ebook img

Common Antigen Related Receptor Tyrosine Phosphatase PTP-3 Function Inde PDF

12 Pages·2005·0.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Common Antigen Related Receptor Tyrosine Phosphatase PTP-3 Function Inde

TheJournalofNeuroscience,August17,2005•25(33):7517–7528•7517 Cellular/Molecular The Two Isoforms of the Caenorhabditis elegans Leukocyte- Common Antigen Related Receptor Tyrosine Phosphatase PTP-3 Function Independently in Axon Guidance and Synapse Formation BrianD.Ackley,1,2RobertJ.Harrington,1MartinL.Hudson,1LisaWilliams,3CynthiaJ.Kenyon,3AndrewD.Chisholm,1 andYishiJin1,2 1SinsheimerLaboratories,DepartmentofMolecular,Cellular,andDevelopmentalBiology,UniversityofCalifornia–SantaCruz,SantaCruz,California 95064,2HowardHughesMedicalInstitute,SantaCruz,California95064,and3DepartmentofBiophysicsandBiochemistry,UniversityofCalifornia–San Francisco,SanFrancisco,California94143 Leukocyte-commonantigenrelated(LAR)-likephosphatasereceptorsareconservedcelladhesionmoleculesthatfunctioninmultiple developmentalprocesses.TheCaenorhabditiselegansptp-3geneencodestwoLARfamilyisoformsthatdifferintheextracellulardomain. Weshowherethatthelongisoform,PTP-3A,localizesspecificallyatsynapsesandthattheshortisoform,PTP-3B,isextrasynaptic. Mutationsinptp-3causedefectsinaxonguidancethatcanberescuedbyPTP-3BbutnotbyPTP-3A.Mutationsthatspecificallyaffect ptp-3Adonotaffectaxonguidancebutinsteadcausealterationsinsynapsemorphology.Geneticdouble-mutantanalysisisconsistent withptp-3Aactingwiththeextracellularmatrixcomponentnidogen,nid-1,andtheintracellularadaptor(cid:1)-liprin,syd-2.nid-1andsyd-2 arerequiredfortherecruitmentandstabilityofPTP-3Aatsynapses,andmutationsinptp-3ornid-1resultinaberrantlocalizationof SYD-2.OverexpressionofPTP-3Aisabletobypasstherequirementfornid-1forthelocalizationofSYD-2andRIM.Weproposethat PTP-3Aactsasamolecularlinkbetweentheextracellularmatrixand(cid:1)-liprinduringsynaptogenesis. Keywords:synaptogenesis;axonguidance;celladhesion;(cid:1)-liprin;syd-2;LARreceptortyrosinephosphatase;nidogen Introduction LAR–RPTPsbindlaminin–nidogenviathefifthFNIIIrepeat, The type IIa family of receptor protein tyrosine phosphatases andRPTP(cid:2)bindsagrinandcollagenXVIIIviaitsfirstIgdomain (RPTPs), which include leukocyte-common antigen related (O’Gradyetal.,1998;Aricescuetal.,2002).Thefunctionsofthe (LAR)PTP-(cid:2)andPTP-(cid:3),arecelladhesionmoleculesthatregu- LAR and extracellular matrix (ECM) interaction are not clear. latemultipledevelopmentalevents,includingneurogenesis(den Mutations in human collagen XVIII result in Knobloch’s syn- Hertog et al., 1999; Johnson and Van Vactor, 2003; Paul and drome and defects in neural cell migrations (Kliemann et al., Lombroso, 2003; Ensslen-Craig and Brady-Kalnay, 2004). The 2003).Micelackingnidogen-1exhibitmotordeficitsthatsuggest extracellulardomainsofLAR-likeRPTPscontainIg-likeandfi- aneurologicaldefect(Dongetal.,2002).LAR–RPTPsmayexert bronectintypeIII(FNIII)repeats.AlternativesplicingofRPTP specific functions in neural development through distinct genes result in isoforms that differ in the extracellular domain ligands. andcanexhibittissue-specificexpressionandlocalization,sug- TheintracellulardomainsofLARinteractwithseveralmole- gestingtheectodomainconfersfunctionalspecificity(O’Gradyet cules including the TRIO guanine nucleotide exchange factor al.,1994;Pulidoetal.,1995;Honkaniemietal.,1998). (Debant et al., 1996), Enabled (Wills et al., 1999), (cid:4)-catenin (Kypta et al., 1996), and liprins (Serra-Pages et al., 1998). (cid:1)-Liprinshaveemergedaskeyregulatorsofsynaptogenesis.The ReceivedMay18,2005;revisedJune24,2005;acceptedJune28,2005. presynapticdensitiesofneuromuscularjunctions(NMJs)inCae- B.D.A.wassupportedbytheHowardHughesMedicalInstitute(HHMI)andbyadevelopmentgrantfromthe MuscularDystrophyAssociation.GrantsfromtheNationalInstitutesofHealthsupportedresearchinA.D.C.’slabo- norhabditiselegansandDrosophilaareabnormalin(cid:1)-liprinmu- ratory(GM54657)andinY.J.’slaboratory(NS35546).Y.J.isanHHMIInvestigator.ptp-3(ok244)andptp-3(tm352) tants (Zhen and Jin, 1999; Kaufmann et al., 2002). Drosophila weregeneratedbytheC.elegansgeneknock-outconsortiumandtheNationalBioresourceProjectfortheExperi- LAR (DLAR) null mutations cause presynaptic density defects mentalAnimalC.elegans(Tokyo,Japan),respectively.SomeofthestrainswereprovidedbytheCaenorhabditis that are similar to, but weaker than, those in Dliprin mutants GeneticsCenter(Minneapolis,MN).WethankM.Nonetfortheanti-UNC-10andanti-SNT-1antibodies,J.Bessereau foranti-UNC-49antibodies,J.KramerforpJJ471plasmid,M.ZhenforhpIs3strain,andmembersofourlaboratories (Kaufmannetal.,2002).Dliprinloss-of-functionmutationsare forcriticalreadingsofthismanuscript. epistatictoDLARoverexpressioneffects,suggestingthatDliprin CorrespondenceshouldbeaddressedtoDr.YishiJin,329SinsheimerLaboratories,UniversityofCalifornia–Santa isrequiredforDLARfunctionatsynapses.Inmammals,LARand Cruz,1156HighStreet,SantaCruz,CA95064.E-mail:[email protected]. (cid:1)-liprin are involved in the development and maintenance of DOI:10.1523/JNEUROSCI.2010-05.2005 Copyright©2005SocietyforNeuroscience 0270-6474/05/257517-12$15.00/0 excitatorysynapses(Dunahetal.,2005). 7518•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning ptp-3,thesingleC.eleganstypeIIaRPTPgene,encodestwo frompCZ512andreplacingitwithaBglII-SpeIfragmentfrompJJ471,a isoformsthatdifferintheextracellulardomain(seeFig.1A,C) transmembrane::GFPfusion(J.Kramer,personalcommunication). (Harringtonetal.,2002).PTP-3Aismostsimilartovertebrate Transgenic animals were generated by germ-line transformation as LAR,whereastheshorterisoform,PTP-3B,lackstheIgdomains describedpreviously(Melloetal.,1991).PTP-3A::GFP(pCZ521)and PTP-3A(cid:3)phos::GFP(pCZ544)wereinjectedintoN2animalsat75and and the first four FNIII repeats. PTP-3B regulates neuroblast 68ng/(cid:5)l,respectively,withpRF4[rol-6(SD)](Melloetal.,1991)at100 migrationduringembryogenesis(Harringtonetal.,2002).The ng/(cid:5)l to generate juEx563 and juEx584. PTP-3B::GFP (pCZ512) was functionofPTP-3Ahasnotbeendefined.InC.elegansmutations injectedat25ng/(cid:5)lwithPttx-3::RFP(Altun-Gultekinetal.,2001)at100 incollagenXVIII,cle-1ornidogen,nid-1,causesdistinctdefects ng/(cid:5)l to generate juEx686 and juEx687. The integrated transgenes incellmigration,axonguidance,aswellasmorphologicaland PTP-3A::GFP(juIs194)andPTP-3B::GFP(juIs197)weregeneratedby