Table Of ContentImperial College of Science, Technology and Medicine
Royal School of Mines
Department of Earth Science and Engineering
Development of the Energy, Water and Food Nexus
Systems Model
By
Tareq Al-Ansari
A thesis submitted for the degree of
Doctor of Philosophy of Imperial College London
April 2016
Abstract
The sustainability of natural resources is vital in the light of a rapid population growth and the
associated ever increasing demand for services and products. Critical to this growth is the
question of energy, water and food (EWF) security. The systems representing the three
resources are intrinsically interdependent in what is known as the EWF Nexus. As such, there
is a need to develop assessment tools that adequately quantify the inter-dependencies between
EWF systems and the surrounding environment in order to identify and evaluate the trade-offs
and synergies between them. Existing assessment methodologies do not explicitly identify and
quantify the inter-linkages between EWF resources throughout product systems. As a result,
decision making regarding the allocation of resources towards the development of a product
or service, and the subsequent impact on resource sustainability and environmental
degradation, is obscured. Furthermore, earlier approaches translate product system inputs into
outputs through the use of generic databases. As such, analysis of product systems operating
within varying spatial and temporal scales is hindered.
The EWF Nexus tool is a culmination of well-established theories related to system
engineering such as Industrial Ecology and LCA. With emphasis on the inter-linkages
between EWF resources, the EWF Nexus tool quantifies material flow and energy
consumption at component unit process level. The tool is distinguished from previous
assessment tools in that it aggregates product systems in terms of the constituting processes
identified as sub-systems. Representing complex systems in this manner offers advantages to
conventional gate to gate representation. For instance, consideration of process variability and
dependencies alleviates flexibility limitations associated with generic databases. Furthermore,
with the inter-linkages between EWF resources adequately represented in sub-system design,
the respective consumption of resources can be accurately accounted for in product systems.
i
Considering the flexibility and modularity embedded within the EWF Nexus tool, the
identification of environmental pressures can be computed for product systems operating
within varying spatial settings utilising different technology options and in multiple
configurations.
The objective of this thesis is to present the details and function of the EWF Nexus
environmental assessment tool, and illustrate its implementation through a specific food
security scenario in Qatar. The EWF Nexus tool aggregates a proposed food system into its
agriculture, water and energy components represented by sub-systems and is used to evaluate
the different pathways for which a hypothetical 40 % food self-sufficiency target in Qatar can
be achieved.
As part of the LCA, sub-system LCI models representing the EWF systems have been
developed. The food nexus element includes sub-system LCI models for the production of
fertilizers and agricultural activities such as the application of fertilizers and the raising of
livestock. The water nexus element includes sub-system LCI models for two desalination
processes; Multi-Stage Flash (MSF) and Reverse Osmosis (RO) for the production of fresh
water. The energy nexus element includes sub-system LCI models for power generation from
two sources; a combined cycle gas turbine plant (CCGT) and renewable energy from solar
Photovoltaics (PV). Furthermore, a sub-system for a biomass integrated gasification
combined cycle (BIGCC) is integrated to recycle solid waste into useful forms of energy to be
re-used within the EWF Nexus. Finally, a sub-system representing carbon capture (CC)
technology is integrated to capture and recycle CO from both the CCGT and the BIGCC. The
2
integration of CC with the BIGCC transforms the carbon neutral BIGCC process to a negative
GHG emission technology with carbon capture and storage (BECCS).
For the different scenarios and sub-system configurations considered, the results indicate that
the largest global warming potential (GWP) originates from the non-energy related emissions
within the food sub-systems. Within this category, emissions from the enteric fermentation
processes present in livestock species represent the overwhelming majority of the GWP.
Emissions from the power generation are reduced as power from PV technology is integrated
as a substitute for the CCGT. The GWP is further reduced by 45 % as the BIGCC is
integrated to supplement PV’s. The complete roll out of PV and the BECCS (BIGCC +CC)
to power the water and food sub-systems can almost completely balance the GWP from the
non-energy related emissions by reducing the total GWP by 98 %, attributed to a theoretical
achievable maximum negative emission of 1.15 109 kg CO /year. In the same scenario, the
2
PV land footprint required calculated is a maximum of 660 ha accompanied by a 127 %
×
decrease in natural gas consumption (27 % credit).
ii
DEDICATED TO MY PARENTS, FAMILY and FRIENDS
iii
Affirmation
The work submitted in this thesis is my own, and has not been submitted previously for any
other degree. The following publications and presentations have resulted from this work:
Al-Ansari, T., Korre, A., Nie, Z., Shah, N., 2016, Integration of Biomass Gasification and
CO Capture in the LCA model for the Energy, Water and Food Nexus, proceedings of the
2
26th European Symposium on Computer Aided Process Engineering: Escape 26, June 12 –
14, Slovenia.
