;(3)SNRsin- −
southernedgeoftheradioshell.Wehavealsoperformedananal-
teractingwith adjacentmolecularcloudsof veryhigh densities
ysisofEGRETdata,withadditionaldatanotincludedinthe3rd
n > 103 cm 3.Itisthelatterregardespecially(andtoacertain
− catalogue,andresultsarediscussedlaterinthispaper.
degreethe second)whichmakesthe SNR W28(G6.4 0.1)an
− Previous observations of the W 28 region at VHE ener-
attractivetargetforVHEγ-raystudies.Inthispaperweoutline
gies by the CANGAROO-I telescope revealed no evidence for
the discovery of VHE γ-ray emission from several sites in the
such emission (Rowell etal. 2000) and upper limits at the
W 28 field and briefly discuss their relationship with molecu-
0.2 to 0.5 Crab-flux level for energies E > 1.5 TeV (1.1 to
larclouds,W28,andotherpotentialparticleacceleratorsinthe 2∼.9 10 11ergcm 2s 1)weresetforvariousregions.
region. × − − −
W28(G6.4 0.1)isamixed-morphologySNR,withdimen-
−
sions50′x45′andanestimateddistancebetween1.8and3.3kpc 2. ResultsatVHEand E >100MeVγ-rayenergies
(eg.Goudis1976,Lozinskaya1981).Itisanold-ageSNR(age
35000to150000yr;eg.Kaspietal.1993),thoughttohaveen- 2.1.H.E.S.S.VHEanalysisandresults
tered its radiative phase of evolution (eg. Lozinskaya 1981) in
The High Energy Stereoscopic System (H.E.S.S.) was used to
whichmuchofitsCRshaveescapedintothesurroundinginter-
observetheW28region.OperatingintheSouthernHemisphere,
stellarmedium(ISM).Wenotealsothattheevolutionarystatus
H.E.S.S. consists of four identical 13 m diameter Cherenkov
(Sedovand/orradiative)ofshell-typeSNRsmaydependonthe
telescopes (Bernlohr etal. 2003). H.E.S.S. employs the stereo-
densityoftheirsurroundings(seeeg.Blondinetal.1998).
scopicimagingatmosphericCherenkovtechnique,andissensi-
W 28 is distinguished by its interaction with a molecular
tivetoγ-raysaboveanenergythresholdof 0.1TeV(Funketal.
cloud (Wootten 1981) along its north and northeastern bound- ∼
2004).Anangularresolutionof5 to6 (Gaussianstandarddevi-
aries. This interaction is traced by the high concentration of ′ ′
ation)onanevent-by-eventbasisisachieved,andthelargefield
1720 MHz OH masers (Frail etal. 1994, Claussen etal. 1997,
ofview(FoV)withfullwidthathalfmaximumFWHM 3.5
1999),andalsothelocationofveryhigh-density(n>103cm−3) permits survey coverage in a single pointing. A point ∼source◦
shockedgas(Arikawaetal.1999,Reachetal.2005).Theshell-
sensitivity approaching 0.01 Crab flux ( 10 13 erg cm 2s 1
likeradioemission(Longetal.1991,Dubneretal.2000)peaks ∼ − − −
at 1 TeV) is achieved for a 5σ detection after 25 hr observa-
∼
tion.FurtherdetailsconcerningH.E.S.S.canbefoundinHinton
Send offprint requests to: [email protected],
(2004)andreferencestherein.
[email protected]
⋆ nowatCERN,Geneva,Switzerland ThetotalobservationtimecoveringtheW28regionamounts
⋆⋆ nowatSchoolofPhysics&Astronomy,UniversityofLeeds,Leeds to 42 hr in a series of runs (with typical duration 28 min)
∼ ∼
LS29JT,UK spread over the 2004, 2005 and 2006 seasons. Runs were ac-
⋆⋆⋆ nowatStanfordUniversity,HEPL&KIPAC,Stanford,CA94305- ceptedforanalysisif theymetqualitycontrolcriteriabasedon
4085,USA therecordedrateofisotropicCRbackgroundevents,thenumber
now at School of Chemistry & Physics, University of Adelaide, ofmalfunctioningpixelsineachcamera,thecalibrationandthe
†
Adelaide5005,Australia trackingperformance(seeAharonianetal.2004bfordetails).
Aharonianetal.:AssociatedVHEandCOemissionintheW28field 3
Data were analysed using the moment-based Hillas anal- 2.2.EGRETE >100MeVanalysisandresults
ysis procedure, the same used in the analysis of the inner
WehavealsoanalysedEGRETdatafortheW28region,using
Galactic Plane Scan datasets (Aharonian etal. 2005a, 2006a).
CGRO observation cycles (OC) 1 to 6. This slightly expands
Observationscoveredarangeofzenithanglesleadingtoenergy
on the dataset of the 3rd EGRET catalogue (using OCs 1 to
thresholdsof 320GeVwithhardcuts(Cherenkovimageinte-
∼ 4; Hartman etal. 1999), which revealed the pointlike source,
gratedintensityorsize>200photoelectrons)and 150GeVfor
∼ 3EG J1800 2338 (E > 100 MeV). Our analysis confirms
standardcuts(size>80photoelectrons).Hardcutswereusedin −
the presence of a pointlike E > 100 MeV source in this re-
VHE γ-rayimages, sourcelocationstudiesand energyspectra.
gion, here labeled GRO J1801 2320 (for E > 100 MeV).
Inaddition,Standardcutswereusedinenergyspectrainorder −
GRO J1801 2320appearsslightlyshifted ( 0.2 ) with respect
to increase the energycoverageof extractedspectra. Generally − ∼ ◦
to the 3EG position. The 3EG position refers to a E >100
consistent results were obtained using an alternative analysis
MeV determination based on the diffuse model as of Hunter
based on a modelof Cherenkovimage parameters(de Naurois
etal. (1997). Our dedicated analysis of archival EGRET data
2006),whichalsoutilisesanindependentcalibrationandlower
comprises different analysis compared to the 3EG catalogue.
cut on image size of >60 photoelectrons.A forthcomingpaper
WefirstemployedthefinalisedEGRETinstrumentalresponses,
willhighlightresultsindetailfromthisanalysis,whichachieves
whichweremadeavailableby2001andareconsideredmanda-
improvedsensitivitiesatlowerthresholdscomparedtothepure
tory for investigating an EGRET source under conditions ap-
Hillas-basedanalysis.
plicable from the end of OC 4 (narrow field of view modus;
The VHEγ-rayimage(Fig.1)revealstwo sites ofVHE γ- rapidlydeterioratingsparkchamberefficiency;andotherissues).