functionaldefectsinsynapses(KangandKramer,2000;Kimand UV/trimethylpsoralenmutagenesis. Wadsworth,2000;Ackleyetal.,2001,2003). Whole-mountimmunostaining.Anti-UNC-10stainingwasdoneusing Wereportheretheroleofptp-3inaxonguidanceandsynaptic the modified Bouin’s fixation as described previously (Nonet et al., morphology.PTP-3Aspecificallylocalizestosynapses,overlap- 1997).Forotherantibodies,animalswerefixedasdescribedpreviously ping the presynaptic proteins SYD-2 and UNC-10. Isoform- (FinneyandRuvkun,1990),withthefollowingmodifications.Theani- malswerefixedfor2honice,andthereductionstepwasperformed specificmutantsandtransgenesdemonstratethatptp-3Bfunc- using1(cid:4)boratebufferfor2hat37°C.Thefollowingprimaryantisera tions in axon guidance and that ptp-3A contributes to synapse wereusedinthisstudy:guineapiganti-PTP-3(1:20)(Harringtonetal., development. The synaptic defects of ptp-3 resemble those of 2002),mouseanti-GFP(1:1000;Roche,Indianapolis,IN),rabbitanti- nid-1andsyd-2.Geneticdouble-mutantanalysesandcellbiology UNC-10 (1:1000) (Koushika et al., 2001), chicken anti-UNC-10 studiessupportamodelwherebyPTP-3Aactsasalinkbetween (1:2000), rabbit anti-SNT-1 (1:2000) (Nonet et al., 1993), and rabbit extracellularcuesandasynapticorganizer. anti-SYD-2(1:2000)(ZhenandJin,1999).Thefollowingsecondaryan- tibodieswerepurchasedfromMolecularProbes(Eugene,OR)andwere MaterialsandMethods usedat1:2000:Alexa488-labeledgoatanti-guineapig,Alexa488-labeled C.elegansstrains.AllC.elegansstrainsweremaintainedat20–22.5°Cas anti-mouse, Alexa 594-labeled anti-rabbit, Alexa 594-labeled anti- describedpreviously(Brenner,1974).Thefollowingstrainswereusedin chicken,andAlexa647-labeledanti-rabbit.Allimageswerecollectedon thisstudy:N2(var.Bristol),CH119[nid-1(cg119)](KangandKramer, aZeiss(Oberkochen,Germany)Pascalconfocalmicroscopeusingmulti- 2000),RB633[ptp-3A(ok244)],CZ333(juIs1),CZ1200(juIs76),CZ631 trackparameters,witheithera63(cid:4)(SNB-1::GFP)or100(cid:4)(immuno- (juIs14),CZ900[syd-2(ju37)](ZhenandJin,1999),CZ1991(mnDf90/ fluorescence)objective. mIn1mIs14),CZ3761[ptp-3(mu256)],CZ2857[ptp-3A(tm352);juIs1], Colocalization.Confocalstackswereprojectedintoasingleplaneand CZ4660 [ptp-3A(ok244);juIs1], CZ3555 [ptp-3(mu256);juIs1], CZ4661 analyzedusingthehistogramtoolintheZeissLSM5software(version [ptp-3A(ok244);nid-1(cg119); juIs1], CZ3997 [ptp-3(mu256); nid- 3.2).Aregionofinterestwasdrawnaroundthenervecord.Thresholding 1(cg119);juIs1],CZ3139[nid-1(cg119);syd-2(ju37);juIs1],CZ2981[syd- levelsweresetusingthe“determinefromregionofinterest”function. 2(ju37);ptp-3A(tm352);juIs1], CZ4929 [ptp-3(mu256);syd-2(ju37); The colocalization table was exported to Microsoft Excel (Redmond, juIs1], CZ4918 [ptp-3(mu256); nid-1(cg119); syd-2 (ju37); juIs1], WA)forstatisticalanalysis.Thepercentageofcolocalizationwasdeter- CZ4884(juIs194),CZ4913[ptp-3(mu256);juIs194],CZ4919(juIs197), minedasthetotalareaofregion3(pixelsatwhichbothchannelsare CZ4914[ptp-3(mu256);juIs197],CZ4885[syd-2(ju37);juIs194],CZ3992 abovethreshold)dividedbythetotalareaforthatchannel(totalpixels [ptp-3A(tm352);juEx584], CZ3839 (juEx563), CZ4249 (juEx686), abovethreshold). DR2078 [mIn1 mIs14/bli-2(e678)unc-4(e120)] (Edgley and Riddle, GFP analysis. For axon morphology, animals were scored blind to 2001),andZM54(hpIs3)(Yehetal.,2005). genotype by examining cell type-specific GFP markers (juIs76 and Themu256allelewasisolatedinascreenformutantswithdefective juIs14)withanAxioplan2microscopeusinga63(cid:4)Plan-apochromat migrationsfortheQneuroblastasdescribedpreviously(Ch’ngetal., objective and a GFP long-pass filter set (Chroma, Battleboro, VT). A 2003). Double and triple mutants were constructed by crossing nid- defasciculationeventwascountedasaregionofthenervecordwheretwo 1(cg119)/(cid:1);mIn1mIs14/(cid:1)orsyd-2(ju37);mIn1mIs14/(cid:1)malestoho- ormoreprocessesappearedtobecomesplitfromonefascicleandwere mozygousptp-3mutantanimals.ThemIn1mIs14balancestheptp-3re- visiblealongadistancethatwasgreaterthanthelengthoftwoneuronal gionandcontainsagreenfluorescentprotein(GFP)marker(Edgleyand cellbodies,whichis(cid:5)20(cid:5)m.SynapsemorphologyofDtypeneurons Riddle,2001).Non-GFPoffspringwereselectedandhomozygosed.The was visualized by juIs1 (Punc-25-SNB-1::GFP) and hpIs3 (Punc-25- presence of the nid-1(cg119) allele was confirmed by PCR (Kang and SYD-2::GFP)usingaZeissPascalLSMconfocalmicroscope.Animals Kramer,2000).Homozygotesofsyd-2(ju37)werechosenbythesluggish wereanesthetizedusing0.5%phenoxy-propanol(TCIAmerica,Port- movementandegg-layingdefects(ZhenandJin,1999). land,OR)inM9andmountedon5%agarpads.Imageswereacquired Molecularbiology.Theptp-3genespanstwocosmidclones,C09D8 using a 63(cid:4) Plan-apochromat lens and a 488 argon laser line at 3% (GenBankaccessionnumberZ46811)andF38A3(GenBankaccession power.Themicroscopewassettouseasinglescanwitha505long-pass numberZ49938).Allnumberinginthisreportisgivenrelativetothe filterset. ATGforptp-3A(position7765inC09D8).Themu256lesionwasiden- Quantification. Measurements of SNB-1::GFP and UNC-10 puncta tifiedbysequencingPCR-amplifiedregionsoftheptp-3exons(primer wereperformedonconfocalimagesasdescribedpreviously(Ackleyetal., sequencesavailableonrequest).Analysisofthesequencingresultsre- 2003),withminormodificationsandtheexperimenterblindtogeno- vealedasingleadenosineinsertionatposition34784relativetotheATG type.Briefly,confocalimageswereprojectedintoasingleplaneusingthe oftheptp-3Aisoform(correspondingtoposition9670inF38A3;Gen- maximumprojectionandexportedasatifffilewithascalebar.Using BankaccessionnumberZ49938).Thetm352deletionremovesnucleo- Scion(Frederick,MD)Image,thefileswereconvertedtoabinaryimage tides8494–9040andtheok244deletionremovesnucleotides8295–9639 usingthethresholdcommand,sothatthebinaryimageresembledthe oftheptp-3Acodingregion. RGBimage.Aregionofinterestwasdrawnaroundtherelevantregionof pCZ512(PTP-3B::GFP)hasbeendescribedpreviously(Harringtonet thenervecords.Thefollowingmeasurementoptionswereselected:area, al.,2002).pCZ521(PTP-3A::GFP)wascreatedbyfusingtheGFPDNA X–Ycenter,perimeter/length,ellipsemajoraxis,ellipseminoraxis,in- fromA.Fire’svectorpPD113.29toaptp-3AcDNAgeneratedbyreverse cludeinteriorholes,wandautomeasure,andheadings.Scalingwassetby transcription-PCR(primersequencesavailableonrequest)ataunique measuringthescalebar;forGFP,images7pixelsequaled1(cid:5)m,andfor PstI site in exon 27 (Fig. 1A). A genomic fragment corresponding to UNC-10puncta,11pixelsequaled1(cid:5)m.The“analyzeparticle”com- nucleotide(cid:2)2565throughexon4wasgeneratedbyPCR,cutwithKpnI mand was used with a minimum size of 4 pixels and a maximum of and NsiI, and fused to the ptp-3A cDNA–GFP fragment. pCZ544 10,000pixels.Thefollowingoptionswereselected:outlineparticles,ig- (PTP-3A::GFP(cid:3)phos)wascreatedbyremovingaBglII-AvrIIfragment noreparticlestouchingedge,includeinteriorholesandresetcounter. Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning J.Neurosci.,August17,2005•25(33):7517–7528•7519 andresultsinastrongptp-3lossoffunc- tionduringembryogenesis(Harringtonet al.,2002).Weisolatedanewptp-3allele, mu256,inascreenforanimalswithdefec- tiveQcellmigration(Williams,2002).Se- quencing of the ptp-3 locus from mu256 animalsidentifiedasinglenucleotidein- sertion in exon 25 that would cause a frame shift after amino acid Glu1756 in thefirstphosphatasedomain,leadingtoa premature stop (Fig. 1C). Immunostain- ingusingantiseraraisedagainstthePTP-3 phosphatasedomainsshowedthat50%of mu256animalshadnodetectableprotein (datanotshown)and50%exhibitedonly aweakreactivityinthesynapse-richnerve ring(Fig.1F)(n(cid:6)100).mu256animals displayed partially penetrant embryonic (Emb)andlarvallethality(Lva)aswellas variably abnormal (Vab) morphology phenotypes (Table 1). The lethality and morphologydefectsweresimilartothose observed for op147 and in the broods of animals injected with ptp-3 double- stranded RNA (Harrington et al., 2002). Thus, mu256 is a strong loss-of-function mutationaffectingbothPTP-3isoforms. To analyze the specific requirements forthePTP-3Aisoform,weobtainedtwo deletion alleles in the ptp-3A coding re- gion, tm352 and ok244. The tm352 and Figure1. Theptp-3locusandproteinlocalization.A,ptp-3genestructure:exonsareshownasshadedboxes,andintronsare ok244deletionsremoveoneorthreeFNIII shownaslines.Largeintronsareindicatedasbrokenlineswiththesizelistedbelow.Thegenomicregionsusedtodriveisoform- repeats, respectively, and result in frame specificexpressionareindicated.ThepositionsofrestrictionenzymesitesusedtomakeminigenesandGFPfusionsarealso shifts and premature terminations of indicated.ptp-3A-specificexonsareshowninred,whereastheptp-3B-specificexonisshowninyellow.Theexonscommonto PTP-3A. Both ptp-3A alleles are likely to ptp-3Aandptp-3Bareinblue.Thelocationsofthetm352,ok244,op147,andmu256lesionsareindicated.nt,Nucleotide.B,The eliminateptp-3Afunctionbutareunlikely genestructureofthePTP-3::GFPisoformsisillustrated.Exonsareindicatedbyboxes,andintronsareindicatedaslines.The toaffecttheexpressionofPTP-3Bbecause placementoftheGFPcodingsequencesisindicatedbythegreenbox.C,PTP-3proteins:Ig-likedomainsareillustratedascircles, thelesionsareoutsideoftheminimalres- FNIIIdomainsareillustratedashexagons,thepredictedtransmembranedomainisillustratedasanoval,andthephosphatase cuing fragment for ptp-3B (Harrington domainsareillustratedasrectangles.TheasteriskindicatestheFNIIIrepeatmosthomologoustotheFNIIIrepeatcontainingthe etal.,2002).Bywhole-mountimmuno- laminin–nidogen-bindingsitefrommouseLAR.Theeffectsofthemutationsareshownbelow.TheX-headedlineindicatesthe deletedportionoftheproteinandtheintroductionofastopcodon.D–F,Whole-mountimmunolocalizationofPTP-3inwild-type staining,areducedlevelofstainingwas (D),ptp-3(ok244)(E),andptp-3(mu256)(F)animals.Stainingisobservedinthenervering(arrow)andventralnervecord observed in tm352 and ok244 animals (arrowhead)ofwild-typeandptp-3(ok244)animals.Allmu256animalsexaminedlackedreactivityinthenervecord(F,arrow- (Fig.1E).Bothmutationscausesimilar head).Approximately50%ofptp-3(mu256)animalsexhibitedweakPTP-3staininginthenervering(F,arrow).Scalebar,10(cid:5)m. phenotypes(seebelow),andtm352ani- malsdidnotexhibitsignificantEmbor Vab phenotypes (Table 1), suggesting Table1.LethalityandVabinptp-3mutants that PTP-3A does not function in em- %Lethalitya bryonicmorphogenesis. Genotype n Emb Lva Vab PTP-3expressioninthepostembryonic Wildtype 823 0.1(cid:7)0.01 0.1(cid:7)0.01 0.1(cid:7)0.01 nervoussystem ptp-3A(tm352) 994 0.5(cid:7)0.02 0.1(cid:7)0.01 0.1(cid:7)0.01 ptp-3(mu256) 726 5.0(cid:7)0.12 1.1(cid:7)0.03 4.5(cid:7)0.03 Wehavereportedpreviouslythatptp-3A ptp-3(op147) 501 3.8(cid:7)0.01 0.4(cid:7)0.02 4.8(cid:7)0.08 and ptp-3B were highly expressed in the postembryonic nervous system using Dataareexpressedasmean(cid:7)SEM. promoter-drivenGFPreportertransgenes aPercentageofanimalsthatreachadultstagewithVabphenotype. (Harrington et al., 2002). By modifying the immunostaining procedure, we im- TheresultingmeasurementswereexportedtoMicrosoftExcelforstatis- proved the sensitivity of detecting endogenous PTP-3. We ob- ticalanalysis.Significancewasdeterminedbyatwo-tailedStudent’sttest. servedthatPTP-3wasconcentratedatthenerveringandalong Results thenervecordsinlarvalandadultanimalsandshowedapunctate Isolationofnewmutationsinptp-3 pattern (Fig. 1D). To determine the subcellular localization of Thepreviouslyreportedptp-3mutation,op147,isatransposon PTP-3, we performed colocalization experiments with several insertioninthephosphatasedomaincommontobothisoforms known synaptic proteins including UNC-49, a GABA receptor 7520•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning present on the postsynaptic muscle sur- face(GallyandBessereau,2003),synapto- tagmin(SNT-1),acomponentofsynaptic vesicles(Nonetetal.,1993),andtwopre- synaptic density proteins, SYD-2 and UNC-10, the C. elegans RIM (Zhen and Jin,1999;Koushikaetal.,2001). Alongthenervecord,PTP-3wasadja- centtobutdidnotoverlapUNC-49(Fig. 2A),consistentwithitbeingexpressedin neurons.Withintheneurons,PTP-3par- tially overlapped the SNT-1-containing domainbutwasconcentratedattheedges oftheSNT-1staining(Fig.2B).Therewas a precise colocalization of PTP-3 with SYD-2 and UNC-10 (Fig. 2C,D). More specifically, we observed a smaller punc- tumofPTP-3inornearthecenterofeach ofthelargerSYD-2puncta.Thesedatain- dicatethatPTP-3ispredominantlyasso- ciatedwiththepresynapticdensity. ToaddresswhetherPTP-3localization wasdependentonsynapticvesicles,wean- alyzedtheaccumulationofSNT-1,PTP-3, and UNC-10 in unc-104(e1265) kinesin mutants,whichcausessynapticvesiclesto beretainedincellbodies(HallandHedge- cock,1991).WeobservedthatPTP-3and UNC-10punctashowedcolocalizationin regionsofthenervecordlackingsynaptic vesicles(Fig.2E,F).Thus,likeotherpre- Figure2. PTP-3Alocalizestopresynapticregions.A–D,CostainingofPTP-3(green)withproteins(red)thatlabeldifferent synaptic density components (Zhen and