Table Of ContentComprehensive Organic Functional
Group Transformations, Volume 4
Elsevier, 2003
Editors-in-Chief: Alan R. Katritzky, Otho Meth-Cohn, and Charles W. Rees
Synthesis: Carbon with Two Heteroatoms, Each Attached by a
Single Bond
Part I: Tetracoordinated Carbon Functions Bearing Two Heteroatoms, R CXX′
2
4.01 Dihalo Alkanes, R C(Hal) , Pages 1-40, Robert A. Hill
2 2
4.02 Functions Incorporating a Halogen and a Chalcogen, Pages 41-93,
Niall W. A. Geraghty
4.03 Functions Incorporating a Halogen and Another Heteroatom Group Othe
Than a Chalcogen, Pages 95-157, Alex C. Campbell and David R. Jaap
4.04 Functions Bearing Two Oxygens, R1 C(OR2) , Pages 159-214, David
2 2
T. Macpherson and Harshad K. Rami
4.05 Functions Incorporating Oxygen and Another Chalcogen, Pages 215-241,
Richard H. Wightman
4.06 Functions Incorporating Two Chalcogens Other Than Oxygen, Pages 243-291,
Yannick Vallée and Andrew Bulpin
4.07 Functions Incorporating a Chalcogen and a Group 15 Element, Pages 293-349,
Christopher D. Gabbutt and John D. Hepworth
4.08 Functions Incorporating a Chalcogen and a Silicon, Germanium, Boron or
Metal, Pages 351-402, Max J. Gough and John Steele
4.09 Functions Bearing Two Nitrogens, Pages 403-449, Derek R. Buckle and Ivan
L. Pinto
4.10 Functions Containing a Nitrogen and Another Group 15 Element, Pages
451-504, Frances Heaney
by kmno4
4.11 Functions Incorporating a Nitrogen and a Silicon, Germanium, Boron or Metal,
Pages 505-541, John Steele and Max J. Gough
4.12 Functions Containing One Phosphorus and Either Another Phosphorus or As,
Sb, Bi, Si, Ge, B or a Metal, Pages 543-589, R. Alan Aitken
4.13 Functions Containing at Least One As, Sb or Bi with or without a Metalloid
(Si or Ge) or a Metal, Pages 591-600, William M. Horspool
4.14 Functions Containing at Least One Metalloid (Si, Ge or B) Together with
Another Metalloid or Metal, Pages 601-665, Christopher G. Barber
4.15 Functions Containing Two Atoms of the Same Metallic Element, Pages
667-703, William J. Kerr and Peter L. Pauson
4.16 Functions Containing Two Atoms of Different Metallic Elements, Pages
705-727, William J. Kerr and Peter L. Pauson
Part II: Tricoordinated Carbon Functions Bearing Two Heteroatoms, R C=CXX′
2
4.17 Functions Incorporating Two Halogens or a Halogen and a Chalcogen, Pages
729-788, Peter D. Kennewell, Robert Westwood and Nicholas J. Westwood
4.18 Functions Incorporating a Halogen or Another Group other than a Halogen
or a Chalcogen, Pages 789-822, David I. Smith
4.19 Functions Bearing Two Chalcogens, Pages 823-877, Gary N. Sheldrake
4.20 Functions Containing a Chalcogen and Any Group Other Than a Halogen or
a Chalcogen, Pages 879-965, Peter D. Kennewell, Robert Westwood and
Nicholas J. Westwood
4.21 Functions Containing at Least One Nitrogen and No Halogen or Chalcogen,
Pages 967-1020, Graham L. Patrick
4.22 Functions Containing at Least One Phosphorus, Arsenic, Antimony
