Table Of ContentSignals and Communication Technology
For furthervolumes:
http://www.springer.com/series/4748
Waldemar Rebizant Janusz Szafran
•
Andrzej Wiszniewski
Digital Signal Processing
in Power System Protection
and Control
123
Prof.Waldemar Rebizant Prof.AndrzejWiszniewski
Wroclaw University ofTechnology Wroclaw University ofTechnology
Wybrzeze Wyspianskiego27 Wybrzeze Wyspianskiego27
50-370 Wroclaw 50-370 Wroclaw
Poland Poland
e-mail: [email protected] e-mail: [email protected]
Prof.JanuszSzafran
Wroclaw University ofTechnology
Wybrzeze Wyspianskiego27
50-370 Wroclaw
Poland
e-mail: [email protected]
ISSN 1860-4862
ISBN 978-0-85729-801-0 e-ISBN978-0-85729-802-7
DOI 10.1007/978-0-85729-802-7
SpringerLondonDordrechtHeidelbergNewYork
BritishLibraryCataloguinginPublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
(cid:2)Springer-VerlagLondonLimited2011
Apart from anyfair dealing for the purposes of researchor privatestudy, or criticismor review,as
permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissued
bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbe
senttothepublishers.
Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceof
aspecificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandtherefore
freeforgeneraluse.
The publisher makes no representation, express or implied, with regard to the accuracy of the
informationcontainedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrors
oromissionsthatmaybemade.
Coverdesign:eStudioCalamar,Berlin/Figueres
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Abnormal States in Power Systems and Criteria
for Their Recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Faults and Abnormal Phenomena in Power Networks. . . . . . . 4
2.3 Criteria Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Requirements for Protective Devices. . . . . . . . . . . . . . . . . . . 7
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Hardware and Functional Development of Protection
Devices and Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Protection Generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Functional Blocks of a Digital Protection Device. . . . . . . . . . 17
3.2.1 Analog Antialiasing Filtering. . . . . . . . . . . . . . . . . . 17
3.2.2 Sampling Process and A/D Conversion. . . . . . . . . . . 19
3.2.3 Digital Signal Processing. . . . . . . . . . . . . . . . . . . . . 23
3.3 Hierarchical Structure of Protection and Control . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Fundamentals of System Analysis and Synthesis . . . . . . . . . . . . . 29
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Fourier Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Z Transform for Sampled Data Signals and Systems. . . . . . . . 38
4.6 Fourier Transform of Sampled Data . . . . . . . . . . . . . . . . . . . 41
4.7 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Description of Discrete Dynamic Systems in Time
and Frequency Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
v
vi Contents
4.8.1 Description of Discrete Systems in Time Domain . . . 45
4.8.2 Discrete System Description in Frequency Domain. . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5 Infinite Impulse Response Filters. . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1 IIR Filter Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Synthesis of IIR Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Application of Bilinear Transformation. . . . . . . . . . . 55
5.2.2 Application of Impulse Response
Invariance Method . . . . . . . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6 Finite Impulse Response Filters. . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1 Finite Impulse Response Filter Fundamentals. . . . . . . . . . . . . 65
6.2 Analysis of Standard FIR Filters . . . . . . . . . . . . . . . . . . . . . 67
6.2.1 Filters with Walsh Windows . . . . . . . . . . . . . . . . . . 67
6.2.2 Filters with Sine and Cosine Windows . . . . . . . . . . . 75
6.3 Synthesis of FIR Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.1 Application of Complex Fourier Series. . . . . . . . . . . 82
6.3.2 Application of Fast Fourier Transform . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7 Correction of Errors Introduced by Instrument Transformers. . . 97
7.1 Correction of Voltage Transformers Performance. . . . . . . . . . 97
7.2 Correction of Current Transformer Errors . . . . . . . . . . . . . . . 98
7.2.1 Formulation of the Problem. . . . . . . . . . . . . . . . . . . 98
7.2.2 Detection of the Unsaturated Fragment
of the Waveshape. . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.3 Correction of the Secondary Current. . . . . . . . . . . . . 102
7.2.4 Other Methods of CT Saturation Detection
and Secondary Current Reconstruction . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Measurement Algorithms for Digital Protection. . . . . . . . . . . . . . 109
8.1 Fundamentals of Digital Measurements. . . . . . . . . . . . . . . . . 109
8.1.1 Digital Signal Conditioning. . . . . . . . . . . . . . . . . . . 110
8.1.2 Averaging Measurement Methods. . . . . . . . . . . . . . . 122
8.1.3 Measurement with Use of Orthogonal
Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Measurement of Protection Criterion Values . . . . . . . . . . . . . 130
8.2.1 Measurement of Magnitude of Voltage or Current . . . 131