synapticdomains.Thebottompanelsarethemergedimages.A-A(cid:1),PTP-3(arrowheads)doesnotoverlapwithUNC-49(arrows). Jin, 1999; Koushika et al., 2001), PTP-3 B–B(cid:1),PTP-3(arrowheads)isconcentratedattheedgesofSNT-1(arrows).C–C(cid:1),PTP-3colocalizeswithSYD-2.Notethesmaller appearstobetraffickedtosynapsesinde- fociofPTP-3atthecenteroftheSYD-2puncta(arrows).D–D(cid:1),Seventy-fivepercentofUNC-10punctaareeitheroverlapped pendentofsynapticvesicles. (arrowheads)orcoincident(arrows)withPTP-3.E,F,PTP-3istraffickedtosynapsesindependentofsynapticvesicles.Awild-type animal(E)andanunc-104animal(F)areshownwithtriplelabelingofanti-PTP-3(green),anti-SNT-1(blue),andanti-UNC-10 PTP-3Aissynaptic,andPTP-3B (red).Themergedviewsareshowninthebottompanels.Inunc-104mutants,SNT-1ismostlyretainedincellbodies(arrow), whereasPTP-3andUNC-10arepresentalongthenervecord(arrowheads).G,H,ThelocalizationofthePTP-3isoform-specificGFP isextrasynaptic fusionproteinsisshownrelativetoUNC-10.G–G(cid:1),PTP-3A::GFPappearedpunctateandoverlappedwiththeUNC-10puncta Toaddressthesubcellularlocalizationof (arrows), although the protein was also observed in larger clusters than the endogenous protein (arrowheads). H–H(cid:1), the PTP-3A and PTP-3B isoforms, we PTP-3B::GFPshoweddiffusedstainingthroughoutthenervecord(arrows)andrarelyoverlappedwithUNC-10puncta(arrow- generated isoform-specific GFP fusion head).I–I(cid:1),Inptp-3A(ok244)mutants,PTP-3(arrowhead)stainingisreduced,andshowedlittleoverlapwithUNC-10(arrows). transgenes.GFPwasinsertedin-framein Scalebars,5(cid:5)m. the second phosphatase domain 53 aa fromthestopcodon,andeachfusionpro- teinwasexpressedundertheisoformen- dogenouspromoter(Fig.1B).Bothtrans- These results suggest that PTP-3A is the major isoform that is genes are functional (Harringon et al., 2002) (see below). localized to presynaptic domains. Consistent with this conclu- PTP-3B::GFP showed a temporally regulated expression, with sion, in ptp-3A(ok244) mutant animals, (cid:8)25% of the UNC-10 highexpressionthroughoutembryogenesisandlarvaldevelop- puncta(n(cid:6)200)containedanyPTP-3,andtheamountofPTP-3 mentuntiltheL1–L2larvaltransition(datanotshown).Inthe presentatthoseUNC-10punctawasreduced(Fig.2I). adultnervoussystem,PTP-3B::GFPwaspresentinthenervering andalongaxonsoftheventralanddorsalnervecords(Fig.2H PTP-3Bhasamajorroleinmotoraxonguidance and data not shown) and was also observed in the pharyngeal Previous analyses using a pan-neuronal morphological marker epitheliumandthedevelopinguterusthroughoutdevelopment revealedthattheorganizationofthenervoussystemwasgrossly (datanotshown).MostofthePTP-3B::GFPwasadjacenttothe normal in ptp-3(op147) animals (Harrington et al., 2002). To UNC-10puncta,withonlyasmallamountofGFPoverlapping addresstheeffectsofptp-3mutationsonthenervoussystem,we withUNC-10(Fig.2H).PTP-3A::GFPexpressionwasfirstde- focusedouranalysisontheventralcordmotoraxonsusingcell tectedaroundthetwofoldstageofembryonicdevelopment(450 type-specific markers. The DA and DB neurons extend a den- min after fertilization) in the nerve ring and nerve cords and driticprocessalongtheventralnervecordandanaxonalcom- continuedataconstantlevelthroughlarvaldevelopment(data missurecircumferentiallyalongtheepidermistothedorsalnerve notshown).PTP-3A::GFPwasseeninapunctatepatternalong cord(Fig.3A).TheDDandVDneuronsextendasingleprocess nerveprocesses(Fig.2G)andoverlappedwithUNC-10inapat- alongtheventralnervecordthatbifurcatesandextendstothe tern that was similar to the endogenous protein (Fig. 2D,G) dorsalnervecord(Fig.3F).Theseaxonprojectionpatternsare Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning J.Neurosci.,August17,2005•25(33):7517–7528•7521 nationpoint(Fig.3E)orstopprematurely (Fig. 3H,J). The axon projection defects of the DD and VD neurons in mu256 in trans to mnDf90, a chromosomal defi- ciencyfortheptp-3locus,wascomparable withthatofmu256homozygousanimals, consistentwithmu256beingastrongloss- of-function mutation in ptp-3 (Fig. 3L). TofurtheraddresshowthetwoPTP-3iso- forms function in axon guidance, we in- troducedtheisoform-specificGFPtrans- genesintomu256animals.Expressionof thePTP-3B::GFPisoformessentiallyres- cued the DA and DB axon guidance de- fectsinmu256animals(Table2,Fig.3K). Specific expression of PTP-3A::GFP only showed a weak partial rescue (Table 2). ThesedatathereforearguethatPTP-3Bis themajorisoformthatfunctionsinaxon outgrowthandguidanceinC.elegans. ptp-3Acontributesto synapsedevelopment BecausePTP-3Aislocalizedtopresynap- ticregions,weaskedwhethermutationsin ptp-3causedanydefectsinsynapticdevel- opment.Wefirstexaminedthepatternof synapses by staining animals with UNC-10 antisera. In wild-type animals, UNC-10wasdistributedinasetofevenly sized and spaced puncta (Fig. 4A). We measuredthepunctaareaandthenumber ofpunctaalonga100(cid:5)msectionofnerve cord (see Materials and Methods for de- Figure3. Mutationsinptp-3causedefectsinaxonguidance.A,Schematicdiagramdescribingtheaxonoutgrowthpatternsfor tails).Inwild-typeanimals,theaverage theDAandDBcholinergicmotorneurons.Thecellbodiesareillustratedasopencircles,whereastheprocessesareindicatedas area was 0.17 (cid:7) 0.01 (cid:5)m2 (mean (cid:7) blacklines.Thepositionofthevulvaisindicatedbyaopendiamond.TheshadedboxistheregionshowninBandC.B,Inwild-type SEM), with an average of 87.3 (cid:7) 10.5 animals,theDB6andDB7neurons(indicatedbyarrows)extendprocessestotheright,whereastheadjacentneurons,DA6and punctaper100(cid:5)m(Fig.4E,Table3).In DA7,extendprocessestotheleft.C,Inthisptp-3(mu256)animal,theDB6andDB7axons(arrows)incorrectlyextendontheleft ptp-3Amutants(tm352andok244),the sideofthenervecord.D,Regionoftheventralnervecordthathasbecomedefasciculated(arrow)fromthemainbundle(arrow- overall UNC-10 puncta appeared to be heads).E,Twoaxonsthatfailedtoterminateattheendofthedorsalnervecord(arrow)areobservedtoturnanteriorlyand formedinlargeraggregatesthaninwild- continueextending.F,SchematicdiagramoftheDDandVDGABAergicmotorneurons.G,Inwild-typeanimals,thedorsalnerve type animals (Fig. 4B, Table 3). In ptp- cord(arrows)isobservedasacontinuousbundle.H,Inptp-3mutants,weobservedgapsalongthenervecordwheretheaxons 3A((cid:2))animals,UNC-10punctashowed appeartohaveterminatedtheirmigrationprematurely.I,Inwild-typeanimals,thecommissuralprocesses(arrows)extendfrom anaverageareaof0.48(cid:7)0.03(cid:5)m2,with theventralnervecordtothedorsalcord(arrowheads).J,Twoaxoncommissuresfailedtoreachthedorsalnervecord(arrow- heads):onestoppedmigratingprematurely(arrow),whereasasecondturnedprematurely(dashedarrow).DAandDB(K)andDD