ray emission in the direction of the northeastern and southern Second, we restricted the analysis both in narrowing the data
boundaries of the W 28 SNR. The colour scale in this figure selection to pointingangleswith respectto ourregionof inter-
depictstheGaussian-smoothedVHEexcesscountsaboveaCR est, whichavoids the need to invokea wide-anglepointspread
background estimate according to the template model (Rowell function(PSF).Thirdly,theimprecisionoftheinterstellaremis-
2003), alongwith significancecontoursobtainedafterintegrat- sion modelwas counteredvia adjustmentsonanalysisparame-
ing eventswithin a radiusof 0.1◦ from eachbin centre (appro- ters gmult and gbiasto accountfor localdeviationsfrom the
priate for pointlikesource searching).Similar imageswere ob- large-scalediffuseemissionmodelintheregionofinterest.The
tained using alternative CR background models. A smoothing 68%and95%locationcontoursof GRO J1801 2320are plot-
radiusof 4.2′ was usedto sufficientlysmoothoutrandomfluc- tedinFig.1,andmatchwellthelocationofHE−SSJ1801 233.
tuationsintheimage.AnassessmentoftheVHEpost-trialsig- Since however the EGRET degree-scale PSF easily en−com-
nificanceswasmadefromouroriginalsearchformarginallyex- passes both of the VHE sources, we cannot rule out a rela-
tended sources, which employed an a priori integration radius tionship with HESS J1800 240. For the energy spectrum of
θ=0.2◦.Underthisschemeweapplied 2.2 105trials(avery GRO J1801 2320, we have−used the flux points extracted at
conservativevalueappliedtothesedata)∼accum×ulatedinsearch- theposition−of3EGJ1800 2338asnegligibledifferenceswere
ing for sources in the inner Galactic Plane (as in Aharonian found between ours and th−at obtained at the nominal 3EG po-
2005a).Thepre-trialsignificanceoftheVHEsources,at +7σ, sition.Fittingapurepowerlawweobtainedaspectralindexof
≥
isthereforeconvertedtoapost-trialsignificanceof +5σ. Γ = 2.16 0.10,quiteconsistentwiththepublishedvaluefrom
≥ ±
Based on the significance contours in Fig. 1, we assign la- Hartman etal. (1999). Comparisons are made with the VHE
bels to the northeastern source, HESS J1801 233, and to the spectrumofHESSJ1801 233andHESSJ1800 240in 5.
− − − §
complex of sources to the south, HESS J1800 240, according
−
to their best fit positions (fitting a 2D Gaussian and ellipse re-
3. NANTENandotherobservationsofMolecular
spectively to the unsmoothed excess map). Three components
of HESS J1800 240 are identified, labeled here A, B and C Clouds
−
from East to West. These components represent local peaks
In searching for molecular cloud counterparts to the VHE
2σabovetheirsurrounds.Althoughnotconvincinglyresolved sources, we analysed 12CO (J=1–0) molecular line observa-
∼
under this analysis these components may comprise separate
tions taken by the 4-meter mm/sub-mm NANTEN telescope,
sources(oratleastinpart)duetotheirpossiblerelationshipwith
at Las Campanas Observatory, Chile (Mizuno & Fukui 2004).
distinctmultiwavelengthcounterparts(discussedlater).
TheNANTENGalacticPlaneSurveydataof1999to2003(see
Differential photon energy spectra were extracted Matsunagaetal.(2001)andreferencesthereinfordetails)were
from HESS J1801 233 and all three components of used,andfortheW28region,thesurveygridspacingwas4.
′
HESS J1800 240. −Spectra were well-fit by pure power Figure 2 (upper left panel) shows the 12CO (J=1–0)image
laws (dN/dE−= k(E/1TeV) Γ) with photon indices Γ 2.5 integratedovertheLocalStandardofRestvelocity(V )range
− LSR
to 2.7 in the energy range 0.3 to 5 TeV (see Table∼1 for 0to10kms 1,whiletherightpanelshowstheimageintegrated
−
results). Spectral fits were o∼btained u∼sing fluxes from a com- over the range V =10 to 20 km s 1. Two prominent 12CO
LSR −
bination of hard and standard cuts to maximise the energy features representing molecular clouds centred at (l,b)=(6.7 ,
◦
coverage.Spectral analysis employed the reflected background 0.3 ) and (l,b)=(5.9 , 0.4 ) spatially correspond with the
◦ ◦ ◦
− −
model (Berge etal. 2007), in which control regions reflected VHEγ-rayemission.AsshowninFig.2,thesemolecularclouds
through each tracking position (taking care to avoid known spanbothV ranges.AccordingtotheGalacticrotationmodel
LSR
VHEγ-raysources)wereusedtoestimatetheCRbackground. ofBrand&Blitz(1993),theseV rangesformallycorrespond
LSR
Within the statistical and systematic errors, the photon indices to kinematic distances of approximately 0 to 2.5 kpc (over-
∼
appear consistent throughout HESS J1800 240. Except for lapping the Sagittarius arm), and 2.5 to 4 kpc (reaching the
− ∼
HESS J1800 240C, all of the VHE sources appear extended Scutum-Cruxarm)respectively.Giventheuncertaintiesinrota-
−
with intrinsic radii of 10. At a distance of 2 kpc, the VHE tionmodelsclosetotheGalacticcentre,suchV rangeswould
′ LSR
∼
source luminositiesin the energyrange0.3 to 3 TeV would be coverthedistanceestimatesforW28,themostprominentSNR
ontheorderof1033ergs 1. in theregion.Muchdiscussionhascentredonthe systemic ve-
−
4 Aharonianetal.:AssociatedVHEandCOemissionintheW28field
eg) H.E.S.S. 80 Fthieg.1V.HIEmaγg-eray(1.5ex◦c×ess1.5co◦)unotsf
d
( (events), corrected for exposure
o3 0 andsmoothedwithaGaussianof
-2 00. PSR J1801-23 radius 4.2′ (standard deviation).
0 Overlaidaresolidgreencontours
2 W 28 (Radio Boundary)
J HESS J1801-233 ofVHEexcess(pre-trial)signif-
c icancelevelsof4,5,and6σ,af-
e
D 60 ter integrating events within an
oversampling radius θ=0.1 ap-
◦
propriate for pointlike sources.
The thin-dashed circle depicts
the approximate radio boundary
of the SNR W 28 guided pre-
´
0 dominantly by the bright north-
o3 40 ern emission (see Dubner etal.
3 2000 & Brogan etal. 2006).
2
- GRO J1801-2320 Identified here are VHE source
regions HESS J1801 233 to
−
the northeast, and a complex
of sources HESS J1800-240
(A, B & C) to the south of
20
W 28. Also indicated are: HII
6.225-0.569 regions (black stars); W 28A2
(see text), G6.1 0.6 (Kuchar
−
& Clark 1997), 6.225 0.569
G6.1-0.6 −
o (Lockman 1989); The 68% and
4 95% location contours (thick-
2
- dashed yellow lines) of the
0
E > 100 MeV EGRET source
GRO J1801 2320; the pulsar
−
C PSR J1801 23 (white triangle).