or Bismuth and No Halogen, Chalcogen or Nitrogen, Pages 1021-1042,
John M. Berge
4.23 Functions Containing at Least One Metalloid (Si, Ge or B) and No Halogen,
Chalcogen or Group 15 Element; also Functions Containing Two Metals,
Pages 1043-1070, Richard A. B. Webster
Part III: Tri- and Dicoordinated Ions, Radicals and Carbenes Bearing Two Heteroatoms
(RC+X1X2, RC−X1X2, RC·X1X2, :CX1X2)
4.24 Tri- and Dicoordinated Ions, Radicals and Carbenes Bearing Two Heteroatoms
(RC+X1X2, RC−X1X2, RC · X1X2, :CX1X2), Pages 1071-1083, William M. Horspool
4.25 References to Volume 4, Pages 1085-1229
by kmno4
4.01
Dihalo Alkanes, R C(Hal)
2 2
ROBERT A. HILL
UniversityofGlasgow,UK
3[90[0 GENERALMETHODS 1
3[90[1 DIFLUOROALKANES*RCF 1
1 1
3[90[1[0 Di~uoroAlkanesfromAlkanes 1
3[90[1[1 Di~uoroAlkanesfromDihaloAlkanes 2
3[90[1[2 Di~uoroAlkanesfromTrihaloAlkanes 4
3[90[1[3 Di~uoroAlkanesfromAlkenes 4
3[90[1[4 Di~uoroAlkanesfromAlkynes 5
3[90[1[5 Di~uoroAlkanesfromDi~uorocarbene 6
3[90[1[6 Di~uoroAlkanesfromAldehydesandKetones 7
3[90[1[7 Di~uoroAlkanesfromImines 09
3[90[2 DICHLOROALKANES*RCCl 00
1 1
3[90[2[0 DichloroAlkanesfromAlkanes 00
3[90[2[1 DichloroAlkanesfromDihaloAlkanes 02
3[90[2[2 DichloroAlkanesfromTrihaloAlkanes 02
3[90[2[3 DichloroAlkanesfromAlkenes 03
3[90[2[4 DichloroAlkanesfromAlkynes 04
3[90[2[5 DichloroAlkanesfromDichlorocarbene 05
3[90[2[6 DichloroAlkanesfromAldehydesandKetones 07
3[90[2[7 DichloroAlkanesfromImines 08
3[90[3 DIBROMOALKANES*RCBr 08
1 1
3[90[3[0 DibromoAlkanesfromAlkanes 08
3[90[3[1 DibromoAlkanesfromDihaloAlkanes 11
3[90[3[2 DibromoAlkanesfromTrihaloAlkanes 12
3[90[3[3 DibromoAlkanesfromAlkenes 12
3[90[3[4 DibromoAlkanesfromAlkynes 13
3[90[3[5 DibromoAlkanesfromDibromocarbene 13
3[90[3[6 DibromoAlkanesfromAldehydesandKetones 14
3[90[3[7 DibromoAlkanesfromImines 16
3[90[3[8 DibromoAlkanesfromCarboxylicAcids 16
3[90[4 DIIODOALKANES*RCI 17
1 1
3[90[4[0 DiiodoAlkanesfromAlkanes 17
3[90[4[1 DiiodoAlkanesfromHaloAlkanes 17
3[90[4[2 DiiodoAlkanesfromAlkynes 18
3[90[4[3 DiiodoAlkanesfromDiiodocarbene 18
3[90[4[4 DiiodoAlkanesfromImines 18
3[90[5 FLUOROHALOALKANES*RCFHal 29
1
3[90[5[0 Chloro~uoroAlkanes*RCClF 29
1
3[90[5[0[0 Chloro~uoroalkanesfromhaloalkanes 29
3[90[5[0[1 Chloro~uoroalkanesfromhaloalkenes 29
3[90[5[0[2 Chloro~uoroalkanesfromchloro~uorocarbene 21
3[90[5[0[3 Chloro~uoroalkanesfromimines 21
3[90[5[0[4 Chloro~uoroalkanesfromcarboxylicacids 22
3[90[5[1 Bromo~uoroAlkanes*RCBrF 22
1
3[90[5[1[0 Bromo~uoroalkanesfromhaloalkanes 22
3[90[5[1[1 Bromo~uoroalkanesfromhaloalkenes 23
0
1 DihaloAlkanes
3[90[5[1[2 Bromo~uoroalkanesfrombromo~uorocarbene 24
3[90[5[1[3 Bromo~uoroalkanesfromcarboxylicacids 24
3[90[5[2 FluoroiodoAlkanes*RCFI 25
1
3[90[5[2[0 Fluoroiodoalkanesfromhaloalkanes 25
3[90[5[2[1 Fluoroiodoalkanesfromhaloalkenes 25
3[90[5[2[2 Fluoroiodoalkanesfrom~uoroiodocarbene 25
3[90[5[2[3 Fluoroiodoalkanesfromcarboxylicacids 26
3[90[6 CHLOROHALOALKANES*RCClHal"notF# 26
1