anaverageof53.0(cid:7)4.0punctaper100 andVD(L)axonguidancedataaredisplayedasthepercentageofanimalsthatexhibitedasidechoiceerror((cid:2)),targetingerror (cid:5)m. In ptp-3(mu256) animals, the de- (u),ordefasciculation(f).InformationonspecificaxonoutgrowthphenotypesisinTable2.L/R,Left/right. fectsseenwithUNC-10expressionwere notworse(0.36(cid:7)0.03(cid:5)m2,43.0(cid:7)10.2 punctaper100(cid:5)m),suggestingthatthe loss of PTP-3A would account for the highlystereotyped.UsingaGFPmarkerdrivenfromtheunc-25 observeddefects. promoterforDtypeneuronsandaGFPmarkerdrivenfromthe Toevaluatetheeffectonthemorphologyofindividualsyn- acr-2promoterfortheAandBtypeneurons(Huangetal.,2002), apses,weusedthetransgeneexpressingsynaptobrevinfusedto weobserved(cid:8)10%ofwild-typeanimalsthatexhibitedanydevi- GFP(SNB-1::GFP)drivenbytheunc-25promoter(Hallamand ations(Table2). Jin,1998;Nonet,1999).ThisSNB-1::GFPmarkerprovidesspa- Neitheroftheptp-3A-specificalleles,tm352orok244,exhib- tialresolutiontodetectchangesinGABApresynapticmorphol- itedgrossdefectsinmotorneuronaxonoutgrowthandguidance ogy.Inwildtypeanimals,SNB-1::GFPappearsasasetofevenly (Table 2). However, the mu256 and op147 mutations caused a sizedandspacedfluorescentpuncta,withanaverageareaof0.8(cid:7) significant level of projection defects, such as axons that made 0.0(cid:5)m2(Fig.5A,Table4).Inptp-3Aandptp-3(mu256)mutants, incorrectchoicesintheirexitfromtheventralmidline(Fig.3C). theSNB-1::GFPpunctashowedsignificantenlargement,withan Themostnoticeabledefectwasthedefasciculationofmotorax- averageareaof1.5(cid:7)0.1(cid:5)m2.TheareaofSNB-1::GFPpunctain onsalongthedorsalorventralnervecords(Fig.3D).Inaddition, tm352/mnDf90 animals (1.7 (cid:7) 0.2 (cid:5)m2) was not significantly someaxonswereobservedtoovergrowtheirappropriatetermi- differentfromtheptp-3A(tm352)homozygousanimals,support- 7522•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning ingthattm352andok244representacom- Table2.Axonguidancedefectsinptp-3mutantanimals pletelossoffunctionforptp-3A,andsug- Genotype n Left/righta Targetingb Defasciculationc gesting that the defects in SNB-1::GFP DA/DBcholinergicneurons puncta are mostly caused by the loss of Wildtype 60 8.3% 0.0% 1.7% PTP-3A.Asanotherwayofassessingthe ptp-3A(tm352) 15 13.3% 0.0% 6.7% overall effect of ptp-3 mutations on ptp-3A(ok244) 20 5.0% 0.0% 0.0% SNB-1::GFP puncta, we plotted the ob- ptp-3(op147) 40 22.5% 10.0% 20.0% served areas using a box-and-whiskers ptp-3(mu256) 20 40.0% 10.0% 50.0% plot(Fig.6).Thisanalysisrevealedthatthe ptp-3(mu256);juEx563(PTP-3A::GFP) 50 36.0% 8.0% 40.0% populationofSNB-1::GFPpunctainptp-3 ptp-3(mu256);juEx686(PTP-3B::GFP) 60 12.3% 5.3% 8.3% mutantshadagreaternumberofpuncta DD/VDGABAergicneurons Wildtype 50 2.0% 0.0% 0.5% that were larger than those in wild type. ptp-3A(tm352) N/D Wecalculatedthevaluesrepresentingthe ptp-3A(ok244) N/D 10thand90thpercentilesinwild-typean- ptp-3(op147) 50 22.0% 12.0% 50.0% imalsasbeing0.2–1.5(cid:5)m2,respectively, ptp-3(mu256) 50 30.0% 22.0% 52.0% and found that 30% of the SNB-1::GFP ptp-3(mu256)/mnDf90 25 16.0% 28.0% 56.0% punctainptp-3A((cid:2))mutantswere(cid:9)1.5 N/D,Notdetermined. (cid:5)m2,whereasonly1.5%were(cid:8)0.2(cid:5)m2. aPercentageofanimalswithaxonsthatmadeasidechoiceerrorinexitfromtheventralnervecord. Overall,thedefectinSNB-1::GFPwaspar- bPercentageofanimalswithaxonsthatterminatedprematurelyorovergrewthetarget. alleltothealterationsinUNC-10staining. cPercentageofanimalsthatexhibitedtwoormoreregionsofdefasciculatedaxonsalongthenervecords. TofurtheraddresstheroleofPTP-3A in synapse formation, we tested whether expressing PTP-3A::GFP could specifi- cally rescue the synaptic defects in ptp- 3(mu256) animals. Because of interfer- encefromtheGFPtags,wewereunableto use the SNB-1::GFP and instead used UNC-10 immunostaining. Neither PTP-3A::GFPnorPTP-3B::GFPcauseda significantchangeinthesizeofUNC-10 punctainwild-typeanimals(Fig.4E,Ta- ble3).ptp-3(mu256)animalsthatwereex- pressing PTP-3A::GFP had an average area that was equivalent to wild type (0.17 (cid:7) 0.01 (cid:5)m2), whereas UNC-10 puncta in mu256 animals expressing PTP-3B::GFPweresignificantlylargerthan wildtype(0.35(cid:7)0.05(cid:5)m2)(Fig.4E,Table 3).ThedistributionofUNC-10punctawas alsorescuedinPTP-3A::GFP-expressingan- imals(96.0(cid:7)14.5punctaper100(cid:5)m)but not in PTP-3B::GFP-expressing animals (43.6(cid:7)3.5punctaper100(cid:5)m)(Table3). We conclude from these analyses that PTP-3Aisthemajorfunctionalisoformat synapsesandthatlossofPTP-3Aresultsin UNC-10andSNB-1::GFPaccumulatingin larger-than-normalpuncta. BecausePTP-3AandPTP-3Bonlydif- ferintheextracellulardomain,weasked whethertheextracellulardomainwassuf- Figure4. ExpressionofUNC-10inmutants.A–D,UNC-10punctaareindicatedbyarrows,whereasabnormallysizedgapsare ficientforthefunctionatsynapses.Exper- indicatedbyarrowheads.A,Inwild-typeanimals,UNC-10punctawereevenlysizedandspacedalongthenervecords.B,Inptp-3, iments from Drosophila have demon- UNC-10punctaappearedmisshapen.Inthisptp-3Amutant,weobservedsmallerandlargerpunctathatwereaberrantlyspaced. strated that the extracellular portion of C,D,Similardefectswereobservedinnid-1(cg119)(C)andsyd-2(ju37)(D)animals.E,AreaofUNC-10punctainwildtypeandin ptp-3,nid-1,andsyd-2mutants,plottedasthemean(cid:7)SEM. LARmayacttosignaltoothercells,inde- pendent of the phosphatase domains (Maurel-Zaffranetal.,2001).Wegenerated aversionofPTP-3A::GFPlackingthephos- phatasedomains(PTP-3A(cid:3)phos::GFP).ptp-3A(tm352)transgenic ptp-3geneticallyinteractswithsyd-2/(cid:1)-liprinandnid-1 animals expressing this protein had an average UNC-10 area of duringsynapseformation 0.39(cid:7)0.08(cid:5)m2(Fig.4E,Table3),indicatingthatthefunctionof TounderstandhowPTP-3Acouldfunctionatsynapses,weex- PTP-3A in synapse formation is dependent on the cytoplasmic amined whether ptp-3 mutants exhibited genetic interactions domain. with other known synaptogenesis genes. LAR–RPTPs can bind Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning J.Neurosci.,August17,2005•25(33):7517–7528•7523 Table3.RIMpunctameasurementsbygenotype actionsbetweenptp-3andthesegenes,we Numberof Numberof constructed double and triple mutants Genotype synapses Area(mm2) animals Puncta/100mm amongthethreegenesandexaminedthe Wildtype 804 0.17(cid:7)0.01 8 87.3 (cid:7)10.5 synapse morphology using the ptp-3A((cid:2)) 613 