Table Of ContentUNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA
Dipartimento di Fisica “G. Occhialini”
AUDENTES FORTUNA IUVAT
Tesi di Dottorato in Fisica e Astronomia
Curriculum: Tecnologie Fisiche
Ciclo XXIX
Design of Analog Circuits
in 28nm CMOS Technology
for Physics Applications
Autore: Alessandra Pipino
Tutor: Prof. MassimoGervasi
Supervisore: Prof. AndreaBaschirotto
Coordinatore: prof.ssaMartaCalvi
AnnoAccademico2015/2016
To Fabrizio
3
i
Abstract
The exponential trend of the complementary metal-oxide-semiconductor (CMOS)
technologiespredictedbyMoore’slawhasbeensuccessfullydemonstratedoverthe
lastthreedecades. AconstantdownscalingofCMOStechnologieshasbeendevel-
oped,inordertocomplywithrequirementsonspeed,complexity,circuitdensityand
powerconsumptionofadvancedhighperformancedigitalapplications.
With the arrival of nanoscale (sub-100nm) CMOS technologies, digital perfor-
manceimprovefurther,butmanynewchallengeshavebeenintroducedforanalog
designers. Infact,forthedigitalcircuitsCMOSscaling-downleadstoseveralbenefits:
speedimprovement,reducedpowerconsumption,highintegrationandcomplexity
level. Theanalogcircuits,instead,stronglysuffersfromtheScalTechtrend,because
theMOSbehaviordramaticallychangesthroughthedifferenttechnologicalnodes.Es-
peciallyfortheultra-scalednodes,secondordereffects,previouslynegligible,become
veryimportantandstarttobedominant,affectingthetransistorsperformance. For
instance,lowerintrinsicDC-gain,reduceddynamicrange,operatingpointissuesand
largerparametervariabilityaresomeoftheproblemsduetothescalingofphysical
(length, oxide thickness, etc.) and electrical (supply voltage) parameters. Analog
designershavetomanagetheseproblemsatdifferentphasesofthedesign,circuital
andlayout,inordertosatisfythemarkethigh-performancerequirements.
Despitethat,thedesignofanalogcircuitinsub-nmtechnologiesismandatoryin
somecasesorcanbeevenstrategicalinothers. Forexample,inmainlymixed-signal
systems,theread-outelectronicrequireshighfrequencyperformance,sothechoice
ofdeepsubmicrontechnologyismandatory,alsofortheanalogpart. Othertypes
ofapplicationsarethehigh-energyphysicsexperiments,whereread-outcircuitsare
exposed to very high radiation levels with consequent performance degradation.
Sinceradiationdamageisproportionaltogateoxidevolume,smallerdevicesexhibit
lowerradiationdetriment. Ithasbeendemonstratedinfact,that28nmCMOStech-
nologydevicesarecapabletosustain1Grad-TIDexposure,notpossiblewithprevious
technologies.
Inthisthesis,themainchallengesinultra-scaledtechnologiesareanalysedand
thenintegratedcircuitsdesignedin28nmCMOStechnologyarepresented. Theaim
ofthisworkistoshowthedesignapproachandseveralsolutionstobeappliedin
ordertooutermostthelimitsofsiliconscaling,addressthemajorscalingproblems
andguaranteetherequiredperformance.
Thefirstcircuitdesign,presentedinthesecondchapterandintegratedin28nm
CMOStechnology,isaFast-Trackerfront-end(FTfe)forchargedetection. Theread-
outsystemhasbeendevelopedstartingfromthemainspecificationsandcircuital
solutionsalreadyadoptedformuondetectioninATLASexperiment. Theproposed
front-end is able to detect an event and soon after to reset the system in order to
maketheread-outfront-endalreadyavailableforthefollowingevents,avoidinglong
deadtimes. Moreover,exploitingatwothresholdscrossingsolution,therequired
ii
informationcanbecollected,simplifyingthearchitecturecomparedtothecurrent.
