TheJournalofNeuroscience,August17,2005•25(33):7517–7528•7517 Cellular/Molecular The Two Isoforms of the Caenorhabditis elegans Leukocyte- Common Antigen Related Receptor Tyrosine Phosphatase PTP-3 Function Independently in Axon Guidance and Synapse Formation BrianD.Ackley,1,2RobertJ.Harrington,1MartinL.Hudson,1LisaWilliams,3CynthiaJ.Kenyon,3AndrewD.Chisholm,1 andYishiJin1,2 1SinsheimerLaboratories,DepartmentofMolecular,Cellular,andDevelopmentalBiology,UniversityofCalifornia–SantaCruz,SantaCruz,California 95064,2HowardHughesMedicalInstitute,SantaCruz,California95064,and3DepartmentofBiophysicsandBiochemistry,UniversityofCalifornia–San Francisco,SanFrancisco,California94143 Leukocyte-commonantigenrelated(LAR)-likephosphatasereceptorsareconservedcelladhesionmoleculesthatfunctioninmultiple developmentalprocesses.TheCaenorhabditiselegansptp-3geneencodestwoLARfamilyisoformsthatdifferintheextracellulardomain. Weshowherethatthelongisoform,PTP-3A,localizesspecificallyatsynapsesandthattheshortisoform,PTP-3B,isextrasynaptic. Mutationsinptp-3causedefectsinaxonguidancethatcanberescuedbyPTP-3BbutnotbyPTP-3A.Mutationsthatspecificallyaffect ptp-3Adonotaffectaxonguidancebutinsteadcausealterationsinsynapsemorphology.Geneticdouble-mutantanalysisisconsistent withptp-3Aactingwiththeextracellularmatrixcomponentnidogen,nid-1,andtheintracellularadaptor(cid:1)-liprin,syd-2.nid-1andsyd-2 arerequiredfortherecruitmentandstabilityofPTP-3Aatsynapses,andmutationsinptp-3ornid-1resultinaberrantlocalizationof SYD-2.OverexpressionofPTP-3Aisabletobypasstherequirementfornid-1forthelocalizationofSYD-2andRIM.Weproposethat PTP-3Aactsasamolecularlinkbetweentheextracellularmatrixand(cid:1)-liprinduringsynaptogenesis. Keywords:synaptogenesis;axonguidance;celladhesion;(cid:1)-liprin;syd-2;LARreceptortyrosinephosphatase;nidogen Introduction LAR–RPTPsbindlaminin–nidogenviathefifthFNIIIrepeat, The type IIa family of receptor protein tyrosine phosphatases andRPTP(cid:2)bindsagrinandcollagenXVIIIviaitsfirstIgdomain (RPTPs), which include leukocyte-common antigen related (O’Gradyetal.,1998;Aricescuetal.,2002).Thefunctionsofthe (LAR)PTP-(cid:2)andPTP-(cid:3),arecelladhesionmoleculesthatregu- LAR and extracellular matrix (ECM) interaction are not clear. latemultipledevelopmentalevents,includingneurogenesis(den Mutations in human collagen XVIII result in Knobloch’s syn- Hertog et al., 1999; Johnson and Van Vactor, 2003; Paul and drome and defects in neural cell migrations (Kliemann et al., Lombroso, 2003; Ensslen-Craig and Brady-Kalnay, 2004). The 2003).Micelackingnidogen-1exhibitmotordeficitsthatsuggest extracellulardomainsofLAR-likeRPTPscontainIg-likeandfi- aneurologicaldefect(Dongetal.,2002).LAR–RPTPsmayexert bronectintypeIII(FNIII)repeats.AlternativesplicingofRPTP specific functions in neural development through distinct genes result in isoforms that differ in the extracellular domain ligands. andcanexhibittissue-specificexpressionandlocalization,sug- TheintracellulardomainsofLARinteractwithseveralmole- gestingtheectodomainconfersfunctionalspecificity(O’Gradyet cules including the TRIO guanine nucleotide exchange factor al.,1994;Pulidoetal.,1995;Honkaniemietal.,1998). (Debant et al., 1996), Enabled (Wills et al., 1999), (cid:4)-catenin (Kypta et al., 1996), and liprins (Serra-Pages et al., 1998). (cid:1)-Liprinshaveemergedaskeyregulatorsofsynaptogenesis.The