0.49(cid:7)0.03** 8 51.2 (cid:7)4.5* SNB-1::GFPtransgene. ptp-3(mu256) 442 0.36(cid:7)0.03** 4 43.0 (cid:7)10.2* TheSNB-1::GFPpunctainsyd-2(ju37) juIs194(PTP-3A::GFP) 131 0.22(cid:7)0.02 3 71.3 (cid:7)2.5 animalshadanaverageareaof1.2(cid:7)0.1 ptp-3(mu256);juIs194 493 0.17(cid:7)0.01 3 96.2 (cid:7)14.5 (cid:5)m2andwerenotenhancedintheptp-3A; juIs197(PTP-3B::GFP) 501 0.18(cid:7)0.01 3 89.7 (cid:7)2.2 syd-2 (1.0 (cid:7) 0.1 (cid:5)m2) or ptp-3(mu256); ptp-3(mu256);juIs197 982 0.35(cid:7)0.05** 3 43.6 (cid:7)3.5* syd-2 (1.3 (cid:7) 0.1 (cid:5)m2) double mutants ptp-3A(tm352);juEx584(PTP-3ADphos::GFP) 85 0.39(cid:7)0.08** 3 39.0 (cid:7)23.0* (Fig.5E,6;Table4).Thesyd-2;ptp-3dou- nid-1(cg119) 345 0.39(cid:7)0.04** 3 66.8 (cid:7)2.8 ble mutants were significantly different nid-1(cg119);juIs194 700 0.18(cid:7)0.01** 3 37.0 (cid:7)6.7** fromptp-3A((cid:2))alone(p(cid:8)0.05)butnot syd-2(ju37) 563 0.43(cid:7)0.02** 5 67.03(cid:7)10.4 syd-2(ju37);juIs194 583 0.12(cid:7)0.01** 3 55.0 (cid:7)7.1* from syd-2(ju37) (p (cid:9) 0.05). Box-and- whiskers plot analysis revealed that syd-2 Dataareexpressedasmean(cid:7)SEM.Valuessignificantlydifferentfromwildtype:*p(cid:8)0.05;**p(cid:8)0.001. mutants had more small puncta ((cid:8)0.2 (cid:5)m2; 30.0%) and more large puncta ((cid:9)1.5 (cid:5)m2; 19.6%) than the wild type. syd-2;ptp-3A double mutants resembled syd-2, having 42.3% smaller puncta and 18.4%largerpuncta.Thus,ourresultsin- dicatethatthelossofsyd-2isepistaticto themutationsinptp-3. Loss-of-function mutations in nid-1 causeSNB-1::GFPpunctatoappearelon- gated,withmoresevereeffectsintheven- tralnervecordthanthedorsalcord(Ack- leyetal.,2003).Intheventralnervecord, nid-1(cg119) animals had an average punctum area of 1.7 (cid:7) 0.1 (cid:5)m2, which was significantly larger than in wild type (p(cid:8)0.005).Thepunctasize,distribution, and morphology in the ventral cords of nid-1;ptp-3A(ok244) (1.9 (cid:7) 0.1 (cid:5)m2) or nid-1;ptp-3(mu256)(1.7(cid:7)0.1(cid:5)m2)dou- blemutantswerenotsignificantlydiffer- entfromnid-1singlemutants(p(cid:9)0.05) (Figs.5E,6;Table4).Theseresultssuggest that mutations in ptp-3 do not enhance theSNB-1::GFPaccumulationdefectsas- sociatedwiththelossofnid-1. In contrast, in either ptp-3A;cle-1 or ptp-3(mu256);cle-1 double mutants, we observedmoreseverephenotypesthanin either single mutant alone. In cle-1 mu- tants,SNB-1::GFPpunctaarelargerthan Figure5. PatternofSNB-1::GFPinGABAergicsynapsesinmutants.A,Inwild-typeanimals,theSNB-1::GFPpatternwas inwildtype,withanaverageareaof2.3(cid:7) observedasequallysizedandevenlyspacedfluorescentpuncta(arrow).B,Inptp-3A(tm352)mutants,SNB-1::GFPwaspresentin 0.1 (cid:5)m2, and are separated by long dis- larger,irregularlyspacedpuncta(arrows).C,Insyd-2(ju37)mutants,SNB-1::GFPpunctawerediffusedandoftenappeared tances(Ackleyetal.,2003).Thesedefects contiguous.D,SNB-1::GFPpunctainnid-1(cg119)mutantswereelongatedandaberrantlyspaced.Cellbodies(arrowhead)were aremorphologicallydistinctfromthosein occasionallyvisiblealongtheventralnervecordinallgenotypes.E,TheareaofSNB-1::GFPpunctainthewild-typeandvarious the syd-2 or nid-1 mutants. In cle-1 mu- mutants,plottedasthemean(cid:7)SEM. tants, 57.1% of the puncta were larger thanthe90thpercentileinwildtype,and noneweresmallerthanthe10thpercentile (cid:1)-liprinsviathesecondphosphatasedomain,andthetwopro- (Fig.6).Inthedoublemutants,weobservedanaverageareaof teinshavebeenreportedtofunctiontogetherinsynapseforma- 1.7 (cid:7) 0.1 (cid:5)m2 for ptp-3A;cle-1 and 1.1 (cid:7) 0.1 (cid:5)m2 for ptp- tion(Kaufmannetal.,2002;Dunahetal.,2005).Wehaveshown 3(mu256);cle-1, as well as a new phenotype such that 26.7 and thatmutationsinC.elegans(cid:1)-liprin,syd-2,alterthemorphology 40.0%ofthepuncta,respectively,were(cid:8)0.2(cid:5)m2,aphenotype ofsynapses(Figs.4D,5C)(ZhenandJin,1999).Theextracellular thatwasnotseenineitherofthesinglemutants(Table4).The portion of LAR-like receptors can bind nidogen–laminin and combinedlossofcle-1andptp-3hasamoredetrimentaleffecton collagenXVIII.WehaveshownthatmutationsinC.elegansni- SNB-1::GFP accumulation than the loss of either single gene. dogen,nid-1,andcollagenXVIII,cle-1,resultindistinctchanges Thesedataarguethatcle-1andptp-3likelyaffectsynapticdevel- insynapticmorphology(Ackleyetal.,2003).Toassaytheinter- opmentviadistinctmechanisms. 7524•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning Becausebothnid-1andsyd-2appeared Table4.SNB-1::GFPareabygenotype epistatic to ptp-3, we asked whether re- Wild-typeoutliersa Numberof movingnid-1fromeitherthesyd-2single- synapses Area(mm2) (cid:8)0.22mm2 (cid:9)1.31mm2 mutantorthesyd-2;ptp-3double-mutant Wildtype 874 0.8(cid:7)0.0 8.8% 10.1% animalscausedanyfurtheralterationsin ptp-3A(tm352) 289 1.6(cid:7)0.1** 1.5% 30.0% SNB-1::GFP accumulation. The nid-1; ptp-3A(ok244) 569 1.4(cid:7)0.1** 3.7% 28.1% syd-2 double mutants and nid-1; syd-2; ptp-3A/mnDf90 202 1.7(cid:7)0.2** 9.4% 36.1% ptp-3Aornid-1;syd-2;ptp-3(mu256)triple ptp-3(mu256) 418 1.5(cid:7)0.1** 2.9% 38.3% mutants all resembled syd-2 single mu- syd-2(ju37) 852 1.2(cid:7)0.1** 30.0% 19.6% tants in terms of the shape and distribu- syd-2(ju37);ptp-3A(tm352) 982 1.0(cid:7)0.1* 42.3% 18.4% tion of SNB-1::GFP puncta (Figs. 5E, 6; syd-2(ju37);ptp-3(mu256) 501 1.3(cid:7)0.1** 26.1% 29.1% nid-1(cg119) 331 1.7(cid:7)0.1** 10.9% 34.1% Table4).nid-1;syd-2animalshadanaver- nid-1(cg119);ptp-3A(ok244) 493 1.9(cid:7)0.1** 14.0% 44.2% ageareaof1.5(cid:7)0.2(cid:5)m2,andthetriple nid-1(cg119);ptp-3(mu256) 717 1.7(cid:7)0.1** 3.5% 35.6% mutantshadaverageareasof1.2(cid:7)0.1and cle-1(cg120) 205 2.3(cid:7)0.1** 0.5% 57.1% 1.3(cid:7)0.1(cid:5)m2,respectively.Allweresig- cle-1(cg120);ptp-3A(tm352) 146 1.7(cid:7)0.2** 26.7% 32.9% nificantlydifferentfromwildtype(p(cid:8) cle-1(cg120);ptp-3(mu256) 100 1.1(cid:7)0.2 41.0% 28.0% 0.005)butnotfromsyd-2singlemutants syd-2(ju37);nid-1(cg119) 484 1.5(cid:7)0.2** 36.1% 20.2% (p (cid:9) 0.05). In addition, all of the mu- syd-2(ju37);nid-1(cg119);ptp-3A(tm352) 366 1.2(cid:7)0.1** 33.6% 23.5% syd-2(ju37);nid-1(cg119);ptp-3(mu256) 438 1.4(cid:7)0.1** 14.2% 28.5% tant combinations with syd-2 mutants were observed to have SNB-1::GFP Dataareexpressedasmean(cid:7)SEM.Valuessignificantlydifferentfromwildtype:*p(cid:8)0.05;**p(cid:8)0.001. aPercentageofpunctabelowthe10thpercentileorabovethe90thpercentileofwildtype. punctathatwereofasizeandmorphol- ogymostsimilartosyd-2singlemutants (Table4).Thesedatashowthattheloss