The second circuit design presented and always integrated in 28nm CMOS
technology,isaChopperinstrumentationamplifier. Instrumentationamplifiersare
thekeybuildingblocksinsensorandmonitoringapplications,wheretheyareused
tosenseandamplifyusuallyverysmall(sub-mV)andlowfrequencysignals. For
thisreasonitisimportanttoreduceoreliminatetheinputoffsetandflickernoise
introducedbytheamplifieritself,superimposingthemainsignaltobedetected. The
proposedamplifierusetheclassicalmodulationtechnique,calledchopper,inorder
tomeetthelowoffsetandlowflickernoiserequirements. Theuseofanultra-scaled
technologyensurestheamplifieremploymentineverymixed-signalsystem,with
advantagesalsointermsofchargeinjection.
Contents
Abstract i
Contents iv
ListofFigures vii
ListofTables viii
Introduction 1
1 DeviceTrendsofTechnologicalScaling-Down 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 SupplyVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 ThresholdVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 PVTVariations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 MismatchVariations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 IntrinsicGainReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 RestrictiveDesignRules . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 IntrinsicTransitionFrequency . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 RadiationHardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 FastTrackerFront-EndforATLASMDT 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 ATLASMonitoredDriftTubeChambers . . . . . . . . . . . . . . . . . . 15
2.3 ATLASMDTFront-EndElectronics. . . . . . . . . . . . . . . . . . . . . 18
2.4 FastTrackerfront-endArchitecture . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 ChargeSensitivePreamplifier . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Comparatorsandthresholds . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Logicblock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.5 Outputbuffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 FTfeLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 FTfePerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.1 Signalssettings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
iii
iv CONTENTS
2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 ChopperInstrumentationAmplifier 47
3.1 OffsetCompensationTechniques . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1 Auto-zeroTechnique . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 ChopperTechnique. . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 ChopperAmplifier: Prototype1. . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Continuous-timeopampdesign . . . . . . . . . . . . . . . . . . 52
3.2.2 Choppedopampdesign . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 ChopperAmplifier: Prototype2. . . . . . . . . . . . . . . . . . . . . . . 65
3.3.1 Four-phaseGenerator . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4 Papers 73
4.1 IEEEICECS2015: Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 IEEEICECS2015: Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Conclusions 81
Bibliography 85
Acknowledgements 89
List of Figures
1.1 Supplyvariationwithtransistorlength. . . . . . . . . . . . . . . . . . . 4
1.2 Commonsourcecircuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thresholdvoltagevariationwithtransistorlength. . . . . . . . . . . . . 6
1.4 V mismatchcomparisonbetween40nmand28nmtechnologies.. . 9
TH
1.5 MOSintrinsicgainvs. transistorlength(Voltagegain@5xL ). . . . . 10
min
1.6 ExampleofNMOSlayoutin28nmtechnology(100fingersof3µm/1µm
toobtainatotalNMOSof300µm/1µm). . . . . . . . . . . . . . . . . . 11
1.7 MOStransitionfrequencyvstransistorlength. . . . . . . . . . . . . . . 12
1.8 OxidetrappedchargesinNMOStransistorduetoionizationradiation. 13
1.9 Thesource-drainleakagepahcreatedbybuilt-upchargeinoxide. . . . 13
2.1 TheATLASexperimentattheLargeHadronCollider[1]. . . . . . . . . 16
2.2 TheATLASMuonSpectrometer[1]. . . . . . . . . . . . . . . . . . . . . 17
2.3 Illustrationofatypicalsignalinducedforexamplebythreeionization
clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 CrosssectionofanMDTtube[2]. . . . . . . . . . . . . . . . . . . . . . . 18
2.5 ElectricalconnectionstoanMDTdrifttube[2]. . . . . . . . . . . . . . . 19
2.6 SchematicdiagramoftheMDTreadoutelectronics[2]. . . . . . . . . . 19
2.7 BlockdiagramofonecurrentASDchannel[2]. . . . . . . . . . . . . . . 20