W 28A2 −
A The inset to the bottom left
B depicts a pointlike source for
HESS J1800-240 RA J2000.0 (hrs) this analysis after the Gaussian
smoothing applied to the main
18h03m 18h image.
Table1.Numericalsummary fortheVHEandE>100MeVsourcesintheW28regionincludingpositionalandspectralinformation.
†‡
Bestfitposition(J2000.0) Spectralanalysis
Name R.A.[deg] Dec[deg] 1σ [deg] 2S [σ](evts) 3k 4Γ 5L
src
HESSJ1801 233 270.426 0.031 23.335 0.032 0.17 0.03 +7.9(281) 7.50 1.11 0.30 2.66 0.27 1.5
− ± − ± ± ± ± ±
HESSJ1800 240A 270.491 0.001 23.962 0.001 0.15 +6.0(180) 7.65 1.01 0.50 2.55 0.18 1.5
§
− ± − ± ± ± ±
HESSJ1800 240B 270.110 0.002 24.039 0.009 0.15 +7.8(236) 7.58 0.90 0.15 2.50 0.17 1.4
§
HESSJ1800−240C 269.715±0.014 −24.052±0.006 0.02 0.15 +4.5(71) 4.59±0.89±0.20 2.31±0.35 0.8
HESSJ1800−240 270.156±0.044 −23.996±0.022 0.32R±A 0.05 +10.3(652) 18.63± 1.85± 1.20 2.49±0.14 3.6
§§
− ± − ± 0.17Dec± 0.03 ± ± ±
±
GROJ1801 2320 270.360 0.150 23.340 0.150 – +13.2 3.35 0.52 2.16 0.10 480.0
− ± − ± ± ±
†VHEphotonspectraarederivedfromaregionofradiusθ= p0.12+σ2srccenteredoneachsource’spositionunlessotherwiseindicated.
‡Inspectra,afunctiondN/dE=kE−Γphcm−2s−1TeV−1isfitted.EisinTeVunits(H.E.S.S.data);GeVunits(EGRETdata).
1.Fittedintrinsicsourcesize(Gaussianstd.dev.)
2.Statisticalsignificanceandexcesseventsinbrackets;forH.E.S.S.sourcesusingLi&Ma(1983);forEGRETsourcesgivenbyS = √TsforTsdefinedbyMattoxetal.(1996)
3.ForH.E.S.S.sources:×10−13phcm−2s−1TeV−1at1TeV(withstatisticalandsystematicerrors);ForEGRETsources:×10−2phcm−2s−1GeV−1at1GeV(withstatisticalerrors)
4.Onlystatisticalerrorsindicated.Systematicerrorisestimatedat 0.2
±
5.Luminosity×1033ergs−1at2kpc(0.3to3TeVforH.E.S.S.;0.04to6GeVforEGRET)
§DuetocrosscontaminationbetweencomponentsA&B,afixedvalueofσsrc=0.15◦estimatedvisuallyfromFig.1wasused.
§§Spectrumextractedfroma0.8◦×0.6◦ellipticalregionencompassingallcomponentsA,B,C,andmatchingthesizeofthecorrespondingmolecularcloud.
locity (SV) of W 28 (and hence its distance), and how much mayalsoextendovertheV = 25to+38kms 1 range,giv-
LSR −
W 28 has influenced matter in the region.Hα (Radhakrishman ingrisetoashockspeedof 30k−ms 1.Torresetal.(2003)and
−
etal.1972)andHIabsorptionfeatures(Lozinskayaetal.1981) Reachetal.(2005)haveals∼ostudiedthelarge-scale12CO(J=1-
have suggested SV 18 km s 1. Claussen etal. (1997) have 0)emissionforthisregionusingthesurveydataofDameetal.
−
pointedtoSV 17km∼ s 1.MorerecentHIstudiesbyVela´zquez (2001), suggesting that the parent molecular cloud under the
−
etal.(2002)su∼ggestSV=+7kms 1(whichleadstothedistance influence of W 28 is presently centred at V 19 km s 1.
− LSR −
∼
estimate for W 28 at 1.9 kpc). They also suggest a HI shell TheGalacticlongitude-velocity(l-v)diagram(bottompanelsof
∼
Aharonianetal.:AssociatedVHEandCOemissionintheW28field 5
Fig.2)fromourNANTENdataintegratedovertheGalacticlat- material along this line of sight is physically connected at the
itude ranges b = 0.125 to 0.5 and b = 0.125 to 0.7 same distance (for example d 2 kpc) and possibly distrupted
◦ ◦ ◦ ◦
− − − − ∼
shows the distribution of molecular material in relation to the or shocked by a local energy source. Systematic effects in the
SV of W 28 from the HI studies of Vela´zquez. The wider, lat- mass estimates arise from the velocity crowdingin this part of
ter b range shows the effect of including the cloud component theGalactic plane,andalsothe broadvelocityrangeforwhich
overlappingHESSJ1800 240A.AvoidordipinCOemission X-factorusedabovemaynotnecessaryapply.Inthelattercase,
−
appears at a similar V range as found in the HI data, with theX-factormayunderestimatethecloudmasssinceanappre-
LSR
muchof the molecularmaterialappearingto surroundthe void ciable fraction of gas may be heated under the assumption of
inpositiveV valueswithrespecttotheSVofW28.Asimilar distruptedand/orshock-heatedgas.Onemustallowfor 4kpc
LSR
longitude-velocity picture was revealed by Torres etal. (2003) distances for some or even all of the V >10 km s 1∼cloud
LSR −
(seetheirFig.22). components, and therefore the conclusion that they are not re-
The V =0 to 10 km s 1 component of the northeast lated toW 28andotherinterestingobjectsatd 2 kpc.If the
LSR − ∼
cloudoverlappingHESSJ1801 233isalreadywellstudied(see cloudsarerelated,W28couldplayadisruptingrole.Thelevel
Reach etal. 2005andreference−stherein).Shocked12CO(J=3– ofthisdisruptionishoweverunclearsinceseveralotherplausible
2) moleculargasas indicatedby a broadwing-likeline disper- candidatesrelatedto the star formation(discussedlater)in this
sion (Arikawa etal. 1999 — hereafter A99; using the James regioncouldalsocontribute.Someothermolecularcloudcom-
ClerkMaxwellTelescope(JCMT);in15 gridsteps)andahigh plexes have also been discussed as possibly disrupted by adja-
′′
concentrationofOHmasers(Claussenetal.1997),suggestsma- centSNRsand/orenergeticsources(eg.Yamaguchietal.1999,
terialherehasbeencompressedbytheSNRshockinW28.The Moriguchi etal. 2000). In table 2, we present a full summary
line dispersion, ∆V 70 km s 1, is an indicator of the SNR ofcloudmassesanddensities(forregionscenteredontheVHE
−
≤
shock speed in this particular region. The unshocked gas was source coordinates as in table 1) for various combiniations of
also mapped by A99 via 12CO(J=1–0) observations with the cloudcomponentsanddistancesof2and4kpc.Velocitysepara-
Nobeyama 45 m telescope (in 34 grid steps for V = +4 tionofcloudcomponentsarebasedontheirapparentdistribution
′′ LSR
to +9 km s 1). The shocked and unshocked gas extends to the inFig.2(bottompanels).