Al-Ansari, T., Korre, A., Nie, Z. and Shah, N. 2015. Development of a life cycle assessment
tool for the assessment of food production systems within the energy, water and food nexus.
Sustainable Production and Consumption.
Al-Ansari, T., Nie, Z., Korre, A., Shah, N., Assessment of Greenhouse Gas Control
Technology Options within the Energy, Water and Food Nexus, 2nd International
Symposium on Energy and Mechanics, Aberdeen, Scotland,19 – 21st August 2014.
Al-Ansari, T., Korre, A., Nie, Z., Shah, N., Integrated Modelling of the Energy, Water and
Food Nexus to Enhance the Environmental Performance of Food Production Systems, 9th
International Conference LCA of Food, San Francisco, USA, 8 – 10 October 2014
Al-Ansari, T., Korre, A., Nie, Z., Shah, N., 2014, Development of a Life Cycle Methodology
for the Energy, Water and Food Nexus, proceedings of the 24th European Symposium on
Computer Aided Process Engineering: Escape 24, June 15 – 18, Hungary.
Al-Ansari, T., Korre, A., Shah, N.,2013, Development of a Life Cycle Methodology for the
Energy, Water and Food Nexus, poster presentation, First Global Food Security Conference.
Al-Ansari, T., Korre, A., Shah, N., 2013, Development of a Life Cycle Methodology for the
Energy, Water and Food Nexus, poster presentation, Qatar Foundation Third Annual
Research Forum.
Al-Ansari, T., Korre, A., Shah, N., 2012, Sustainability Assessment of the Energy, Water and
Food Nexus, poster presentation, Qatar Foundation Third Annual Research Forum.
iv
Acknowledgements
I would like to thank:
God for giving me the strength, discipline and perseverance to complete this PhD, especially
in times of hardship;
Professor Anna Korre and Professor Nilay Shah for their supervision, support and guidance
throughout the PhD program beginning in 2011;
my friends and colleagues within the “Minerals, Energy and Environmental Engineering
Research Group” at Imperial College and I wish them the best in their future endeavours;
my sponsor; the Qatar foundation including members of the Qatar Research and Leadership
Program (QRLP) and especially Dr Ayman Bassil for their support since joining QRLP in
2010;
and finally, a special thank you to my father, Ali, my mother, Sahar and my two brothers,
Omar and Hussam for their unconditional support.
v
Table of Contents
Table of Contents
ABSTRACT I
AFFIRMATION ................................................................................................................................. IV
ACKNOWLEDGEMENTS .................................................................................................................V
TABLE OF CONTENTS ................................................................................................................... VI
LIST OF FIGURES ............................................................................................................................ XI
LIST OF TABLES ............................................................................................................................. XV
CHAPTER 1 INTRODUCTION AND OBJECTIVES ................................................................ 1
1.1
1.2 INTRODUCTION ............................................................................................................................... 1
1.3 RESEARCH OBJECTIVES ................................................................................................................. 3
CHAPTERT 2H ESIGS LSTORBUACTLU RREE .S..O...U....R...C...E..S...:. .T...R....E..N....D...S.. ..A...N...D... .R....I.S...K...S... ...................................................................................................... 75
2.1
2.1.1 WAWTEaRte RrE CSoOnUsRuCmESp ..t.i..o..n... .P...a..t..t.e...r..n.................................................................................................................................................................................................. 79
2.1.2 Addressing Future Water Challenges ...............................................................................10
2.2
2.2.1 THFEe PeRdOinVgIS IaO GN rOoFw FiOnOgD P .o...p..u...l.a..t..i.o...n.. ................................................................................................................................................................................... 1111
2.2.2 Food Production Challenges .................................................................................................12
2.3
2.3.1 ENTERhGeY E RnEeSrOgUyR OCuEtSl .o..o...k.. .............................................................................................................................................................................................................................. 1134
2.3.2 Costs of Climate change ..........................................................................................................16
CHAPTER 3 THE EARTH SYSTEM ........................................................................................ 18
vi
Table of Contents
3.1
3.2 THE INDUSTRIAL SYSTEM ........................................................................................................... 19
3.2.1 THAE gFrOiOcuDl StYuSrTeE aMn .d.. .t..h...e.. .E...n..v..i..r..o..n...m....e..n..t.. ....................................................................................................................................................................... 2213
3.2.2 Sustainable Intensification of Food Production ..........................................................25
3.3
3.3.1 NITNRiOtrGoEgNe CnY CCyLcEl .e.. .I..n..p...u..t..s.. ....................................................................................................................................................................................................................... 2372
3.3.2 Nitrogen Cycle Outputs ...........................................................................................................33
3.4
3.5 CARBON CYCLE ............................................................................................................................. 35
