Table Of ContentDeep Network Design
for Medical Image
Computing
Principles and Applications
THE ELSEVIER AND MICCAI SOCIETY
BOOK SERIES
Advisory Board
NicholasAyache
JamesS.Duncan
AlexFrangi
HayitGreenspan
PierreJannin
AnneMartel
XavierPennec
TerryPeters
DanielRueckert
MilanSonka
JayTian
S.KevinZhou
Titles
Balocco,A.,etal.,ComputingandVisualizationforIntravascularImagingand
ComputerAssistedStenting,9780128110188.
Dalca,A.V.,etal.,ImagingGenetics,9780128139684.
Depeursinge,A.,etal.,BiomedicalTextureAnalysis,9780128121337.
Munsell,B.,etal.,Connectomics,9780128138380.
Pennec,X.,etal.,RiemannianGeometricStatisticsinMedical
ImageAnalysis,9780128147252.
Trucco,E.,etal.,ComputationalRetinalImageAnalysis,9780081028162.
Wu,G.,andSabuncu,M.,MachineLearningandMedicalImaging,9780128040768.
ZhouS.K.,MedicalImageRecognition,SegmentationandParsing,9780128025819.
Zhou,S.K.,etal.,DeepLearningforMedicalImageAnalysis,9780128104088.
Zhou,S.K.,etal.,HandbookofMedicalImageComputingandComputer
AssistedIntervention,9780128161760.
Deep Network Design
for Medical Image
Computing
Principles and Applications
Haofu Liao
S. Kevin Zhou
Jiebo Luo
AcademicPressisanimprintofElsevier
125LondonWall,LondonEC2Y5AS,UnitedKingdom
525BStreet,Suite1650,SanDiego,CA92101,UnitedStates
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
Copyright©2023ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic
ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,
withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further
informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch
astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:
www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe
Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience
broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment
maybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating
andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch
informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including
partiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume
anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,
negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas
containedinthematerialherein.
ISBN:978-0-12-824383-1
ForinformationonallAcademicPresspublications
visitourwebsiteathttps://www.elsevier.com/books-and-journals
Publisher:MaraE.Conner
AcquisitionsEditor:TimPitts
EditorialProjectManager:EmilyThomson
ProductionProjectManager:SuryaNarayanan
Jayachandran
CoverDesigner:ChristianJ.Bilbow
TypesetbyVTeX
Toourfamiliesfortheirenduringsupport
This page intentionally left blank
Contents
Listoffigures ................................................. xi
Acknowledgments ............................................. xvii
CHAPTER 1 Introduction .................................... 1
1.1 Medicalimagecomputing ........................... 1
1.1.1 Medicalimagereconstruction ................... 2
1.1.2 Medicalimageanalysis ........................ 2
1.1.3 Medicalimagecomputingasfunctionalapproximation 3
1.2 Deeplearningdesignprinciples ....................... 4
1.2.1 Computervisiontechniquesformedicalimage
computing.................................. 4
1.2.2 Machinelearningtechniquesformedicalimage
computing.................................. 5
1.2.3 Medicaldomainknowledge..................... 5
1.3 Chapterorganization ............................... 6
References....................................... 8
CHAPTER 2 Deep learning basics ........................... 11
2.1 Convolutionalneuralnetworks ........................ 11
2.1.1 3Dconvolutionalneuralnetworks ................ 12
2.2 Recurrentneuralnetworks ........................... 13
2.2.1 Longshort-termmemory....................... 14
2.2.2 BidirectionalRNN ........................... 15
2.3 Deepimage-to-imagenetworks ....................... 16
2.3.1 Retainingspatialresolutions .................... 16
2.3.2 Fullyconvolutionalnetworks.................... 17
2.3.3 Encoder–decodernetworks ..................... 17
2.4 Deepgenerativenetworks ........................... 18
2.4.1 Basicmodels................................ 19
References....................................... 21
PART 1 Deep network design for medical image
analysis and selected applications
CHAPTER 3 Classification: lesion and disease recognition .... 27
3.1 Designprinciples .................................. 28
3.1.1 Choiceofdeepneuralnetworks .................. 28
3.1.2 Choiceofclassificationtasksandobjectives ........ 29
3.1.3 Transferlearning ............................. 31
3.1.4 Multitasklearning ............................ 32
vii
viii Contents
