Table Of Content“Howandwhyiscomputationalstatisticstakingovertheworld?Inthisseriouswork
ofsynthesisthatisalsofuntoread,EfronandHastie,twopioneersintheintegrationof
parametricandnonparametricstatisticalideas,givetheirtakeontheunreasonableeffec-
tivenessofstatisticsandmachinelearninginthecontextofaseriesofclear,historically
informedexamples.”
—AndrewGelman,ColumbiaUniversity
“Thisunusualbookdescribesthenatureofstatisticsbydisplayingmultipleexamples
ofthewaythefieldhasevolvedoverthepast60years,asithasadaptedtotherapid
increaseinavailablecomputingpower.Theauthors’perspectiveissummarizednicely
when they say, ‘Very roughly speaking, algorithms are what statisticians do, while
inference says why they do them.’ The book explains this ‘why’; that is, it explains
the purpose and progress of statistical research, through a close look at many major
methods,methodstheauthorsthemselveshaveadvancedandstudiedatgreatlength.
Bothenjoyableandenlightening,ComputerAgeStatisticalInferenceiswrittenespe-
ciallyforthosewhowanttohearthebigideas,andseetheminstantiatedthroughthe
essentialmathematicsthatdefinesstatisticalanalysis.Itmakesagreatsupplementto
thetraditionalcurriculaforbeginninggraduatestudents.”
—RobKass,CarnegieMellonUniversity
“This is a terrific book. It gives a clear, accessible, and entertaining account of the
interplaybetweentheoryandmethodologicaldevelopmentthathasdrivenstatisticsin
thecomputerage.Theauthorssucceedbrilliantlyinlocatingcontemporaryalgorithmic
methodologiesforanalysisof‘bigdata’withintheframeworkofestablishedstatistical
theory.”
—AlastairYoung,ImperialCollegeLondon
“Thisisaguidedtourofmodernstatisticsthatemphasizestheconceptualandcompu-
tationaladvancesofthelastcentury.Authoredbytwomastersofthefield,itoffersjust
therightmixofmathematicalanalysisandinsightfulcommentary.”
—HalVarian,Google
“EfronandHastieguideusthroughthemazeofbreakthroughstatisticalmethodologies
followingthecomputingevolution:whytheyweredeveloped,theirproperties,andhow
theyareused.Highlightingtheirorigins,thebookhelpsusunderstandeachmethod’s
roles in inference and/or prediction. The inference–prediction distinction maintained
throughoutthebookisawelcomeandimportantnoveltyinthelandscapeofstatistics
books.”
—GalitShmueli,NationalTsingHuaUniversity
“A masterful guide to how the inferential bases of classical statistics can provide a
principleddisciplinaryframeforthedatascienceofthetwenty-firstcentury.”
—StephenStigler,UniversityofChicago,authorof
SevenPillarsofStatisticalWisdom
“ComputerAgeStatisticalInferenceoffersarefreshingviewofmodernstatistics.Algo-
rithmicsareputonequalfootingwithintuition,properties,andtheabstractarguments
behindthem.Themethodscoveredareindispensabletopracticingstatisticalanalysts
intoday’sbigdataandbigcomputinglandscape.”
—RobertGramacy,TheUniversityofChicagoBoothSchoolofBusiness
“Everyaspiringdatascientistshouldcarefullystudythisbook,useitasareference,and
carry it with them everywhere. The presentation through the two-and-a-half-century
historyofstatisticalinferenceprovidesinsightintothedevelopmentofthediscipline,
puttingdatascienceinitshistoricalplace.”
—MarkGirolami,ImperialCollegeLondon
“Efron and Hastie are two immensely talented and accomplished scholars who have
managedtobrilliantlyweavethefiberof250yearsofstatisticalinferenceintothemore
recent historical mechanization of computing. This book provides the reader with a
mid-leveloverviewofthelast60-someyearsbydetailingthenuancesofastatistical
communitythat,historically,hasbeenself-segregatedintocampsofBayes,frequentist,
andFisheryetinmorerecentyearshasbeenunifiedbyadvancesincomputing.Whatis
lefttobeexploredistheemergenceof,androlethat,bigdatatheorywillhaveinbridg-
ingthegapbetweendatascienceandstatisticalmethodology.Whatevertheoutcome,
theauthorsprovideavisionofhigh-speedcomputinghavingtremendouspotentialto
enablethecontributionsofstatisticalinferencetowardmethodologiesthataddressboth
globalandsocietalissues.”
—RebeccaDoerge,CarnegieMellonUniversity
“Inthisbook,twomastersofmodernstatisticsgiveaninsightfultouroftheintertwined
worldsofstatisticsandcomputation.Throughaseriesofimportanttopics,Efronand
Hastieilluminatehowmodernmethodsforpredictingandunderstandingdataarerooted
inbothstatisticalandcomputationalthinking.Theyshowhowtheriseofcomputational
powerhastransformedtraditionalmethodsandquestions,andhowithaspointedusto
newwaysofthinkingaboutstatistics.”
—DavidBlei,ColumbiaUniversity
Absolutelybrilliant.Thisbeautifullywrittencompendiumreviewsmanybigstatistical
ideas,includingtheauthors’own.Amustforanyoneengagedcreativelyinstatistics
andthedatasciences,forrepeateduse.EfronandHastiedemonstratetheever-growing
powerofstatisticalreasoning,past,present,andfuture.