−
northeastandnorthernboundariesofW28(seeFig.3ofA99),
and it appears just their northeastern componentsare position-
4. RadiotoX-rayviews
ally coincident with the VHE emission of HESS J1801 233.
−
A99 estimate the mass and average density of the shocked gas Figure 3 compares the radio (left panel), infrared and X-ray
at M 2 103 M andn 104 cm−3 respectively.Fortheun- views(rightpanel)oftheW28regionwiththeVHEsignificance
shock∼edg×as,A99o⊙btained∼M 4 103 M andn 103 cm−3 contours.TheVeryLargeArray(VLA)90cmcontinuumradio
respectively.TheVLSR=10to2∼0km×s−1 ran⊙geinou∼rNANTEN image from Brogan etal. (2006) illustrates the shell-like SNR
data also reveals additional molecular clouds along the line of morphology peaking strongly along the northern and eastern
sightthatcouldcontributetotheVHEemission. boundaries.HESSJ1801 233canbeseentooverlapthenorth-
−
The southern cloud overlaps all components of eastern shell of the SNR, coinciding with a strong peak in the
HESS J1800 240, with a dominant fraction of the cloud 90cmcontinuumemission.Wenotethatathermalcomponentis
−
overlappingcomponentsAandB.Thecomponentofthiscloud likelypresentinthispeak,givenitsspectralindexα 0.2(for
visible in the V = 0 to 10 km s 1 range coincideswell with S να) between 90 and 20 cm (Dubner etal. 2000∼).−Outlines
LSR −
∝
HESSJ1800 240Bandthe HII regionW 28A2.The strongest oftheSNRstracedbynon-thermalradioemission,G6.67 0.42
CO temperat−ure peak of this component at (l,b)=(5.9 , -0.4 ) and G7.06 0.12(Yusef-Zadehetal. 2000, Helfand etal.−2006,
◦ ◦
is within 0.02 of W 28A2, and is likely the dense material labelled as−G6.51 0.48 and G7.0 0.1 by Brogan etal. 2006)
◦
− −
surrounding this HII region. Moreover the peak’s velocity at are also indicated. In addition, Brogan etal. notes that the
V 9–10 km s 1 (with dispersion of 15 km s 1), suggests non-thermal radio arc G5.71 0.08, which overlaps well with
LSR − −
∼ −
a distance ( 2.4 kpc) similar to that of W 28A2 ( 2 kpc; HESS J1800 240C, could be a partial shell and therefore an
Acordetal. 1∼997), and also W 28. In the V = 10 km∼ s 1 to SNR candida−te. The distances to G6.67 0.42 and G5.71 0.08
LSR −
20 km s 1 range, molecular material appears to coincide with are presently unknown. Directly south o−f W 28, the ultra−com-
−
all three VHE components of HESS J1800 240. In particular, pact HII region W 28A2 is a prominent radio source, and is
−
HESS J1800 240Aand C have molecularcloud overlapsonly positioned within 0.1 of the centroid of HESS J1800 240B.
inthislatterV− range. The other HII region◦s G6.1 0.6 (Kuchar & Clark 199−7) and
LSR
−
Using the relation between the hydrogen column density 6.225 0.569 (Lockman 1989) are also associated with radio
N(H ) and the 12CO(J=1–0)intensity (the X-factor)W(12CO), emissi−on.
2
N(H ) = 1.5 1020 [W(12CO)/(Kkm/s)] (cm 2) (Strongetal. TheX-raymorphologyasshown (Fig.3 rightpanel)in the
2 −
×
2004),weestimateatotalmassforthenortheasterncloudfrom ROSAT PSPC (0.5 to 2.4 keV) image from Rho & Borkowski
our NANTEN data at 5 104 M for d =2 kpc within an (2002) reveals the central concentration of X-ray emission,
elliptical region of diam∼eter×0.2 0⊙.4 (7 14 pc; centred on which is predominantly thermal in nature with characteristic
◦ ◦
HESS J1801 233)for the velocity×range 0–×25 km s 1. An av- temperaturesin the rangekT 0.4 to 2 keV. An X-raypeak or
−
erage density−(for neutral hydrogen)of 1.4 103 cm 3 is also Ear lies at the northeastern b∼oundary and just outside the 4σ
−
∼ ×
derived. Similarly the total mass of the southern cloud is es- significancecontourofHESSJ1801 233.Anon-thermalcom-
timated at 1.0 105 M for d=2 kpc and combining clouds ponenttotheearemission(3 1.5)−(2.1 10 14 ergcm 2 s 1 at
′ − − −
fromacircu∼lara×reaofra⊙dius0.15 (5pc)forthevelocityrange 1 keV) with a power-law ind×ex Γ=1.3 h×as been suggested by
◦
12–20 km s 1, and area 0.3 0.6 (10.5 21 pc) in diame- Uenoetal.(2003a)basedonXMM-Newtonobservationsinthe
− ◦ ◦
ter for the velocity range 0–12×km s 1 (bot×h regions are cen- 0.5to10keVenergyrange.ThetotalkineticenergyoftheSNR
−
tredonHESSJ1800 240B).Thecorrespondingaveragedensity isestimatedat 4 1050erg,whichcouldbealowerlimitdue
is 1.0 103 cm 3. −By integrating over the rather broad 0–20 to the possible∼brea×k-out of the SNR along the southern edge
−
km∼s 1×and 0–25 km s 1 ranges we assume that the molecular away from the molecular cloud to the north and east (Rho &
− −
6 Aharonianetal.:AssociatedVHEandCOemissionintheW28field
eg) NANTEN 12CO(J=1-0) 0-10 km/s eg) NANTEN 12CO(J=1-0) 10-20 km/s
d d
o23 0.0 ( o23 0.0 (
- 00 100 - 00 100
2 W 28 (Radio Boundary) 2 W 28 (Radio Boundary)
c JHESS J1801-233 c JHESS J1801-233
e e
D D
80 80
l=+7.0o l=+7.0o
0´ 0´
3 3
o o
3 3
2 60 2 60
- GRO J1801-2320 - GRO J1801-2320
l=+6.0o l=+6.0o
6.225-0.569 40 6.225-0.569 40
G6.1-0.6 G6.1-0.6
o o
4 4
-2 b=0.0o -2 b=0.0o
20 20
W 28A2 C W 28A2 C
b=-1.0o A B b=-1.0o A B
HESS J1800-240 RA J2000.0 (hrs) HESS J1800-240 RA J2000.0 (hrs)
0 0
18h03m 18h 18h03m 18h
Fig.2. Upper Left: NANTEN 12CO(J=1-0) image of the W 28 region (linear scale in K km s 1) for V =0 to 10 km s 1 with VHE γ-ray