ReceivedMay18,2005;revisedJune24,2005;acceptedJune28,2005. presynapticdensitiesofneuromuscularjunctions(NMJs)inCae- B.D.A.wassupportedbytheHowardHughesMedicalInstitute(HHMI)andbyadevelopmentgrantfromthe MuscularDystrophyAssociation.GrantsfromtheNationalInstitutesofHealthsupportedresearchinA.D.C.’slabo- norhabditiselegansandDrosophilaareabnormalin(cid:1)-liprinmu- ratory(GM54657)andinY.J.’slaboratory(NS35546).Y.J.isanHHMIInvestigator.ptp-3(ok244)andptp-3(tm352) tants (Zhen and Jin, 1999; Kaufmann et al., 2002). Drosophila weregeneratedbytheC.elegansgeneknock-outconsortiumandtheNationalBioresourceProjectfortheExperi- LAR (DLAR) null mutations cause presynaptic density defects mentalAnimalC.elegans(Tokyo,Japan),respectively.SomeofthestrainswereprovidedbytheCaenorhabditis that are similar to, but weaker than, those in Dliprin mutants GeneticsCenter(Minneapolis,MN).WethankM.Nonetfortheanti-UNC-10andanti-SNT-1antibodies,J.Bessereau foranti-UNC-49antibodies,J.KramerforpJJ471plasmid,M.ZhenforhpIs3strain,andmembersofourlaboratories (Kaufmannetal.,2002).Dliprinloss-of-functionmutationsare forcriticalreadingsofthismanuscript. epistatictoDLARoverexpressioneffects,suggestingthatDliprin CorrespondenceshouldbeaddressedtoDr.YishiJin,329SinsheimerLaboratories,UniversityofCalifornia–Santa isrequiredforDLARfunctionatsynapses.Inmammals,LARand Cruz,1156HighStreet,SantaCruz,CA95064.E-mail:[email protected]. (cid:1)-liprin are involved in the development and maintenance of DOI:10.1523/JNEUROSCI.2010-05.2005 Copyright©2005SocietyforNeuroscience 0270-6474/05/257517-12$15.00/0 excitatorysynapses(Dunahetal.,2005). 7518•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning ptp-3,thesingleC.eleganstypeIIaRPTPgene,encodestwo frompCZ512andreplacingitwithaBglII-SpeIfragmentfrompJJ471,a isoformsthatdifferintheextracellulardomain(seeFig.1A,C) transmembrane::GFPfusion(J.Kramer,personalcommunication). (Harringtonetal.,2002).PTP-3Aismostsimilartovertebrate Transgenic animals were generated by germ-line transformation as LAR,whereastheshorterisoform,PTP-3B,lackstheIgdomains describedpreviously(Melloetal.,1991).PTP-3A::GFP(pCZ521)and PTP-3A(cid:3)phos::GFP(pCZ544)wereinjectedintoN2animalsat75and and the first four FNIII repeats. PTP-3B regulates neuroblast 68ng/(cid:5)l,respectively,withpRF4[rol-6(SD)](Melloetal.,1991)at100 migrationduringembryogenesis(Harringtonetal.,2002).The ng/(cid:5)l to generate juEx563 and juEx584. PTP-3B::GFP (pCZ512) was functionofPTP-3Ahasnotbeendefined.InC.elegansmutations injectedat25ng/(cid:5)lwithPttx-3::RFP(Altun-Gultekinetal.,2001)at100 incollagenXVIII,cle-1ornidogen,nid-1,causesdistinctdefects ng/(cid:5)l to generate juEx686 and juEx687. The integrated transgenes incellmigration,axonguidance,aswellasmorphologicaland PTP-3A::GFP(juIs194)andPTP-3B::GFP(juIs197)weregeneratedby functionaldefectsinsynapses(KangandKramer,2000;Kimand UV/trimethylpsoralenmutagenesis. Wadsworth,2000;Ackleyetal.,2001,2003). Whole-mountimmunostaining.Anti-UNC-10stainingwasdoneusing Wereportheretheroleofptp-3inaxonguidanceandsynaptic the modified Bouin’s fixation as described previously (Nonet et al., morphology.PTP-3Aspecificallylocalizestosynapses,overlap- 1997).Forotherantibodies,animalswerefixedasdescribedpreviously ping the presynaptic proteins SYD-2 and UNC-10. Isoform- (FinneyandRuvkun,1990),withthefollowingmodifications.Theani- malswerefixedfor2honice,andthereductionstepwasperformed