CHAPTERS 4Y STETMH PEE RESWPEFC TNIEVEX OUNS E..N...V..I.R..O...N..M...E..N..T...A..L.. .D..E..G...R..A..D...A..T..I.O..N... ....................................................................................... 4 306
4.1
4.2 ENERGY AND WATER NEXUS ..................................................................................................... 42
4.3 EXPANDING NEXUS BOUNDARIES ............................................................................................. 43
CHAPTERD 5E FINMINEGT THHOE DEWOLFO NGEYXU ..S.. .I.N.. .T..H...I.S. .R...E..S..E..A..R..C..H..................................................................................................................................... 5 418
5.1
5.2 PRODUCT SYSTEMS ...................................................................................................................... 52
5.3 SYSTEMS ENGINEERING .............................................................................................................. 53
5.4 SYSTEM TRANSFORMATION ....................................................................................................... 55
5.5 INDUSTRIAL ECOLOGY ................................................................................................................. 57
5.6 LIFE CYCLE ASSESSMENT............................................................................................................ 61
5.7 INTEGRATION OF NITROGEN IN LCA ........................................................................................ 66
5.8 AGRO-SYSTEM NITROGEN BUDGET........................................................................................... 68
5.9 THE EWF NEXUS TOOL .............................................................................................................. 71
5.9.1 QATTAraRd FeO SOuDp SpYlyST DEiMsr .u...p...t.i..o..n...s. ........................................................................................................................................................................................................ 7756
5.9.2 Vulnerable Domestic Infrastructure .................................................................................77
5.9.3 Increasing Domestic Production.........................................................................................78
5.9.4 Application of the EWF Nexus tool ....................................................................................80
5.10
CHAPTERW 6 ATEWR AFOTOETR P RSIUNBTI-NSGY .S...T...E...M.... .L..C...I.. .M....O...D....E...L.. .D....E..V....E..L...O...P...M....E...N...T.... .................................................................. 8853
6.1
6.1.1 THMERSMFA PLr DocEeSAssL .T..I..N...G.. .P...R...O..C...E..S..S..:. .M....U...L..T...I.-..S..T...A...G..E.. .F...L..A...S..H... .................................................................................................................. 8888
6.1.2 MSF LCI development ...............................................................................................................90
6.2
6.2.1 MERCeHvAeNrIsCeA OL sDmEoSAsiLsI NLACTI IMONo dPeRlO DCeEvSeSEloSp: RmEeVnEtR ..S..E... .O...S..M....O..S..I..S.. ......................................................................................... 9957
vii
Table of Contents
6.3
6.4 THE ARABIAN GULF .................................................................................................................. 102
6.4.1 DEISnAtLeINgrAaTtIiOoNn I oMfP BArCiTn eO NE fAflRuAeBnIcAeN i Gn ULLCFA C ..O...A..S..T... ............................................................................................................................ 1 10044
6.5
6.6 WIDER IMPACT ON ARABIAN GULF ....................................................................................... 107
CHAPTERS 7A LINEITNYE SRIMGUYL SAUTIBON-S MYSOTDEELMS . .L...C..I.. .M....O....D...E...L.. .D....E...V...E..L...O....P..M.....E..N....T... ........................................................... 112103
7.1
7.2 FUEL FIRED BOILER ................................................................................................................... 121
7.2.1 COR-GeE-NhEeRaAt TrIeOgNe nPeOrWatEiRo nP LrAaNnTk iLnCeI C MycOlDeE ..L.. .D...E...V..E..L...O..P...M...E...N..T...:. ................................................................................... 1 12255
7.2.2 Configuration 2: CPDP Integration with MSF ........................................................... 131
7.2.3 Configuration 3: CPDP Integration with RO .............................................................. 135
7.2.4 Summary of CPDP ................................................................................................................... 136
7.3
7.3.1 COSMuBmINmEDa rCyY oCLf Em GaAiSn T CUCRGBTIN LEC (IC mCoGdTe)l . ............................................................................................................................................................. 1 13476
7.4
7.4.1 CCCGoTn AfiNgDu rDaEtSiAoLnI N4A: STiImONp IleN TGETG RwAiTthIO RNO ... ....................................................................................................................................................... 1 14467
7.4.2 Configuration 5: CCGT with RO ........................................................................................ 149
7.4.3 Configuration 6: CCGT driving RO and MSF ............................................................... 150
7.4.4 Configuration 7: Combined gas/steam power cycle driving RO and MSF .... 152
7.4.5 Summary ..................................................................................................................................... 154
7.5
7.6 EMISSIONS FROM FOSSIL FUEL POWER GENERATION ........................................................ 155
7.7 CCGT WATER REQUIREMENT ................................................................................................. 156
7.7.1 RENSoElWaAr BPLVE sEyNstEeRmGY O SpUtBio-SnYsS .T...E..M... .L...C...I.. M.....O..D...E...L..L..I.N...G... .................................................................................................................... 1 15567