ofsyd-2isepistatictomutationsinnid-1 andptp-3. PTP-3localizationisdependenton nid-1andsyd-2 The genetic interactions between ptp-3, nid-1,andsyd-2couldbeexplainedbysev- eral different models. NID-1 and PTP-3 couldacttorecruitSYD-2tosynapses,or SYD-2andPTP-3couldfunctiontoorga- nize NID-1 in the ECM. To differentiate between these models, we examined the amount of PTP-3 immunofluorescence thatcolocalizedwithUNC-10inthenid-1 andsyd-2singlemutantsandnid-1;syd-2 double-mutantanimals(Fig.7)(seeMa- terials and Methods). In wild-type ani- mals,41.7%ofPTP-3signalabovethresh- old was colocalized with UNC-10 (n (cid:6) 13). In nid-1 mutants, PTP-3 levels ap- peared reduced, and the protein was ab- normally distributed into smaller and largerpunctawithgapsinthestainingpat- tern(Fig.7B).However,35.1%ofthere- maining PTP-3 was colocalized with UNC-10 (n (cid:6) 15). This suggests that Figure6. BoxplotsofSNB-1::GFPquantitation.TheareaofallSNB-1::GFPmeasurementsbygenotypewererepresentedasbox plots.Theboxrepresentsthevalueswithinthe25thto50thpercentiles,andthewhitebar(orgrayarrowhead)indicatesthemean NID-1isrequiredtomaintainPTP-3lev- observedvalue.Theendsofthewhiskersshowthe10thto90thpercentiles,withthe5thand95thpercentilesindicatedbyblack elsbutdoesnotseemtobenecessaryfor circles.Thedottedlinesillustratethevaluesthatwesetaslimitstodefinepunctathatareoutliersfromwildtypeasdefinedbythe theassociationofPTP-3withUNC-10. 10th(0.2(cid:5)m2)and90th(1.5(cid:5)m2)percentilevalues.Inwildtype,theboxandwhiskersarecompact,indicatingthemeasure- In syd-2 animals, the levels of PTP-3 mentsfallintoareproduciblepattern.TheSNB-1::GFPpunctainmutantswasmorevariableinsize,resultinginlargerplots.The proteinwerecomparablewiththatofwild shapeoftheboxandwhiskersissimilarinthesyd-2single,double,andtriplemutantsdemonstratingthatthesemutantsare type,butPTP-3wasdistributeddiffusely phenotypicallysimilarintheireffectonSNB-1::GFPaccumulation.nid-1singleandnid-1;ptp-3Adoublemutantsexhibitasimilar alongthenervecords.Only14.7%ofthe distribution.Incontrast,cle-1singleandcle-1;ptp-3Adoublemutantsarephenotypicallydistinct. PTP-3 present was colocalized with UNC-10(Fig.7C)(n(cid:6)8).PTP-3wasseen insomecellbodiesinsyd-2animals(15of100).Thisphenotype effectwasseensuchthatPTP-3levelswerereduced,and(cid:5)19.9%of wasnotobservedinwildtype(0of100)ornid-1mutants(0of the remaining PTP-3 protein was colocalized with UNC-10 (Fig. 100).TheseobservationsaresuggestiveofSYD-2actingasamo- 7D)(n(cid:6)10).Thus,NID-1andSYD-2havedistinctrolesinthe lecularscaffoldatsynapsesandbeingimportantforPTP-3traf- synapticaccumulationofPTP-3. ficking to synapses. In nid-1;syd-2 double mutants an additive ThedecreasedPTP-3levelsinnid-1mutantssuggestedthat Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning J.Neurosci.,August17,2005•25(33):7517–7528•7525 mutants, SYD-2 was abnormally spaced andclusteredintolargeraggregates,with anaverageof1.0(cid:7)0.1(cid:5)m2(p(cid:8)0.05) (Fig.8K).Theseobservationssuggestthat bothNID-1andPTP-3arerequiredtolo- calizeormaintainSYD-2atsynapses. ExpressionofPTP-3Abypassesnid-1 butnotsyd-2mutants Tofurthertestwhethernid-1solelyfunc- tionsinmaintainingsynapticPTP-3Alev- els,weelevatedtheexpressionofPTP-3A innid-1mutantsandexaminedUNC-10 expression.Althoughtheaveragenumber ofpunctaper100(cid:5)m(41.9(cid:7)8.9)wasnot restoredtowild-typelevels(87.3(cid:7)10.5), measurementofUNC-10punctashowed that the average area (0.17 (cid:7) 0.01 (cid:5)m2) was restored to wild-type levels (p (cid:9) 0.05).TheUNC-10areawassignificantly differentfromnid-1animalsnotexpress- ingPTP-3A::GFP(0.39(cid:7)0.04(cid:5)m2)(Fig. 4E,Table3).Moreover,immunostaining of anti-SYD-2 showed that SYD-2 accu- mulation was more punctate in nid-1; Figure7. NID-1andSYD-2havedistincteffectsinPTP-3localization.ThelocalizationofPTP-3(green)andUNC-10(red)in juIs194[PTP-3A::GFP] than nid-1 alone nid-1(cg119),syd-2(ju37),andnid-1(cg119);syd-2(ju37)doublemutantsisshown.Theboxedregionsaremagnifiedintheright panels.A,A(cid:3),PTP-3andUNC-10exhibitedanoverlappedpatternofaccumulationinwild-typeanimals.B,B(cid:3),Innid-1animals, (Fig. 8H). In contrast to the effects with PTPlevelswerereduced,butthepatternremainedpunctate.Whenpresent,PTP-3coincidedwithUNC-10puncta(arrowhead), nid-1, PTP-3A::GFP expression in syd-2 whereassomeUNC-10punctalackedPTP-3(arrow).C,C(cid:3),Insyd-2mutants,PTP-3wasdiffuseandhadareducedcoincidencewith mutant animals did not restore UNC-10 UNC-10(arrowhead).PTP-3andUNC-10hadaccumulatedindependently(arrows),aneventthatwasrarelyseeninwildtype punctatowild-typelevels(Fig.4E,Table ((cid:8)25%).D,D(cid:3),Innid-1;syd-2doublemutants,PTP-3detectionwasmoderatebutpresentinamorepunctatepatternthansyd-2 3).Theseresultssupportourconclusion singlemutants.However,PTP-3andUNC-10onlyrarelycoincided(arrowhead);rather,eachappearedtobeexclusivelypunctate that NID-1 is required to maintain (arrows).Scalebar,5(cid:5)m. PTP-3A protein levels at synapses and that SYD-2 is required for PTP-3A to regulateUNC-10accumulation. PTP-3doesnotfunctiontoorganizeNID-1.Toconfirmthis,we Discussion examinedtheaccumulationofnidogeninptp-3mutants.Inwild- LAR–RPTPisoformsprovidefunctionalspecificity type animals, NID-1 was present in the mantle of the mech- LAR-likereceptortyrosinephosphataseshavebeenbroadlyim- anosensoryneuronsandbetweenthemuscleedgeandnervepro- plicated in the patterning of the nervous system by regulating cesses(KangandKramer,2000)(Fig.8A).NID-1accumulation eventssuchasneuriteoutgrowth,targetrecognition,andsynap- wasnormalinptp-3mutants,indicatingthatPTP-3Adoesnot togenesis(Clandininetal.,2001;JohnsonandVanVactor,2003; acttoorganizeNID-1inthesynapticECM(Fig.8B). Dunahetal.,2005).OnechallengeinunderstandingRPTPfunc- tionisidentifyinghowthesemoleculesfunctioninmultipleas- SYD-2synapticlocalizationisalteredinptp-3and pectsofneurogenesis.AlternativesplicingofRPTPgenesgener- nid-1mutants atesreceptorisoformdiversity,suggestingthatdistinctisoforms WesubsequentlyexaminedthelocalizationofSYD-2intheptp-3 could regulate specific RPTP functions (O’Grady et al., 1994; andnid-1mutantanimalsusingSYD-2antibodies(ZhenandJin, Pulido et al., 1995). We have shown here that the two PTP-3 1999).Inwild-typeanimals,SYD-2localizationwasdetectedas isoforms exhibit distinct roles in axon guidance and synaptic puncta along the nerve cords (Fig. 8C) and in the body wall organization.Thetypesofaxonoutgrowthandguidancedefects