specificmutantsandtransgenesdemonstratethatptp-3Bfunc- using1(cid:4)boratebufferfor2hat37°C.Thefollowingprimaryantisera tions in axon guidance and that ptp-3A contributes to synapse wereusedinthisstudy:guineapiganti-PTP-3(1:20)(Harringtonetal., development. The synaptic defects of ptp-3 resemble those of 2002),mouseanti-GFP(1:1000;Roche,Indianapolis,IN),rabbitanti- nid-1andsyd-2.Geneticdouble-mutantanalysesandcellbiology UNC-10 (1:1000) (Koushika et al., 2001), chicken anti-UNC-10 studiessupportamodelwherebyPTP-3Aactsasalinkbetween (1:2000), rabbit anti-SNT-1 (1:2000) (Nonet et al., 1993), and rabbit extracellularcuesandasynapticorganizer. anti-SYD-2(1:2000)(ZhenandJin,1999).Thefollowingsecondaryan- tibodieswerepurchasedfromMolecularProbes(Eugene,OR)andwere MaterialsandMethods usedat1:2000:Alexa488-labeledgoatanti-guineapig,Alexa488-labeled C.elegansstrains.AllC.elegansstrainsweremaintainedat20–22.5°Cas anti-mouse, Alexa 594-labeled anti-rabbit, Alexa 594-labeled anti- describedpreviously(Brenner,1974).Thefollowingstrainswereusedin chicken,andAlexa647-labeledanti-rabbit.Allimageswerecollectedon thisstudy:N2(var.Bristol),CH119[nid-1(cg119)](KangandKramer, aZeiss(Oberkochen,Germany)Pascalconfocalmicroscopeusingmulti- 2000),RB633[ptp-3A(ok244)],CZ333(juIs1),CZ1200(juIs76),CZ631 trackparameters,witheithera63(cid:4)(SNB-1::GFP)or100(cid:4)(immuno- (juIs14),CZ900[syd-2(ju37)](ZhenandJin,1999),CZ1991(mnDf90/ fluorescence)objective. mIn1mIs14),CZ3761[ptp-3(mu256)],CZ2857[ptp-3A(tm352);juIs1], Colocalization.Confocalstackswereprojectedintoasingleplaneand CZ4660 [ptp-3A(ok244);juIs1], CZ3555 [ptp-3(mu256);juIs1], CZ4661 analyzedusingthehistogramtoolintheZeissLSM5software(version [ptp-3A(ok244);nid-1(cg119); juIs1], CZ3997 [ptp-3(mu256); nid- 3.2).Aregionofinterestwasdrawnaroundthenervecord.Thresholding 1(cg119);juIs1],CZ3139[nid-1(cg119);syd-2(ju37);juIs1],CZ2981[syd- levelsweresetusingthe“determinefromregionofinterest”function. 2(ju37);ptp-3A(tm352);juIs1], CZ4929 [ptp-3(mu256);syd-2(ju37); The colocalization table was exported to Microsoft Excel (Redmond, juIs1], CZ4918 [ptp-3(mu256); nid-1(cg119); syd-2 (ju37); juIs1], WA)forstatisticalanalysis.Thepercentageofcolocalizationwasdeter- CZ4884(juIs194),CZ4913[ptp-3(mu256);juIs194],CZ4919(juIs197), minedasthetotalareaofregion3(pixelsatwhichbothchannelsare CZ4914[ptp-3(mu256);juIs197],CZ4885[syd-2(ju37);juIs194],CZ3992 abovethreshold)dividedbythetotalareaforthatchannel(totalpixels [ptp-3A(tm352);juEx584], CZ3839 (juEx563), CZ4249 (juEx686), abovethreshold). DR2078 [mIn1 mIs14/bli-2(e678)unc-4(e120)] (Edgley and Riddle, GFP analysis. For axon morphology, animals were scored blind to 2001),andZM54(hpIs3)(Yehetal.,2005). genotype by examining cell type-specific GFP markers (juIs76 and Themu256allelewasisolatedinascreenformutantswithdefective juIs14)withanAxioplan2microscopeusinga63(cid:4)Plan-apochromat migrationsfortheQneuroblastasdescribedpreviously(Ch’ngetal., objective and a GFP long-pass filter set (Chroma, Battleboro, VT). A 2003). Double and triple mutants were constructed by crossing nid- defasciculationeventwascountedasaregionofthenervecordwheretwo 1(cg119)/(cid:1);mIn1mIs14/(cid:1)orsyd-2(ju37);mIn1mIs14/(cid:1)malestoho- ormoreprocessesappearedtobecomesplitfromonefascicleandwere