8.2.2 Measurement of Power . . . . . . . . . . . . . . . . . . . . . . 135
8.2.3 Measurement of Impedance and Its Components . . . . 139
8.2.4 Phase and Phase Shift Measurement. . . . . . . . . . . . . 149
Contents vii
8.2.5 Measurement of Frequency . . . . . . . . . . . . . . . . . . . 152
8.2.6 Filtering of Symmetrical Components. . . . . . . . . . . . 161
8.3 Summary, Conclusions and Recommendations. . . . . . . . . . . . 164
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9 Characteristics of Measurement of Criterion Values
and Adaptive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.1 Dynamics of the Measurement Process. . . . . . . . . . . . . . . . . 169
9.2 Dynamical Correction of Measurement of Criterion Values. . . 176
9.3 Frequency Characteristics of Measurement Algorithms. . . . . . 180
9.4 Adaptive Frequency Insensitive Estimators . . . . . . . . . . . . . . 190
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10 Decision Making in Protective Relays . . . . . . . . . . . . . . . . . . . . . 199
10.1 Deterministic Decision Making . . . . . . . . . . . . . . . . . . . . . . 200
10.2 Statistical Hypotheses Testing . . . . . . . . . . . . . . . . . . . . . . . 203
10.3 Decision Making with Multiple Criteria . . . . . . . . . . . . . . . . 209
10.4 Adaptive Decision Schemes. . . . . . . . . . . . . . . . . . . . . . . . . 213
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11 Elements of Fuzzy Logic in Protective Relays . . . . . . . . . . . . . . . 219
11.1 Fuzzy Sets and Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . 219
11.2 Boolean Versus Fuzzy Logic. . . . . . . . . . . . . . . . . . . . . . . . 228
11.3 Fuzzy Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.4 Fuzzy Logic Applications for Protection and Control . . . . . . . 237
11.4.1 Example of Fuzzy Logic Application
for Distance Protection . . . . . . . . . . . . . . . . . . . . . . 238
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
12 Application of Artificial Neural Networks . . . . . . . . . . . . . . . . . . 245
12.1 Neuron Models and Neural Network Structures . . . . . . . . . . . 246
12.2 ANN Design and Training Issues. . . . . . . . . . . . . . . . . . . . . 253
12.3 ANN Applications for Power System Protection . . . . . . . . . . 258
12.3.1 Example of ANN Application for CT Saturation
Detection and Compensation . . . . . . . . . . . . . . . . . . 259
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13 Genetic and Evolutionary Algorithms for PSP. . . . . . . . . . . . . . . 271
13.1 Basics of Evolution and Genetics for Technical Problems. . . . 272
13.1.1 Selection Versions . . . . . . . . . . . . . . . . . . . . . . . . . 274
13.1.2 Emerging of the Next Generation. . . . . . . . . . . . . . . 276
13.2 Application Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
13.2.1 Optimization of the ANN Structure . . . . . . . . . . . . . 278
viii Contents
13.2.2 Optimal Selection of the Generator AVR Settings . . . 285
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
14 Expert Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
14.1 Components of an Expert System. . . . . . . . . . . . . . . . . . . . . 294
14.2 Knowledge Processing Methods. . . . . . . . . . . . . . . . . . . . . . 296
14.3 Designing of an Expert System . . . . . . . . . . . . . . . . . . . . . . 297
14.4 Expert System Applications. . . . . . . . . . . . . . . . . . . . . . . . . 299
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
15 Artificial Intelligence: Summary and Hybrid Schemes. . . . . . . . . 303
15.1 Comparison, Advantages and Disadvantages
of AI Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
15.2 Hybrid Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
15.2.1 Fused Hybrid Schemes . . . . . . . . . . . . . . . . . . . . . . 305
15.2.2 Cooperative Hybrid Schemes. . . . . . . . . . . . . . . . . . 308
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Symbols and Abbreviations
Symbols
a Complex rotation operator (by 2p/3)
a , a Coefficients of the orthogonal filters F , F with
c s c s
sine, cosine windows
a , b Constant factors in a difference equation
k k
nominator and denominator
a(k), b(k) Filter equation coefficients
a , b , a Coefficients of the Fourier series
n n 0
A Signal magnitude
A, A Fuzzy set and its complement
A(z), A(jX) Z and Fourier transfer functions of the sine
s s
window filter
A (z), A (jX) Z and Fourier transfer functions of the cosine
c c
window filter
A, B Probabilistic thresholds (SPRT test)
A, B, C Coefficients of the filter design procedure with
bilinear transformation
A , s Residuum values and poles of the transfer func-
k k
tion partial expansion
B Flux density value leading to CT saturation
s
B Maximal expected flux density level in the CT
max
core
c Coefficients of the complex Fourier series
n
C Capacitance
d A/D converter range resolution
d (n), d (n), d (n), d (n) Filter coefficients in transient state
CC SS SC CS
df/dt Rate offrequency change
D Range of possible values of the decision random
X
variable X
e(t), e(n) Error signal, continuous and discrete
ix
Description:Digital Signal Processing in Power System Protection and Control bridges the gap between the theory of protection and control and the practical applications of protection equipment. Understanding how protection functions is crucial not only for equipment developers and manufacturers, but also for th