—CarlMorris,HarvardUniversity
ComputerAgeStatisticalInference
Thetwenty-firstcenturyhasseenabreathtakingexpansionofstatisticalmethodology,
bothinscopeandininfluence.“Bigdata,”“datascience,”and“machinelearning”have
becomefamiliartermsinthenews,asstatisticalmethodsarebroughttobearuponthe
enormousdatasetsofmodernscienceandcommerce.Howdidwegethere?Andwhere
arewegoing?
Thisbooktakesusonanexhilaratingjourneythroughtherevolutionindataanaly-
sisfollowingtheintroductionofelectroniccomputationinthe1950s.Beginningwith
classical inferential theories – Bayesian, frequentist, Fisherian – individual chapters
take up a series of influential topics: survival analysis, logistic regression, empirical
Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain
MonteCarlo,inferenceaftermodelselection,anddozensmore.Thedistinctlymodern
approach integrates methodology and algorithms with statistical inference. The book
endswithspeculationonthefuturedirectionofstatisticsanddatascience.
BRADLEY EFRONisMaxH.SteinProfessor,ProfessorofStatistics,andProfessorof
BiomedicalDataScienceatStanfordUniversity.Hehasheldvisitingfacultyappoint-
ments at Harvard, UC Berkeley, and Imperial College London. Efron has worked
extensivelyontheoriesofstatisticalinference,andistheinventorofthebootstrapsam-
plingtechnique.HereceivedtheNationalMedalofSciencein2005andtheGuyMedal
inGoldoftheRoyalStatisticalSocietyin2014.
TREVOR HASTIEisJohnA.OverdeckProfessor,ProfessorofStatistics,andProfes-
sorofBiomedicalDataScienceatStanfordUniversity.HeiscoauthorofElementsof
StatisticalLearning,akeytextinthefieldofmoderndataanalysis.Heisalsoknownfor
hisworkongeneralizedadditivemodelsandprincipalcurves,andforhiscontributions
totheRcomputingenvironment.HastiewasawardedtheEmmanuelandCarolParzen
prizeforStatisticalInnovationin2014.
INSTITUTE OF MATHEMATICAL STATISTICS
MONOGRAPHS
EditorialBoard
D.R.Cox(UniversityofOxford)
B.Hambly(UniversityofOxford)
S.Holmes(StanfordUniversity)
J.Wellner(UniversityofWashington)
IMSMonographsareconciseresearchmonographsofhighqualityonanybranchof
statistics or probability of sufficient interest to warrant publication as books. Some
concern relatively traditional topics in need of up-to-date assessment. Others are on
emergingthemes.Inallcasestheobjectiveistoprovideabalancedviewofthefield.
OtherBooksintheSeries
1. Large-ScaleInference,byBradleyEfron
2. NonparametricInferenceonManifolds,byAbhishekBhattacharyaandRabi
Battacharya
3. TheSkew-NormalandRelatedFamilies,byAdelchiAzzalini
4. Case-ControlStudies,byRuthH.KeoghandD.R.Cox
5. ComputerAgeStatisticalInference,byBradleyEfronandTrevorHastie
Computer Age Statistical Inference
Algorithms, Evidence, and Data Science
BRADLEY EFRON
StanfordUniversity,California
TREVOR HASTIE
StanfordUniversity,California
32AvenueoftheAmericas,NewYorkNY10013-2473,USA
CambridgeUniversityPressispartoftheUniversityofCambridge.
ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof
education,learningandresearchatthehighestinternationallevelsofexcellence.
www.cambridge.org
Informationonthistitle:www.cambridge.org/9781107149892
(cid:2)c BradleyEfronandTrevorHastie2016
Thispublicationisincopyright.Subjecttostatutoryexception
andtotheprovisionsofrelevantcollectivelicensingagreements,
noreproductionofanypartmaytakeplacewithoutthewritten
permissionofCambridgeUniversityPress.
Firstpublished2016
PrintedintheUnitedKingdombyClays,StIvesplc
AcataloguerecordforthispublicationisavailablefromtheBritishLibrary
ISBN978-1-107-14989-2Hardback
CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof
URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication,
anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain,
accurateorappropriate.
ToDonnaandLynda
Contents
Preface xv
Acknowledgments xviii
Notation xix
PartI ClassicStatisticalInference 1
1 AlgorithmsandInference 3
1.1 ARegressionExample 4
1.2 HypothesisTesting 8
1.3 Notes 11
2 FrequentistInference 12
2.1 FrequentisminPractice 14
2.2 FrequentistOptimality 18
2.3 NotesandDetails 20
3 BayesianInference 22
3.1 TwoExamples 24
3.2 UninformativePriorDistributions 28
3.3 FlawsinFrequentistInference 30
3.4 ABayesian/FrequentistComparisonList 33
3.5 NotesandDetails 36
4 FisherianInferenceandMaximumLikelihoodEstimation 38
4.1 LikelihoodandMaximumLikelihood 38
4.2 FisherInformationandtheMLE 41
4.3 ConditionalInference 45
4.4 PermutationandRandomization 49
4.5 NotesandDetails 51
5 ParametricModelsandExponentialFamilies 53
ix
Description:The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science a