− LSR −
significance contours overlaid (green) — levels 4,5,6σ as in Fig. 1. The radio boundary of W 28, The 68% and 95% location contours of
GRO J1801 2320 and the location of the HII region W 28A2 (white stars) are indicated. Upper Right: NANTEN 12CO(J=1-0) image for
V =10to−20kms 1 (linearscaleand samemaximaasfor upper leftpanel). Bottompanels:Distributionof COemissionover theGalactic
LSR −
longitudeandV planeintegratedoverGalacticlatitudebranges 0.125 to 0.5 (left)and 0.125 to 0.7 (right).Thelatterrangeisusedto
showtheeffectoLSfRextendingthelatituderangetoencompasscompo−nentA◦ofH−ESS◦J1800 24−0.The◦bold−circ◦leindicatesthesuggestedsystemic
velocity(7kms 1)ofW28fromtheHIstudiesofVela´zquezetal.(2002). −
−
Borkowski2002). The HII regions,W 28A2 and G6.1 0.6are 5. Discussion
−
prominent in the 8.28 µm image (Fig. 3 right panel) from the
MidcourseSpaceExperiment(MSX),showingthatahighcon-
Our discovery of VHE γ-ray emission associated with dense
centrationofheatedduststillsurroundstheseveryyoungstellar (n 103cm 3)molecularcloudsintheW28fieldaddstothelist
−
objects. ≥
ofsuchassociationsafterthedetectionofdiffuseγ-rayemission
from the Galactic Ridge (Aharonian etal. 2006c), the associa-
tionofHESSJ1834 087withtheold-ageSNRW41(Lemie´re
−
etal. 2005, Albert etal. 2006) and VHE emission discovered
Aharonianetal.:AssociatedVHEandCOemissionintheW28field 7
Fig.3. Left: VLA 90cm radio image from Brogan etal. (2006) in Jy beam 1 (rebinned by a factor 1.2 compared to the original). The VHE
−
significance contours (green) from Fig. 1 are overlaid along with the HII regions (white stars) and the additional SNRs and SNR candidates
(withyellowcirclesindicatingtheirlocationandapproximatedimensions)discussedinthetext.Right:ROSATPSPCimage—0.5to2.4keV
(smoothedcountsperbinfromRho&Borkowskietal.2002).Overlaidarecontours(cyan—10linearlevelsupto5 10 4Wm 2sr 1)fromthe
− − −
×
MSX8.28µmimage.Othercontoursandobjectsareasfortheleftpanel.TheX-rayEarrepresentingapeakatthenortheasternedgeisindicated.
fromIC443(Albertetal.2007).TheVHE/molecularcloudas- Table2.DetailsforthemolecularcloudstowardstheVHEsourcesin
sociation could indicate a hadronic origin for the parentmulti- theW28field,assumingadistanced.
TeVparticleswherethe γ-rayemission(multi-GeVto TeVen-
ergies)arisesfromthedecayofneutralpionsresultingfromthe
interactionofacceleratedprotons(andhigherZnuclei)witham- VHESource VLSR d †M ‡n §kCR
(kms 1) (kpc)
bientmatterofdensityn.Inthiscasetheγ-rayfluxwouldscale −
with cloud mass or density, and the total energyin accelerated HESSJ1801 233 0-25 2.0 0.5 1.4 13
−
particlesorCRspenetratingthecloud(s).Wenotethataperfect HESSJ1801 233 0-12 2.0 0.2 2.3 32
−
correlationbetweentheVHEandmolecularcloudmorphologies HESSJ1801 233 13-25 4.0 1.1 0.6 23
−
isnotexpectedduetocomplextimeandenergy-dependentprop- HESSJ1800 240 0-20 2.0 1.0 1.0 18
−
HESSJ1800 240A 12-20 4.0 1.0 0.7 28
agationofCRtoandwithinthecloud(seeGabicietal.2006for −
HESSJ1800 240B 0-12 2.0 0.4 2.3 18
a discussion). Projection effects are also likely to be important −
HESSJ1800 240B 12-20 4.0 1.5 1.2 19
forthe examplesdiscussed heresince the VHE emission could −
ehsasvaericlyonptrhiybsuitciaolnlys fcroonmneccltoeuddstoatondeiffaenroenthtevr.elFoocritieexsa,mnoptlentehce- ‡†CClloouudddmeansssit×y1×0150M3⊙cm−3
relationship between HESS J1801 233 and the W 28/molecu- §Cosmic-raydensityenhancement,kCRabovethelocalvaluerequiredto
− producetheE>1TeVVHEγ-rayemission(usingEq.10ofAharonian(1991)).
larcloudinteractionisnotentirelyclearduetotheoverlapping
molecularcloudcomponentsatV >10kms 1.
LSR −
Oneshouldalsoconsideracceleratedelectronsasthesource
of γ-ray emission, via inverse-Compton (IC) scattering of am- dicatedfromZeemansplittingmeasurementsinthecompactar-
bient soft photon fields and/or non-thermal Bremsstrahlung eas(arcsecondscale)surroundingthe1720MHzOHmasersof
from the interaction of electrons with dense ambient matter. the northeastern interaction region (Hoffman etal. 2005), co-
Maximumelectronenergieshowevermaybeconsiderablylower inciding with HESS J1801 233. To the north of W 28, an-
−
(factor 10 or more than that of protons) due to synchrotron otherpotentialsourceofparticleaccelerationisPSRJ1801 23,
∼ −
cooling in magnetic fields and low shock speeds, in the ab- where the VHE emission may arise in an asymmetric pulsar-
sence of strong electron replenishment. An assessment of the wind-nebula (PWN) scenario (a primarily leptonic scenario),
role of accelerated electrons requiresconsiderationof the non- similartoHESSJ1825 137(Aharonianetal.2006d).However
thermal radio and X-ray emission (where a convincing mea- with a spin-down powe−r of E˙ 6.2 1034 erg s 1 at distance
−
∼ ×
surement of the latter is so far lacking), and also magnetic d > 9.4 kpc, this pulsar appears unlikely to power any of the
fields in this region. Such observations will also provide con- γ-ray sources observed in the region. A PWN scenario would
straintsonsynchrotronemissionexpectedfromsecondaryelec- thereforerequireasofarundetectedenergeticpulsar.