3.2 Casestudy:skindiseaseclassificationversusskinlesion
characterization ................................... 33
3.2.1 Background ................................ 35
3.2.2 Dataset .................................... 35
3.2.3 Methodology ............................... 37
3.2.4 Experiments ................................ 38
3.2.5 Discussion ................................. 42
3.3 Casestudy:skinlesionclassificationwithmultitasklearning . 44
3.3.1 Background ................................ 44
3.3.2 Dataset .................................... 45
3.3.3 Methodology ............................... 47
3.3.4 Experiments ................................ 49
3.3.5 Discussion ................................. 52
3.4 Summary ........................................ 53
References....................................... 54
CHAPTER 4 Detection: vertebrae localization and identification 59
4.1 Designprinciples .................................. 60
4.1.1 Choiceofdeepneuralnetworks .................. 60
4.1.2 Choiceofdetectiontasksandobjectives ........... 64
4.2 Casestudy:vertebraelocalizationandidentification ........ 67
4.2.1 Background ................................ 69
4.2.2 Methodology ............................... 70
4.2.3 Experiments ................................ 76
4.2.4 Discussion ................................. 80
4.3 Summary ........................................ 81
References....................................... 83
CHAPTER 5 Segmentation: intracardiac echocardiography
contouring ..................................... 89
5.1 Designprinciples .................................. 90
5.1.1 Choiceofdeepneuralnetworks .................. 90
5.1.2 Choiceofsegmentationtasksandobjectives ........ 92
5.1.3 Imagerestorationforsegmentation ............... 94
5.2 Casestudy:intracardiacechocardiographycontouring ...... 96
5.2.1 Methodology ............................... 97
5.2.2 Experiments ................................ 99
5.2.3 Discussion ................................. 102
5.3 Summary ........................................ 102
References....................................... 103
CHAPTER 6 Registration: 2D/3D rigid registration............. 109
6.1 Designprinciples .................................. 111
6.1.1 Deepsimilaritybasedregistration ................ 111
6.1.2 Reinforcementlearningbasedregistration .......... 112
Contents ix
6.1.3 Supervisedtransformationestimation ............. 113
6.1.4 Unsupervisedtransformationestimation ........... 115
6.2 Casestudy:2D/3Dmedicalimageregistration ............ 117
6.2.1 Problemformulation .......................... 119
6.2.2 Methodology ............................... 121
6.2.3 Experiments ................................ 125
6.2.4 Limitations ................................. 130
6.2.5 Discussion ................................. 130
6.3 Summary ........................................ 130
References....................................... 131
PART 2 Deep network design for medical image
reconstruction, synthesis, and selected applications
CHAPTER 7 Reconstruction: supervised artifact reduction ..... 137
7.1 Designprinciples .................................. 138
7.1.1 Imagedomainapproaches ...................... 138
7.1.2 Sensordomainapproaches ..................... 139
7.1.3 Dual-domainapproaches ....................... 141
7.2 Casestudy:sparse-viewartifactreduction ............... 142
7.2.1 Background ................................ 143
7.2.2 Methodology ............................... 144
7.2.3 Experiments ................................ 147
7.2.4 Discussion ................................. 149
7.3 Casestudy:metalartifactreduction .................... 150
7.3.1 Background ................................ 152
7.3.2 Methodology ............................... 154
7.3.3 Experiments ................................ 156
7.3.4 Discussion ................................. 162
7.4 Summary ........................................ 162
References....................................... 163
CHAPTER 8 Reconstruction: unsupervised artifact reduction... 169
8.1 Designprinciples .................................. 170
8.1.1 Unpairedlearningapproaches ................... 170
8.1.2 Self-supervisedlearningapproaches .............. 172
8.2 Casestudy:metalartifactreduction .................... 175
8.2.1 Background ................................ 177
8.2.2 Methodology ............................... 177
8.2.3 Experiments ................................ 183
8.2.4 Discussion ................................. 191
8.3 Summary ........................................ 193
References....................................... 194