3[90[6[0 BromochloroAlkanes*RCBrCl 26
1
3[90[6[0[0 Bromochloroalkanesfromhaloalkanes 26
3[90[6[0[1 Bromochloroalkanesfromhaloalkenes 27
3[90[6[0[2 Bromochloroalkanesfrombromochlorocarbene 27
3[90[6[0[3 Bromochloroalkanesfromketones 27
3[90[6[0[4 Bromochloroalkanesfromcarboxylicacids 27
3[90[6[1 Chloroiodoalkanes*RCClI 28
1
3[90[6[1[0 Chloroiodoalkanesfromhaloalkanes 28
3[90[6[1[1 Chloroiodoalkanesfromhaloalkenes 28
3[90[6[1[2 Chloroiodoalkanesfromketones 39
3[90[6[1[3 Chloroiodoalkanesfromcarboxylicacids 39
3[90[7 BROMOIODOALKANES*RCBrI 39
1
3[90[0 GENERALMETHODS
There are many general methods for the preparation of ‘em!di~uoro\ ‘em!dichloro and ‘em!
dibromoalkanes[Thesearegivenindetailinthefollowingsections[Directhalogenationofalkanes
is of limited use as there is generally little control of the site of halogenation[ The method can be
useful\ however\ when there is some control such as halogenation of benzylic positions or a to a
carbonylgroup[Replacementofonehalogenforanothercanbeusefulfordiiodoandmixed‘em!
dihalo alkanes\ but it is often very di.cult to control the degree of exchange[ One of the major
problemsinthegenerationof‘em!dihaloalkanesbythismethodisthepossibilityofeliminationof
hydrogenhalideunderthereactionconditions[Thisisaparticularproblemfordihaloalkaneswhere
oneofthehalidesisbromineoriodine[
Addition of hydrogen halides or halogens to halo alkenes has been used extensively for the
production of dihalo alkanes[ Radical addition of hydrogen halides often leads to 0\1!dihalo
compoundsandcaremustbetakentoreducethepossibilityofradicalformation[Otherproblems
ofdirectionofadditionoccurwheninterhalogencompoundsareaddedacrosshaloalkenes^mixtures
ofproductsareoftenobtained[
Dihalocarbenes have been used extensively in addition reactions to double bonds to form
dihalocyclopropanederivatives[Therearemanymethodsforthegenerationofcarbenesore}ectinga
carbenetransfer\particularlyfordi~uoro!\dichloro!anddibromocarbene[Theotherdihalocarbenes
havebeenstudiedlessextensively[
Theconversionofanaldehydeorketoneintoadihaloalkaneworkswellwith~uoroandchloro
alkanes\butbromoandiodoalkanesareeasilyhydrolysedbacktothealdehydeandketone[Many
preparationsofdibromoanddiiodoalkanesresultincarbonylcompoundsassideproducts[
3[90[1 DIFLUOROALKANES*R CF
1 1
Thepreparationof‘em!di~uoroalkanesisincludedinageneralreviewbyHenneonthesynthesis
ofaliphatic~uorinecompounds(cid:2)33OR"1#38(cid:3)[
3[90[1[0 Di~uoroAlkanesfromAlkanes
Direct ~uorination of saturated compounds has been used since 0899 to replace hydrogen by
~uorine (cid:2)33OR"1#38(cid:3)[ However\ the reaction is not easy to control^ most organic compounds react
violentlywith~uorine[Thereactionofelementalcarbonwith~uorinehasbeenreportedtogivea
mixture of products from which per~uoropropane\ per~uorobutane and per~uoropentane have
been isolated (cid:2)26JA0396(cid:3)[ This method is clearly not of general application[ More!controlled ~uo!