trons resulting from primary hadron interactions with ambient In the case of a hadronic origin and following Eq.10 of
matter (as discussed above). Relatively high magnetic fields Aharonian(1991),wecanestimatetheCRdensityenhancement
B 100(n/104cm 3)0.5 µG are inferred in dense molecular factor k in units of the local CR density required to explain
− CR
∼
clouds(Crutcheretal. 1999). In addition,higher valuesare in- the VHE emission, given an estimate for the cloudmasses and
8 Aharonianetal.:AssociatedVHEandCOemissionintheW28field
assumptionsondistance.ConvertingtheVHEenergyspectrain
Table1to anintegralvaluefor E > 1TeV, assumingdistances
of 2 and 4 kpc for the various cloud components, and that all
the VHE emission in each source is associated with the cloud -1s ) GROJ1801-2320
2
component under consideration, we arrive at values for kCR in -m -10
therange13to32(Table2). g c10
Overall,theselevelsofCRenhancementfactorwouldbeex- er
pectedintheneighbourhoodofCRacceleratorssuchasSNRs.If 2F ( 10-11 HESSJ1800-240
thecloudswereallat 2kpc,anobviouscandidateforsuchpar- E
∼
ticleaccelerationistheSNRW28,themostprominentSNRin
-12
the region. Despite its old age, multi-TeV particle acceleration 10
may still occur in W 28 (Yamazaki etal. 2006), with protons
reaching energiesof several 10’s of TeV dependingon various -13
HESSJ1801-233
10
SNR shock parameters such as speed, size and ambient mat-
ter density. In addition, CRs produced at earlier epochs have
likely escaped and diffused throughout the region, a situation -5 -4 -3 -2 -1
10 10 10 10 10 1
discussedatlengthinAharonian&Atoyan(1996).Aharonian&
Energy ( TeV )
Atoyanshowforslowdiffusion(diffusioncoefficientat10GeV
D 1026cm2s 1asmightbeexpectedindenseenvironments) Fig.4.Energyfluxesof HESSJ1801 233 andHESSJ1800 240 (for
CR10e∼nhancemen−t factors in the required range could be found regionsdefinedinTab.1)comparedt−otheE > 100MeVco−unterpart
in the vicinity (within 30 pc – note that if at 2 kpc distance, GROJ1801 2320.Thepowerlawfitsanddatapoints(summarisedin
−
Tab.1)arealsoindicated:HESSJ1801 233(solidbluelineandpoints);
HESS J1800 240would lie 10 pc fromthe southern circular
−
− ∼ HESS J1800 240 (open red points and solid line); GRO J1801 232
boundaryofW28)ofacanonicalSNRasanimpulsiveaccelera- − −
(solidblackpointsandgrey1σconfidenceband).
torupto 105yraftertheSNexplosion(seetheirFig.1).Inthis
∼
sense,W28asasourceofCRsintheregioncouldbeplausible
scenario.
duction. Finally, if the VHE emission is associated with truly
TheW28fieldhoweverisarichstarformationregion,and
distantcloudcomponentsapproachingtheScutum-Cruxarmat
several additional/alternative sources of CR acceleration may
4kpc,undetectedbackgroundparticleacceleratorswouldthen
be active. The SNR G6.67 0.42 is positioned directly to the ∼
playarole.
−
southeastofHESSJ1801 233(Fig.3leftpanel)whiletheSNR
− Fig. 4 also compares the EGRET and VHE spectra. Given
G7.06 0.12is situated 0.25 northof HESSJ1801 233and
− ∼ ◦ − thedegree-scaleEGRETPSF,GROJ1801 2320remainsunre-
on the west side of the HII region M 20. M 20 itself may also −
solved at scales of the VHE sources. Although the peak of the
beanenergysourceforthemolecularcloudsinthisregion.The
EGRET emission coincides with HESS J1801 233, we there-
SNR candidate G5.71 0.08 (Brogan etal. 2006) may also be −
− fore cannot rule out unresolved MeV/GeV components from
responsiblein some way forHESS J1800 24Cgiventhe good
− HESS J1800 240.Observationswith GLAST will be required
positionaloverlapbetweenthetwo.TheseradioSNR/SNRcan- −
todeterminetheMeV/GeVcomponentsoftheVHEsources.
didates are without a distance estimate making it unclear as
to how they relate to the molecular clouds in the region. The
morphology of HESS J1800 240 displays several peaks, per-
6. Conclusions
−
haps resulting from changes in cloud density and/or the pres-
enceofadditionalparticleacceleratorsandlocalconditions.For In conclusion, our observations with the H.E.S.S. γ-ray tele-
HESSJ1800 24B,apotentialenergysourceistheunusualultra- scopes have revealed VHE γ-ray sources in the field of
−
compactHIIregionW28A2(G5.89 0.39),representingamas- W 28 which positionally coincide well with molecular clouds.
−
sive star in a very young phase of evolution. W 28A2 exhibits HESS J1801 233 is seen toward the northeast boundary of
−
very energetic bipolar molecular outflows (Harvey & Forveille W 28, while HESS J1800 240situated just beyond the south-
−
1988, Acord etal. 1997, Sollins etal. 2004) which may arise ernboundaryofW28comprisesthreecomponents.Ourstudies
fromtheaccretionofmatterbytheprogenitorstar.Theoutflow withNANTEN12CO(J=1-0)datashowmolecularcloudsspan-
agesareestimatedatbetween 103 to104 yr.Recentobserva- ningabroadrangeinlocalstandardofrestvelocityV =5to
LSR
tions(Klaassenetal.2006)sug∼gestbothoutflowsextendovera 20kms 1,encompassingthedistanceestimatesforW28and
−
∼
combineddistanceof 2 (or 1.2pcatd = 2kpc),withtotal variousstarformationsitesintheregion.Ifconnected,andata
′
kinetic energyof 3.5 ∼1046 er∼g. Surroundingthe outflows is a distance 2kpc,thecloudsmaybepartofalargerparentcloud
verydense(>104cm×3)molecularenvelopeofdiameter0.5 to possibly∼disruptedbyW 28and/oradditionalobjectsrelatedto
− ′
1.Despitethe lackofanymodeltoexplainmulti-TeVparticle theactivestarformationintheregion.Cloudcomponentsupto
′
acceleration in such HII regions, its kinetic energy budget and 4kpcdistance(V >10kms 1)however,remainapossibil-
LSR −
∼
itsspatialoverlapwithaVHEsourcemakesW28A2atempting ity.