muscles(ZhenandJin,1999).Inptp-3mutants,SYD-2puncta inptp-3mutantsresemblethosethathavebeenreportedforLAR werelargeanddiffusewithfrequentgapsalongthenervecord homologs in Drosophila and vertebrates (Desai et al., 1996; (Fig.8E,F).Innid-1mutants,SYD-2appeareddiffusebuthad Kruegeretal.,1996;Garrityetal.,1999;Clandininetal.,2001;Xieet fewgaps(Fig.8G). al.,2001;Stepaneketal.,2005).Ourobservationsindicatethese To quantitate the effect of the loss of ptp-3A and nid-1 on functionsofLARareevolutionarilyconservedandthatreceptor SYD-2,weusedaSYD-2::GFPfusionproteinthatwasexpressed isoformsprovidefunctionalspecificity. undertheunc-25promoter(Yehetal.,2005).Inwild-typeani- mals, the SYD-2::GFP appears as a set of regularly sized and PTP-3isoformssignalviadistinctpathways spacedpunctaalongthenervecords,withanaverageof0.7(cid:7)0.1 Inadditiontoaxonguidanceandsynapticdefects,mutationsthat (cid:5)m2(Fig.8I).Inptp-3A(tm352)mutants,wefoundthepuncta affectbothptp-3isoformscancauseembryoniclethalityresulting weresignificantlyenlargedandclusteredtogether(Fig.8J).The fromdefectsinneuroblastmigration.ptp-3mutationssynergize average area of SYD-2::GFP puncta in ptp-3A(tm352) mutants strongly with mutations affecting other pathways involved in was1.0(cid:7)0.1(cid:5)m2(p(cid:8)0.05).Similarly,wefoundthatinnid-1 neuroblast migration (VAB-1/Eph receptor, EFN-4/Ephrin) 7526•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning (Chin-Sangetal.,2002;Harringtonetal., 2002). Both neuroblast migration and axonguidanceappeartobefulfilledbythe short isoform PTP-3B, because ptp-3A- specific mutations do not exhibit axon guidance or embryonic morphogenesis defects, nor do they synergize with Eph signaling mutations (our unpublished results). PTP-3A regulates synapse formation, as does NID-1 and SYD-2. Mutations in nid-1causeaxonguidancedefectsthatare distinct from those in ptp-3 mutant ani- mals(KimandWadsworth,2000;Ackley et al., 2003). Likewise, mutations in Eph signaling cause synaptic defects that are distinctfromthoseinptp-3(B.D.Ackley andY.Jin,unpublisheddata).Theseob- servationssuggestthatventralneuroblast migration and axon guidance are regu- latedbysimilarmechanisms. ThePTP-3Aproteincontainsallofthe domainsofPTP-3B,butthetwoproteins are not functionally equivalent. What mightleadtothedifferencesobservedin function for PTP-3B and PTP-3A? PTP-3Bisexpressedearlier,andinmore tissue types, than is PTP-3A, suggesting that some of the differences in PTP-3 functionmaybeattributabletoexpression differences.However,withinneurons,we foundthatPTP-3AandPTP-3Barelocal- izedtodistinctsubcellularcompartments. Figure8. PTP-3andNID-1regulateSYD-2accumulation.A,B,NID-1localizationinwild-type(A)andptp-3A(B)animalsis comparable.NID-1(green)islocalizedinacontinuouspatternattheinterfaceoftheventralnervecordfasciclesandthemuscles AninteractionbetweenPTP-3Aandali- (arrowheads)andinapunctatepatterninthemantleofthemechanosensoryneurons(arrows).C–H,SYD-2(red)localization.C, gand that is dependent on the PTP-3A- Inwild-typeanimals,SYD-2waspresentalongthenervecordsinapunctatepattern(arrowheads).D,syd-2(ju37)animalslacked specificdomainscouldexplainthediffer- staining(thepositionoftheventralnervecordisindicatedbyarrowheads).E,F,Inptp-3mutants,SYD-2wasobservedinlarger ences in subcellular accumulation. puncta(arrows)andalsoretainedincellbodies(arrowhead).G,Innid-1animals,SYD-2wasdiffuse,andthepuncta(arrows) Together,ourresultssuggestthatPTP-3A appearedenlarged.SYD-2wasalsofoundincellbodies(arrowheads).H,Innid-1mutantsexpressingPTP-3A::GFP,SYD-2expres- and PTP-3B likely interact with distinct sionispunctate(arrows),andtheamountofSYD-2incellbodiesisreduced(arrowheads).I,SYD-2::GFPexpressedintheGABAer- molecularpartnersincontrollingspecific gicneuronsofwild-typeanimalsappearspunctatewiththeclustersbeingevenlysizedandspaced(arrowheads).GFPisobserved aspectsofneuronaldevelopment. inthecellbodiesinallgenotypes(arrows;I–K).Thiseffectislikelyaresultofoverexpressionandnotthegeneticbackground.J, ptp-3A(tm352)mutantsexhibitanalteredpatternofSYD-2::GFPaccumulation,withlargerclustersofGFP(arrowheads).K, nid-1(cg119)animalshaveenlargedSYD-2::GFPpuncta(arrowheads)thatareseparatedbylargegaps.L,Themeanareaof PTP-3Afunctionsasamolecularlinker SYD-2::GFPpunctawasplottedbygenotype.Scalebars,10(cid:5)m. atsynapses Thegeneticinteractionsweidentifiedbe- tweenptp-3andsyd-2wereexpectedgiven thatLARhasbeenfoundtofunctionwith (cid:1)-liprin to regulate synaptic morphology in vertebrates and in cellularligandscouldregulatethedistinctfunctionswehaveob- Drosophila(Kaufmannetal.,2002;Dunahetal.,2005).However, servedforthetwoPTP-3isoforms. thecytoplasmicdomainsofPTP-3AandPTP-3Bareidentical, Thegeneticepistasisofptp-3andnid-1indicatesthetwogenes suggestingbothshouldinteractwithSYD-2equally.PTP-3Ais have a common output in synaptic development. PTP-3 and sufficient to rescue the synaptic defects of ptp-3 mutants, but SYD-2arepresentatpresynapticdensities(ZhenandJin,1999; PTP-3Bisnot.Thus,aninteractionwithSYD-2doesnotexplain Yehetal.,2005;presentstudy).Wefoundthattheaccumulation thespecificityofPTP-3Ainsynapseformation. of SYD-2 was aberrant in both ptp-3 and nid-1 mutants. The Previousworkhasshownthat(cid:1)-liprinsarecapableofinduc- functionofNID-1inSYD-2localizationis,atleastpartially,de- ingLARtoaccumulateatfocaladhesion-likeplaquesincultured pendent on PTP-3, because we could restore a normal SYD-2 cells(Serra-Pagesetal.,1998).Focaladhesionsaresitesofcell– accumulationpatterninnid-1mutantsbysupplyingadditional matrix interactions, suggesting that (cid:1)-liprins may regulate an PTP-3A.Likewise,PTP-3localizationisalteredinnid-1mutants, interactionofLARreceptorswiththeECM.SpecificECMmole- suggestingtheSYD-2mislocalizationmaybeadirectresultofthe culesare,infact,ligandsforLARreceptors,andbiochemicaland PTP-3mislocalization.ThesedataindicatethattheECMisnec- geneticworkhasshownthatLARisoformsexhibitligandspeci- essaryforPTP-3andSYD-2toremainatspecificfoci.Supplying ficity(O’Gradyetal.,1998).Thedatasuggestthatspecificextra- additional PTP-3A also overcomes the UNC-10 accumulation

Description:
The type IIa family of receptor protein tyrosine phosphatases. (RPTPs), which . injected at 25 ng/μl with Pttx-3::RFP (Altun-Gultekin et al., 2001) at 100 ng/μl to nore particles touching edge, include interior holes and reset counter. was not observed in wild type (0 of 100) or nid-1 mutants (0
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.