rination of ethane using ~uorine diluted with nitrogen yielded partially ~uorinated ethanes from
Di~uoroAlkanes 2
which CHF CHF and CHF CH F could be isolated (cid:2)39JA0060(cid:3)[ Electrochemical ~uorination of
1 1 1 1
ethanewithasolutioninhydrogen~uorideisamorecontrollablemethodbutagainmixtureswere
obtained\ however\ CH CHF could be obtained in usable amounts (cid:2)55BCJ108(cid:3)[ Cobalt tri~uoride
2 1
is a useful reagent for the per~uorination of unsaturated compounds[ For example\ cyclopentane
can be per~uorinated "Equation "0##\ however the substitution of the last few hydrogens in a
compoundrequireshighertemperatures(cid:2)40JA3130(cid:3)[Per~uorocyclohexanehasbeenpreparedfrom
benzene with ~uorine and a catalyst "Equation "1## (cid:2)49JCS1578(cid:3)[ Gold was found to be the best
catalyst[Per~uorocyclohexanehasalsobeenmadefrommethylbenzoatebytheactionofpotassium
tetra~uorocobaltateathightemperatures"Equation"2##(cid:2)62JFC"2#218(cid:3)[Activemethylenecompounds
havebeenreportedtobe~uorinatede.cientlywithtwoequivalentsofsodiumethoxideinethanol
followedbyperchloryl~uoride"Equations"3#(cid:1)"5##(cid:2)47JA5422(cid:3)^however\alaterreportsuggeststhat
thereactionisquitecomplex(cid:2)55JOC805(cid:3)[
F F
F F
CoF3, 325 °C
F F (1)
F F
F F
F F
F F
F2, Au F F
(2)
40% F F
F F
F F
F F
F F
COMe
2 KCoF4, 300 °C F F
(3)
25% F F
F F
F F
O
O COEt EtONa, EtOH, FClO3 CO2Et (4)
2 59%
F F
CO2Et EtONa, EtOH, FClO3 F CO2Et
(5)
CO2Et 84% F CO2Et
O O
O O EtONa, EtOH, FClO3
(6)
77%
F F
3[90[1[1 Di~uoroAlkanesfromDihaloAlkanes
The substitution of halide in dihalo alkanes using metal ~uorides is of general use for the
preparation of di~uoro alkanes as the corresponding dichloro and dibromo alkanes are generally
more accessible[ The ease of substitution is I(cid:29)Br(cid:29)Cl^ the substitution of chlorine frequently
requires very high temperatures[ Potassium ~uoride will displace the chlorine in the relatively
reactivea!ketoalkylchlorides"forexampleEquation"6##(cid:2)75JA6628(cid:3)\whereasthechlorineofN\N!
diethylchloro~uoroacetamide can only be displaced at high temperatures "Equation "7##
(cid:2)66CCC1426(cid:3)[ Substitution of unreactive chlorines such as in dichloromethane requires harsher
conditions\forexampleameltofpotassiumhydrogendi~uoride\KHF "Equation"8##(cid:2)55AG"E#203(cid:3)[
1
KHF hasalsobeenusedtoprepare0\0!di~uoroacetonefrom0\0!dichloroacetone"Equation"09##
1
(cid:2)60JCS"C#168(cid:3)[Mercuric~uoridehasbeenextensivelyusedforthepreparationof~uoroalkanesby
displacement (cid:2)33OR"1#38(cid:3)[ Bromine is substituted at low temperature with good yields "Equation
"00##whereaschlorinerequireshightemperaturesandresultsinlowyields"Equation"01##(cid:2)25JA778(cid:3)[
3 DihaloAlkanes
O O
KF
Cl F
Ph Ph (7)
28%
Cl F
O O
Cl KF, 140 °C F
NEt NEt (8)
2 2
75%
F F
Cl Cl KHF2 F F (9)
82%
O O
Cl KHF2 F
(10)
50%
Cl F
Br F
HgF2, 0 °C
(11)
Br F
Cl F
HgF2, 140 °C
(12)
Cl Cl
Cl 10% F
Dibromo alkanes are generally smoothly substituted by mercuric ~uoride "Equation "02## but
2\2!dibromobutan!1!one gives side reactions including the production of diacetyl "Equation "03##
(cid:2)66JOC2416(cid:3)[ Silver ~uoride has been used in these reactions^ however\ it is di.cult to prepare in
anhydrous form and it forms insoluble\ complex silver halides (cid:2)33OR"1#38(cid:3)[ Antimony tri~uoride
with a catalytic amount of bromine converts dichloro"diphenyl#methane into di~uoro!