7.7.2 PV module manufacturing process ................................................................................. 159
7.7.3 Comparative Assessment of LCA for PV system ........................................................ 160
7.8
7.8.1 SOLSAoRla PrV E LnCgiIn MeOeDriEnLg D cEoVnEcLeOpPtMs uENtiTli s..e...d.. .i.n... .t..h..e... .P..V... .L...C..I.. .m....o..d...e..l. ....................................................................... 1 16612
7.8.2 PV module Design ................................................................................................................... 166
7.8.3 PV module Life cycle .............................................................................................................. 167
7.8.4 Summary of main results .................................................................................................... 169
CHAPTER 8 FOOD SUB-SYSTEM LCI MODEL DEVELOPMENT .................................173
8.1
8.1.1 FERATmILmIZoEnRi Pa RPOrDoUdCuTcItOioNn .. .L...C...I. .M....o..d...e..l. ....................................................................................................................................................................... 1 17746
8.1.2 Urea LCI Model ......................................................................................................................... 176
viii
Table of Contents
8.2
8.3 FERTILIZER APPLICATION ....................................................................................................... 178
8.3.1 LIVEEsStTiOmCaKt iMoAnN oAfG GEHMGEN ETm LiCssI iMonOsD .E..L.. ........................................................................................................................................................................ 1 17890
8.3.2 Estimation of Non-GHG Emissions .................................................................................. 183
8.4
8.4.1 NITNRiOtrGoEgNe BnU BDuGdEgTe .t.. .I..n..p...u..t..s.. ........................................................................................................................................................................................................ 1 18847
8.4.2 Nitrogen Budget Outputs .................................................................................................... 189
CHAPTER 9 WASTE MANAGEMENT LCI MODEL DEVELOPMENT ..........................195
9.1
9.1.1 GACSIhFeICmAiTcIaOlN m LoCdI eMl ..O..D...E..L... .D...E..V...E..L..O...P..M....E..N...T... ........................................................................................................................................................ 1 29090
9.1.2 Biochar ......................................................................................................................................... 207
9.2
9.2.1 BIOIMntAeSgSr IaNtTioEnG RoAf TgEaDs iGfiAeSrI FwICitAhT CIOCNG CTO...M...B...I.N...E..D... .C...Y..C..L...E.. .L...C...I. .M....O...D...E..L.. ......................................................... 2 20181
9.2.2 Emissions from BIGCC systems ......................................................................................... 212
9.2.3 Water requirement BIGCC .................................................................................................. 216
9.2.4 Integration of BIGCC with EWF Nexus .......................................................................... 216
9.3
9.3.1 CARCBaOrbNo CnA CPTaUpRtuEr..e.. .T...e..c...h..n...o..l.o...g..y... ...................................................................................................................................................................................... 2 21177
9.3.2 Integration of CC with BIGCC ............................................................................................ 219
9.3.3 The utilisation of CO for fertilization ........................................................................... 221
2
CHAPTER 10 SCENARIO DEVELOPMENT AND RESULTS ............................................223
10.1
10.2 OPTIMUM FOSSIL FUEL ENERGY – WATER CONFIGURATION: ............................................. 223
10.2.1IN TSEcGeRnAaTrEioD 1A S–S CESoSnMvEeNnTti oOnF aTlH ME oQdAeT ..A..R... .E...W....F... .N...E...X..U...S.. ........................................................................................................ 2 22257
10.2.2 Scenario 2 – Integration of BIGCC .................................................................................. 231
10.2.3 Scenario 3 - Integration of biochar ................................................................................ 235
10.2.4 Scenario 4 – Integration of CC .......................................................................................... 237
10.2.5 Scenario 5 - Integration of CC with CCGT and stand-alone BIGCC .................. 240
10.2.6 Scenario 6 - Integration of CC with CCGT and BIGCC (BECCS). ......................... 242
10.2.1 Scenario 7 - Integration of PV and BECCS (CC and BIGCC). ................................ 244
10.2.2 Scenario Comparison ............................................................................................................ 247
10.3
10.4 WATER FOOTPRINT .................................................................................................................. 250
10.4.1A RLAoBcIAaNl iGmUpLaF cStI MonU LAArTaIbOiNa Rn EGSuUlLf T..S........................................................................................................................................................................... 2 25522
10.4.2 Regional Assessment of Arabian Gulf ............................................................................ 253
ix
Description:Doctor of Philosophy of Imperial College London. April 2016 . Integration of Biomass Gasification and. CO2 Capture in the LCA model for the Energy, Water and Food Nexus, proceedings of the Where the recovery ratio is given by r ≤ 0.5 and δ is the Dirac delta function. The surface salinity in th