2.8 FTfeblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 SimplifiedtimingdiagramoftheFTfe. . . . . . . . . . . . . . . . . . . . 22
2.10 CSPblockscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.11 CSPOpampschematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.12 SchematicoftheC capacitorarray. . . . . . . . . . . . . . . . . . . . . 27
F
2.13 Thecapacitorvaluesrelatedtothedigitalwords. . . . . . . . . . . . . . 27
2.14 TheCSPoutputvoltagepeakvaluesrelatedtothedigitalwords. . . . 28
2.15 Front-enddeltaresponseforunipolarandbipolarshaping. . . . . . . . 28
2.16 Activeg -RCschematicusedasshaperstage. . . . . . . . . . . . . . . 29
m
2.17 Shaperopampschematic. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.18 TheShapercapacitorsvaluesrelatedtothedigitalwords. . . . . . . . . 31
2.19 TheActiveg -RCpolefrequencyvaluesrelatedtothedigitalwords. . 31
m
2.20 Resistivedividersschematics. . . . . . . . . . . . . . . . . . . . . . . . . 32
2.21 SchematicofthelogicblockwithResetandT signalsgeneration. 33
IME_DIFF
v
vi LISTOFFIGURES
2.22 FTfelayoutandroutingtopads. . . . . . . . . . . . . . . . . . . . . . . 33
2.23 FTfelayoutindetail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.24 Chippindiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.25 CSPfrequencyresponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.26 Inputcurrentpulse(blue)andCSPoutputvoltage(red)for5fCinput
charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.27 Inputcurrentpulse(blue)andCSPoutputvoltage(red)for100fCinput
charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.28 CSPoutputpeakamplitudevs. inputcharge. . . . . . . . . . . . . . . . 38
2.29 Shaperfrequencyresponse. . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.30 Input current pulse (blue) and Shaper output voltage (red) for 5fC
inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.31 Inputcurrentpulse(blue)andShaperoutputvoltage(red)for100fC
inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.32 CSPandShaperoutputsignalsfordifferentinputcharges(5÷100fC). 40
2.33 Shaperoutputpeakamplitudevs. inputcharge. . . . . . . . . . . . . . 40
2.34 Shaperpeakingtimedelayvs. inputcharge. . . . . . . . . . . . . . . . 41
2.35 CSP,Shaper,ComparatorsandResetsignalsat5fCinputcharge. . . . . 41
2.36 CSP,Shaper,ComparatorsandResetsignalsat100fCinputcharge. . . 42
2.37 Timedifferencepulseat5fCinputcharge. . . . . . . . . . . . . . . . . . 42
2.38 Timedifferencepulseat100fCinputcharge. . . . . . . . . . . . . . . . 43
2.39 Sensitivityvs. inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.40 ENCvs. inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.41 SNRvs. inputcharge.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1 Asimplifiedsensorread-outdiagram. . . . . . . . . . . . . . . . . . . . 47
3.2 Amplifierwithinputoffsetsource. . . . . . . . . . . . . . . . . . . . . . 48
3.3 LowfrequencynoisebehaviourofaCMOSamplifier. . . . . . . . . . . 49
3.4 Auto-zerotechniqueblockdiagram. . . . . . . . . . . . . . . . . . . . . 50
3.5 Simplifiedchoppertechniquediagram. . . . . . . . . . . . . . . . . . . 51
3.6 Frequencyoperationofthechoppertechnique. . . . . . . . . . . . . . . 51
3.7 Polarity-reversedswitchschematic.. . . . . . . . . . . . . . . . . . . . . 51
3.8 Continuous-timeamplifierschematic. . . . . . . . . . . . . . . . . . . . 52
3.9 Firststageinputrail-to-railfoldedcascodeschematic. . . . . . . . . . . 53
3.10 Secondandthirdstagesdifferentialamplifiersschematic. . . . . . . . . 53
3.11 Rail-to-railoperationoftheinputstage. . . . . . . . . . . . . . . . . . . 57
3.12 Transferfunctionofthefirststage. . . . . . . . . . . . . . . . . . . . . . 58
3.13 Transferfunctionofthesecondstage. . . . . . . . . . . . . . . . . . . . 58
3.14 Transferfunctionofthethirdstage. . . . . . . . . . . . . . . . . . . . . . 59
3.15 Choppedamplifierschematic. . . . . . . . . . . . . . . . . . . . . . . . . 59
3.16 Transmissiongatestructureusedforchopperswitches. . . . . . . . . . 60
3.17 Chopperamplifierlayout. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.18 Choppedamplifierpindiagram. . . . . . . . . . . . . . . . . . . . . . . 61
3.19 Choppedamplifierbodediagram. . . . . . . . . . . . . . . . . . . . . . 62
Description:Table 2.3: CSP dimensioning. A zero with time constant approximately equal to CF gm and two poles with time constants in first approximation depending on CFRF (which determines the dominant pole) and CD gm. (which defines the non-dominant pole) are introduced. The output voltage peak in this