"diphenyl#methaneinhighyield"Equation"04##(cid:2)27JA753(cid:3)[Antimonypenta~uorideisverye}ective
at substituting alkyl bromides "Equation "05## and alkyl chlorides "Equation "06## but it does not
exchangevinylhalides(cid:2)55JA1370(cid:3)[Amixtureofantimonytri~uoride\antimonypentachlorideand
hydrogenchloride hasbeenusedto convert1\1!dichlorobutaneinto1\1!di~uorobutane "Equation
"07##butmanysidereactionsoccurred(cid:2)68JFC"02#214(cid:3)
O O
HgF2
(13)
Ph Ph
89%
Br Br F F
O O
HgF2
(14)
Br Br O
Cl Cl SbF3, Br2 (cat.), 140 °C F F
(15)
Ph Ph Ph Ph
Br Br F F
SbF5, 109 °C
(16)
51%
Br Br Br Br
Cl Cl F F
SbF5, 110 °C
(17)
Cl Cl Cl Cl
Cl Cl SbF3, SbCl5, HCl F F
(18)
Di~uoroAlkanes 4
3[90[1[2 Di~uoroAlkanesfromTrihaloAlkanes
Reduction of the bromodi~uoromethyl group with sodium borohydride in DMSO seems an
attractivemethodofpreparationofcompoundscontainingthedi~uoromethylgroupaslongasthe
startingmaterialisreadilyavailableas"Equation"08##(cid:2)80JOC3211(cid:3)[
F F
F
NaBH4, DMSO
Br F (19)
51%
Br
3[90[1[3 Di~uoroAlkanesfromAlkenes
Addition of an acid to a 0\0!di~uoro alkene will lead to a di~uoromethyl group[ The high
electronegativity of ~uorine ensures that hydrogen adds to the carbon bearing the ~uorines[ Thus
hydrogen bromide "Equation "19## and hydrogen iodide "Equation "10## add e.ciently to 0\0!
di~uoroethene(cid:2)45JCS50(cid:3)[Methanolwilladdacrosstetra~uoroetheneinthepresenceofacatalytic
amount of sodium methoxide "Equation "11## (cid:2)40JA0218(cid:3)[ The addition to the electron!de_cient
tetra~uoroethene is initially by nucleophilic attack[ Cyanide will add to chlorotri~uoroethene to
give\ after acid hydrolysis\ 2!chloro!1\1\2!tri~uoropropanoic acid "Equation "12## (cid:2)59OSC"4#128(cid:3)[
Tetra~uoroethenecanbealkylatedusingaluminumtrichlorideasacatalyst\forexample\dichloro!
~uoromethanecanbee}ectivelyaddedacrossthedoublebondas"Equation"13##(cid:2)60CCC0756(cid:3)[
F F
HBr
Br
(20)
F 100% F
F F
HI
I
(21)
F 100% F
F F
MeOH, MeONa (cat.), 35 °C, 5 h F
F F (22)
F OMe
81%
F F
F i, KCN F
ii, H+ F
Cl Cl
(23)
F 76–79% CO2H
F F
F
F
F CHFCl2, AlCl3, 10 °C, 5 h F
F Cl (24)
58% FC
3
F
Cl
The(cid:2)1(cid:27)1(cid:3)adductsof~uoroalkenescanbepreparedathightemperatures\probablyinvolvinga
radicalmechanism[Tetra~uoroethenecanbedimerisedat599>Ctogiveper~uorobutane"Equation
"14##^ temperatures above 599>C give various side reactions including polymerisation (cid:2)42JCS1972(cid:3)[
Mixed cycloaddition reactions such as tetra~uoroethene with ethene as in "Equation "15##\ with
butadiene "Equation "16## and with acrylonitrile "Equation "17## are possible\ as they occur much
morereadilythanthedimerisationoftetra~uoroethene(cid:2)38JA389(cid:3)[Tetra~uoroethenewillalsoadd
to acetylene to give 2\2\3\3!tetra~uorocyclobutene "Equation "18## (cid:2)50JA271(cid:3)[ A variety of other
~uorinated ethenes will cyclodimerise "Equations "29# and "20## at lower temperatures than tetra!