candidateforsuchacceleration.Already,therearetwoexamples The VHE/molecular cloud association could indicate a
of VHE emission possibly related to the environments of hot, hadronicoriginfortheVHEsourcesintheW28field.Underas-
young stars — TeV J2032+4130 (Aharonian etal. 2005b) and sumptionsofconnectedcloudcomponentsatacommondistance
HESSJ1023 575(Aharonianetal. 2007c).Inthiscontext,the of 2 kpc, or, alternatively, separate cloud componentsat 2 and
−
HII regions G6.1 0.6 and 6.225 0.569 may also play a simi- 4kpc,ahadronicoriginfortheVHEemissionimpliescosmic-
− −
larroleinHESSJ1800 24A.Amongtheprominentopenclus- ray densities 10 to 30 times the local value. W 28 could
− ∼ ∼
tersin thearea, NGC6523andNGC 6530 0.5 southeastof providesuch densitiesin thecase ofslow diffusion.Additional
◦
∼
HESSJ1800 240,andNGC6514associatedwithM20 0.7 and/oralternativeparticle acceleratorssuch as HII regionsrep-
◦
− ∼
northofHESSJ1801 233mayalsoprovideenergyforCRpro- resentingvery youngstars, otherSNRs/SNR candidatesand/or
−
Aharonianetal.:AssociatedVHEandCOemissionintheW28field 9
several open clusters in the region may also be contributors. GinzburgV.L.&Syrovatskii,S.I.1964,TheOriginofCosmicRays(NewYork:
Alternatively, if cloud components at V >10 km s 1 are at Macmillan)
LSR −
distances d 4 kpc, as-yet undetected particle accelerators in Gabici S.,Aharonian F.A.,BlasiP.2006InProc. ’Multi-messenger approach
∼ to high energy gamma-rays” Barcelona June2006 (Ap.& SS arXiv:astro-
the Scutum-Crux arm may be responsible. Detailed modeling
ph/0610032)
(beyond the scope of this paper), and further multiwavelength GoudisC.,1976,Ap&SS40, 91
observations of this region are highly recommended to assess HartmanR.C.,BertschD.L.,BloomS.D.,etal.1999,ApJS123, 79
furthertherelationshipbetweenthemoleculargasandpotential HarveyP.M.,ForveilleT.1988,A&A197, L19
HelfandD.J.,BeckerR.H.,WhiteR.L.etal.2006AJ131, 2525
particleacceleratorsinthiscomplexregion,aswellasthenature
HintonJ.A.2004NewAstron.Rev.48, 331
of the accleratedparticles. In particular,furthersub-mmobser-
HoffmanI.M.,GossW.M.,BroganC.L.,ClaussenM.J.2005ApJ620, 257
vations(eg.at high CO transitions)will providemore accurate HunterS.D.,Bertsch,D.L.,Catelli,J.R.etal.1997ApJ481,205
cloudmassestimates,andallowtosearchfordisrupted/shocked KaspiV.M.,LyneA.G.,ManchesterR.N.,etal.1993,ApJ409, L57
gas towards the southern VHE sources. Such studies will be KlaassenP.D.,PlumeR.,OuyedR.etal.ApJ648,1079
Koyama,K.,Petre,R.,Gotthelf,E.V.,etal.1995Nature378, 255
valuable in determining whether or not W 28 and other ener-
Koyama,K.,Kinugasa,K.,Matsuzaki,K.1997PASJ49, L7
geticsourceshavedisruptedmolecularmaterialatlinevelocities KucharT.A.,ClarkF.O.1997ApJ488, 224
>10kms 1. Lemie´reA.etal.(H.E.S.S.Collab.)inProc.29thICRC(Pune)4, 105
−
LiT.,MaY.1983,ApJ272, 317
Acknowledgements. The support of the Namibian authorities and of the LockmanF.J.1989ApJ(Supp)71, 469
UniversityofNamibiainfacilitatingtheconstructionandoperationofH.E.S.S. LongK.S.,BlairW.P.,WhiteR.L.,MatsuiY.,1991,ApJ373, 567
is gratefully acknowledged, as is the support by the German Ministry LozinskayaT.A.1981Sov.Astron.Lett.7, 17
for Education and Research (BMBF), the Max Planck Society, the French LyndsB.T.,O’NeillE.J.Jr.1985ApJ294, 578
MinistryforResearch,theCNRS-IN2P3andtheAstroparticleInterdisciplinary MatsunagaK.,MizunoN.,MoriguchiY.etal.2001PASJ53, 1003
ProgrammeoftheCNRS,theU.K.Particle PhysicsandAstronomyResearch MattoxJ.R.,BertschD.L.,ChiangJ.etal.1996ApJ461, 396
Council (PPARC), the IPNP of the Charles University, the Polish Ministry MizunoA.,FukuiY.2004,ASPConf.Proc.317, 59
of Science and Higher Education, the South African Department of Science MoriguchiY.,YamaguchiN.,OnishiT.etal.2000PASJ53, 1025
and Technology and National Research Foundation, and by the University deNauroisM.2006arXiv:astro-ph/0607247
of Namibia. We appreciate the excellent work of the technical support staff PollockA.M.T.1985A&A150,339
in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in RadhakrishmanV.,GossW.M.,MarrayJ.E.etal.1972ApJ(Supp)24, 49
Namibia in the construction and operation of the equipment. The NANTEN ReachW.T.,RhoJ.,JarrettT.H.2005ApJ618, 297
projectisfinanciallysupportedfromJSPS(JapanSocietyforthePromotionof RhoJ.H.,BorkowskiK.2002ApJ575, 201
Science)Core-to-CoreProgram,MEXTGrant-in-AidforScientificResearchon RowellG.P,NaitoT.,DazeleyS.A.etal.2000A&A359, 337
Priority Areas, and SORST-JST(Solution Oriented Research forScience and RowellG.P.2003A&A410, 389
Technology: Japan Science and Technology Agency). We also thank Crystal SollinsP.K.,HunterT.R.,BattatJ.,etal.2004ApJ616, L35
BroganfortheVLA90cmimageandtherefereeforvaluablecomments. StrongA.W.,MoskalenkoI.A.W.,ReimerO.A&Aetal.2004422, L47
SturnerS.J.,DermerC.D.1995A&A293, L17
TorresD.F.,RomeroG.,DameT.M.etal.2003Phys.Rep.382, 303
TothillN.F.H.WhiteG.J.,MatthewsH.E.etal.2002ApJ580, 285
References