~uoroethene (cid:2)36JA168(cid:3)[ Intramolecular (cid:2)1(cid:27)1(cid:3) cycloaddition of 0\0!di~uorobutadiene takes place
underUVirradiation"Equation"21##(cid:2)76JOC0761(cid:3)[
5 DihaloAlkanes
F F
F
600 °C F F
F
F (25)
42% F F
F
F F
F
F
150 °C, 8 h F
F F + H2C CH2 (26)
F
40%
F
F
F
F
125 °C, 8 h F
F F + (27)
F
90%
F
F
F
F
F F + CN 150 °C, 8 h FF (28)
84%
F CN
F
F
F
F F + H H 225 °C, 12 h F (29)
F
35%
F
F
F F
F
200 °C, 12 h F F
Cl
(30)
F
Cl Cl
80%
Cl
Cl Cl
F F
F
200 °C, 8 h F F
Cl
(31)
F
Cl Cl
80%
F
F F
F hn , 4 days F
F (32)
F
3[90[1[4 Di~uoroAlkanesfromAlkynes
Theadditionoftwoequivalentsofhydrogen~uorideacrossatriplebondisageneralmethodof
preparingdi~uoroalkanes"Equation"22##(cid:2)36JA170(cid:3)[Fluorinationofalkynesby~uorineinmeth!
anolleadstotheformationofa‘em!di~uorodimethylacetal"Equation"23##(cid:2)75JA6628(cid:3)[
HF F
Cl F (33)
Cl
50%
OMe
MeO
F2, MeOH F
Ph Ph (34)
F
Di~uoroAlkanes 6
3[90[1[5 Di~uoroAlkanesfromDi~uorocarbene
Thegenerationofdi~uorocarbenehasbeenextensivelyreviewed(cid:2)52OR"02#44\B!58MI390!90\B!60MI
390!90\66FCR008\B!74MI390!90(cid:3)[ Di~uorocarbene transfer is most commonly achieved by decompo!
sition of a tri~uoromethyl(cid:1)metal complex[ Pyrolysis of trimethyltri~uoromethyl tin generates
per~uorocyclopropane "Equation "24##\ formed by di~uorocarbene dimerisation to tetra!
~uoroethene\ which undergoes a di~uorocarbene addition (cid:2)59JA0777(cid:3)[ Pyrolysis of potassium
tri~uoromethyl~uoroborate also gives per~uorocyclopropane together with per~uorocyclobutane
"Equation "25## (cid:2)59JA4187(cid:3)[ The complex of bis"tri~uoromethyl#cadmium and DIGLYME reacts
with acetyl chloride to produce acetyl ~uoride and di~uorocarbene\ which can be trapped with
1\2!dimethylbut!1!ene in high yield "Equation "26## (cid:2)70JA1884(cid:3)[ Metallic lead and dibromo!
di~uoromethane have been used to produce di~uorocarbene and its capture by several alkenes
studied(cid:2)70ZN"B#0264(cid:3)[TetrabutylammoniumbromidewasaddedtoformacomplexwiththePbBr
1
producedinthereaction[Excellentyieldswereachievedwith1\2!dimethylbut!1!ene"Equation"27##
buttheyieldsdecreasewithlesssubstitutedalkenes"Equations"28#and"39##[
F F
150 °C, 20 h
Me3SnCF3 F F (35)
F F
F F F F
300 °C F F
KCF3BF3 F F + (36)
F F
F F
F F
F F
(CF3)2Cd, DIGLYME, AcCl, –27 °C
(37)
70%
F F
CBr2F2, Pb, Bu4NBr
(38)
80–90%
F F
Ph
CBr2F2, Pb, Bu4NBr
Ph (39)
55%
F F
Ph CBr2F2, Pb, Bu4NBr
(40)
17%
Ph
Bromodi~uoromethylphosphonium salts\ prepared in situ\ are good sources of di~uorocarbene[
Treatment with caesium ~uoride formed di~uorocarbene\ which added to 1\2!dimethylbut!1!ene
"Equation"30##(cid:2)62JA7356(cid:3)\whereaspotassium~uoridewasusedlikewisewithbutadiene"Equation
"31## (cid:2)71JA1383(cid:3)[ Di~uorotris"tri~uoromethyl#phosphorane has been used to transfer di~uoro!
carbenetoavarietyofhalogenatedalkenes"Equation"32##(cid:2)69JCS"C#067(cid:3)[
F F
CBr2F2, PPh3, CsF, RT, 24 h
(41)
79%
F F
CBr2F2, PPh3, KF
(42)
55%
7 DihaloAlkanes
F F
F Cl
(CF3)3PF2, 120 °C, 24 h
F Cl (43)
Cl Cl
Cl Cl
Oneofthemostusefulreagentsforgeneratingdi~uorocarbeneisphenyltri~uoromethylmercury
(cid:2)61ACR54(cid:3)^ an example of its use is the addition of di~uorocarbene to benzobarrelene "Equation
"33##(cid:2)68TL0802(cid:3)[Oneoftheearliestmethodsusedtogeneratedi~uorocarbenewaspyrolysisofthe
sodiumchlorodi~uoroacetate(cid:2)59PCS70\53TL0350(cid:3)^ithasbeenusedtoaddtoadoublebond"Equa!
tion"34##(cid:2)62TL0208(cid:3)[Thehinderedbase\sodiumbis"trimethylsilyl#amide\hasbeenusedtogenerate
di~uorocarbene from chlorodi~uoromethane[ The di~uorocarbene reacted with a malonate anion
togiveanadditionproduct"Equation"35##(cid:2)74TL1334(cid:3)[
PhHgCF3
(44)
F
F
O O
O O
F2ClCCO2Na, DIGLYME, reflux
(45)
O F F O
F
COEt
2
COEt
CHClF2, NaN(TMS)2 (3 equiv.) F 2
N COEt (46)
2 N CO Et
2
Ph
Ph
3[90[1[6 Di~uoroAlkanesfromAldehydesandKetones
Sulfurtetra~uoridewasthe_rstreagentusedtoconvertaldehydesandketonesinto‘em!di~uoro
alkanes[ Two excellent reviews cover the use of sulfur tetra~uoride (cid:2)63OR"10#0\74OR"23#208(cid:3)^ a few
exampleswillbegivenheretohighlighttheadvantagesanddisadvantages[Aldehydesandketones
witha!hydrogenatomsneedtobetreatedatlowtemperaturesforlongperiodstopreventdecompo!
sitionasshowninEquations"36#and"37#(cid:2)60JOC707(cid:3)[Aromaticaldehydes"Equation"38##(cid:2)60T834(cid:3)
andhighertemperatures\generally049(cid:1)199>C\givemuchhigheryields[Formaldehyde"intheform
of paraformaldehyde# at a high temperature "049>C# gave only a modest yield "Equation "49##
(cid:2)59JA432(cid:3)[
O F F
SF4, CH2Cl2, 30 °C, 120 h
(47)
39%
O F F
SF4, CH2Cl2, 30 °C, 48 h
(48)
70%
CHO F F
SF4, 150 °C, 6 h
(49)
F
F
Description:In this Volume, containing 24 chapters devoted to carbon attached by singlebonds to two heteroatoms, the reader will find several chapters reviewing the synthesis of familiar functional groups, notably acetals, dithioacetals, aminals and the various mixed species. The derivatives with tetracoordinat