UenoM.,BambaA.,KoyamaK.2003aInProc.28thICRC(Tsukuba,Japan),
AcordJ.M.,WalmsleyC.M.,ChurchwellE.1997ApJ,475, 693 2401
AharonianF.1991Ap&S.S..180, 305 Vela´zquezP.F.,DubnerG.M.,GossW.M.,GreenA.J.2002AJ124, 2145
AharonianF.,AtoyanA.M.1996,A&A309, 917 WoottenA.1981,ApJ245, 105
AharonianF.etal.(H.E.S.S.Collab.)2004aNature432, 75 YamaguchiN.,MizunoN.,MoriguchiY.etal.1999PASJ51, 765
AharonianF.etal.(H.E.S.S.Collab.)2004bAstropart.Phys.22, 109 YamazakiR.,KazunoriK,YoshidaT.,TsuriboT.2006MNRAS371, 1975
AharonianF.etal.(H.E.S.S.Collab.)2005aScience307, 1938 Yusef-ZadehF.,ShureM.,WardleM.,KassimN.2000ApJ540, 842
AharonianF.etal.(HEGRACollab.)2005bA&A431, 197 ZhangI.,ChengK.S.1998,A&A335, 234
AharonianF.etal.(H.E.S.S.Collab.)2005cA&A437, L7
AharonianF.etal.(H.E.S.S.Collab.)2006aApJ636, 777
AharonianF.etal.(H.E.S.S.Collab.)2006bA&A449, 223 1 Max-Planck-Institut fu¨r Kernphysik, P.O. Box 103980, D 69029
AharonianF.etal.(H.E.S.S.Collab.)2006cNature439, 695 Heidelberg,Germany
AharonianF.etal.(H.E.S.S.Collab.)2006dA&A460, 365 2 Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036
AharonianF.etal.(H.E.S.S.Collab.)2007aA&A464, 235
Yerevan,Armenia
AharonianF.etal.2007bApJ661, 236
3 Centre d’Etude Spatiale des Rayonnements, CNRS/UPS, 9 av. du
AharonianF.etal.(H.E.S.S.Collab.)2007cA&A467, 1075
AlbertJ.,AliuE.,AnderhubH.etal.2006ApJ643, L53 ColonelRoche,BP4346,F-31029ToulouseCedex4,France
AlbertJ.,AliuE.,AnderhubH.etal.2007ApJ664,L87 4 Universita¨t Hamburg, Institut fu¨r Experimentalphysik, Luruper
vandenAnckerM.E.,The´P.S.,FeinsteinA.etal.1997A&A(Supp)123, 63 Chaussee149,D22761Hamburg,Germany
ArikawaY.,TatematsuK.,SekimotoY.,TakahashiT.1999,PASJ51, L7 5 Institutfu¨rPhysik,Humboldt-Universita¨tzuBerlin,Newtonstr.15,
BergeD.,FunkS.,HintonJ.2007A&A466, 1219 D12489Berlin,Germany
BerezhkoE.G.,Vo¨lkH.J.2006,A&A451,981 6 LUTH, UMR 8102 du CNRS, Observatoire de Paris, Section de
Berezhko E.G., Pu¨hlhofer G., Vo¨lk H.J. 2007, Proc. 30th ICRC (Merida),
Meudon,F-92195MeudonCedex,France
arXiv:astro-ph/0707.4662
7 DAPNIA/DSM/CEA, CE Saclay, F-91191 Gif-sur-Yvette, Cedex,
BernlohrK.,etal.Astropart.Phys.200320, 111
France
BlandfordR.D.,EichlerD.1987,Phys.Rep.154, 1
BlondinJ.M.,WrightE.B.,BorkowskiK.J.etal.1998ApJ500, 342 8 UniversityofDurham,DepartmentofPhysics,SouthRoad,Durham
BrandJ.,BlitzL.1993A&A275, 67 DH13LE,U.K.
BroganC.L.,GelfandJ.D.,GaenslerB.M.etal.2006ApJ639, L25 9 Unit for Space Physics, North-West University, Potchefstroom
ClaussenM.J.,FrailD.A.,GossW.M.,GaumeR.A.1997ApJ489, 143 2520,SouthAfrica
ClaussenM.J.,GossW.M.,FrailD.A.,DesaiK.1999ApJ522, 349 10 LaboratoireLeprince-Ringuet,IN2P3/CNRS,EcolePolytechnique,
ClaussenM.J.,Goss,W.M.,DesaiK.M.,BroganC.L.2002ApJ580, 909 F-91128Palaiseau,France
CrutcherR.M.1999ApJ520, 706 11 Laboratoire d’Annecy-le-Vieux de Physique des Particules,
DameT.M.,HartmanD.,ThaddeusP.2001ApJ547, 792
IN2P3/CNRS,9ChemindeBellevue-BP110F-74941Annecy-le-
DruryL.O’C1983Rep.Prog.Phys.46, 973
VieuxCedex,France
DubnerG.M.,Vela´zquezP.F.,GossW.M.,HoldawayM.A.,2000AJ120, 1933
EspositoJ.A.,HunterS.D.,KanbachG.,SreekumarP.1996,ApJ461, 820 12 APC,11PlaceMarcelinBerthelot,F-75231ParisCedex05,France
FrailD.A.,GossW.M.,SlyshV.I.1994ApJ424, L111 UMR 7164 (CNRS, Universite´ Paris VII, CEA, Observatoire de
FunkS.,HermannG.,HintonJ.etal.2004Astropart.Phys.22, 285 Paris)
10 Aharonianetal.:AssociatedVHEandCOemissionintheW28field
13 DublinInstituteforAdvancedStudies,5MerrionSquare,Dublin2,
Ireland
14 Landessternwarte, Universita¨t Heidelberg, Ko¨nigstuhl, D 69117
Heidelberg,Germany
15 Laboratoire de Physique The´orique et Astroparticules,
IN2P3/CNRS, Universite´ Montpellier II, CC 70, Place Euge`ne
Bataillon,F-34095MontpellierCedex5,France
16 Universita¨t Erlangen-Nu¨rnberg, Physikalisches Institut, Erwin-
Rommel-Str.1,D91058Erlangen,Germany
17 Laboratoired’AstrophysiquedeGrenoble,INSU/CNRS,Universite´
JosephFourier,BP53,F-38041GrenobleCedex9,France
18 Institut fu¨r Astronomie und Astrophysik, Universita¨t Tu¨bingen,
Sand1,D72076Tu¨bingen,Germany
19 LPNHE,Universite´ PierreetMarieCurieParis6,Universite´ Denis
Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris
Cedex5,France
20 Institute of Particle and Nuclear Physics, Charles University, V
Holesovickach2,18000Prague8,CzechRepublic
21 Institut fu¨r Theoretische Physik, Lehrstuhl IV: Weltraum und
Astrophysik, Ruhr-Universita¨t Bochum, D 44780 Bochum,
Germany
22 UniversityofNamibia,PrivateBag13301,Windhoek,Namibia
23 ObserwatoriumAstronomiczne,UniwersytetJagiellon´ski,Krako´w,
Poland
24 NicolausCopernicusAstronomicalCenter,Warsaw,Poland
25 European Associated Laboratory for Gamma-Ray Astronomy,
jointlysupportedbyCNRSandMPG
26 Department of Astrophysics, Nagoya University, Chikusa-ku,
Nagoya464-8602,Japan
ListofObjects
‘W28’onpage1
‘W28A2’onpage4
‘G6.1 0.6’onpage4
−
‘6.225 0.569’onpage4
−
‘GROJ1801 2320’onpage4
−
‘PSRJ1801 23’onpage4
−
‘G7.06 0.12’onpage5
−
‘G5.71 0.08’onpage5
−