mozygousptp-3mutantanimals.ThemIn1mIs14balancestheptp-3re- visiblealongadistancethatwasgreaterthanthelengthoftwoneuronal gionandcontainsagreenfluorescentprotein(GFP)marker(Edgleyand cellbodies,whichis(cid:5)20(cid:5)m.SynapsemorphologyofDtypeneurons Riddle,2001).Non-GFPoffspringwereselectedandhomozygosed.The was visualized by juIs1 (Punc-25-SNB-1::GFP) and hpIs3 (Punc-25- presence of the nid-1(cg119) allele was confirmed by PCR (Kang and SYD-2::GFP)usingaZeissPascalLSMconfocalmicroscope.Animals Kramer,2000).Homozygotesofsyd-2(ju37)werechosenbythesluggish wereanesthetizedusing0.5%phenoxy-propanol(TCIAmerica,Port- movementandegg-layingdefects(ZhenandJin,1999). land,OR)inM9andmountedon5%agarpads.Imageswereacquired Molecularbiology.Theptp-3genespanstwocosmidclones,C09D8 using a 63(cid:4) Plan-apochromat lens and a 488 argon laser line at 3% (GenBankaccessionnumberZ46811)andF38A3(GenBankaccession power.Themicroscopewassettouseasinglescanwitha505long-pass numberZ49938).Allnumberinginthisreportisgivenrelativetothe filterset. ATGforptp-3A(position7765inC09D8).Themu256lesionwasiden- Quantification. Measurements of SNB-1::GFP and UNC-10 puncta tifiedbysequencingPCR-amplifiedregionsoftheptp-3exons(primer wereperformedonconfocalimagesasdescribedpreviously(Ackleyetal., sequencesavailableonrequest).Analysisofthesequencingresultsre- 2003),withminormodificationsandtheexperimenterblindtogeno- vealedasingleadenosineinsertionatposition34784relativetotheATG type.Briefly,confocalimageswereprojectedintoasingleplaneusingthe oftheptp-3Aisoform(correspondingtoposition9670inF38A3;Gen- maximumprojectionandexportedasatifffilewithascalebar.Using BankaccessionnumberZ49938).Thetm352deletionremovesnucleo- Scion(Frederick,MD)Image,thefileswereconvertedtoabinaryimage tides8494–9040andtheok244deletionremovesnucleotides8295–9639 usingthethresholdcommand,sothatthebinaryimageresembledthe oftheptp-3Acodingregion. RGBimage.Aregionofinterestwasdrawnaroundtherelevantregionof pCZ512(PTP-3B::GFP)hasbeendescribedpreviously(Harringtonet thenervecords.Thefollowingmeasurementoptionswereselected:area, al.,2002).pCZ521(PTP-3A::GFP)wascreatedbyfusingtheGFPDNA X–Ycenter,perimeter/length,ellipsemajoraxis,ellipseminoraxis,in- fromA.Fire’svectorpPD113.29toaptp-3AcDNAgeneratedbyreverse cludeinteriorholes,wandautomeasure,andheadings.Scalingwassetby transcription-PCR(primersequencesavailableonrequest)ataunique measuringthescalebar;forGFP,images7pixelsequaled1(cid:5)m,andfor PstI site in exon 27 (Fig. 1A). A genomic fragment corresponding to UNC-10puncta,11pixelsequaled1(cid:5)m.The“analyzeparticle”com- nucleotide(cid:2)2565throughexon4wasgeneratedbyPCR,cutwithKpnI mand was used with a minimum size of 4 pixels and a maximum of and NsiI, and fused to the ptp-3A cDNA–GFP fragment. pCZ544 10,000pixels.Thefollowingoptionswereselected:outlineparticles,ig- (PTP-3A::GFP(cid:3)phos)wascreatedbyremovingaBglII-AvrIIfragment noreparticlestouchingedge,includeinteriorholesandresetcounter. Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning J.Neurosci.,August17,2005•25(33):7517–7528•7519 andresultsinastrongptp-3lossoffunc- tionduringembryogenesis(Harringtonet al.,2002).Weisolatedanewptp-3allele, mu256,inascreenforanimalswithdefec- tiveQcellmigration(Williams,2002).Se- quencing of the ptp-3 locus from mu256 animalsidentifiedasinglenucleotidein- sertion in exon 25 that would cause a frame shift after amino acid Glu1756 in thefirstphosphatasedomain,leadingtoa premature stop (Fig. 1C). Immunostain- ingusingantiseraraisedagainstthePTP-3 phosphatasedomainsshowedthat50%of mu256animalshadnodetectableprotein (datanotshown)and50%exhibitedonly aweakreactivityinthesynapse-richnerve ring(Fig.1F)(n(cid:6)100).mu256animals displayed partially penetrant embryonic (Emb)andlarvallethality(Lva)aswellas variably abnormal (Vab) morphology phenotypes (Table 1). The lethality and morphologydefectsweresimilartothose observed for op147 and in the broods of animals injected with ptp-3 double- stranded RNA (Harrington et al., 2002). Thus, mu256 is a strong loss-of-function mutationaffectingbothPTP-3isoforms. To analyze the specific requirements forthePTP-3Aisoform,weobtainedtwo deletion alleles in the ptp-3A coding re- gion, tm352 and ok244. The tm352 and Figure1. Theptp-3locusandproteinlocalization.A,ptp-3genestructure:exonsareshownasshadedboxes,andintronsare ok244deletionsremoveoneorthreeFNIII shownaslines.Largeintronsareindicatedasbrokenlineswiththesizelistedbelow.Thegenomicregionsusedtodriveisoform- repeats, respectively, and result in frame specificexpressionareindicated.ThepositionsofrestrictionenzymesitesusedtomakeminigenesandGFPfusionsarealso shifts and premature terminations of indicated.ptp-3A-specificexonsareshowninred,whereastheptp-3B-specificexonisshowninyellow.Theexonscommonto PTP-3A. Both ptp-3A alleles are likely to ptp-3Aandptp-3Bareinblue.Thelocationsofthetm352,ok244,op147,andmu256lesionsareindicated.nt,Nucleotide.B,The eliminateptp-3Afunctionbutareunlikely genestructureofthePTP-3::GFPisoformsisillustrated.Exonsareindicatedbyboxes,andintronsareindicatedaslines.The toaffecttheexpressionofPTP-3Bbecause placementoftheGFPcodingsequencesisindicatedbythegreenbox.C,PTP-3proteins:Ig-likedomainsareillustratedascircles, thelesionsareoutsideoftheminimalres- FNIIIdomainsareillustratedashexagons,thepredictedtransmembranedomainisillustratedasanoval,andthephosphatase cuing fragment for ptp-3B (Harrington domainsareillustratedasrectangles.TheasteriskindicatestheFNIIIrepeatmosthomologoustotheFNIIIrepeatcontainingthe etal.,2002).Bywhole-mountimmuno- laminin–nidogen-bindingsitefrommouseLAR.Theeffectsofthemutationsareshownbelow.TheX-headedlineindicatesthe deletedportionoftheproteinandtheintroductionofastopcodon.D–F,Whole-mountimmunolocalizationofPTP-3inwild-type staining,areducedlevelofstainingwas (D),ptp-3(ok244)(E),andptp-3(mu256)(F)animals.Stainingisobservedinthenervering(arrow)andventralnervecord observed in tm352 and ok244 animals (arrowhead)ofwild-typeandptp-3(ok244)animals.Allmu256animalsexaminedlackedreactivityinthenervecord(F,arrow- (Fig.1E).Bothmutationscausesimilar head).Approximately50%ofptp-3(mu256)animalsexhibitedweakPTP-3staininginthenervering(F,arrow).Scalebar,10(cid:5)m. phenotypes(seebelow),andtm352ani- malsdidnotexhibitsignificantEmbor Vab phenotypes (Table 1), suggesting Table1.LethalityandVabinptp-3mutants that PTP-3A does not function in em- %Lethalitya bryonicmorphogenesis. Genotype n Emb Lva Vab PTP-3expressioninthepostembryonic Wildtype 823 0.1(cid:7)0.01 0.1(cid:7)0.01 0.1(cid:7)0.01 nervoussystem ptp-3A(tm352) 994 0.5(cid:7)0.02 0.1(cid:7)0.01 0.1(cid:7)0.01 ptp-3(mu256) 726 5.0(cid:7)0.12 1.1(cid:7)0.03 4.5(cid:7)0.03 Wehavereportedpreviouslythatptp-3A ptp-3(op147) 501 3.8(cid:7)0.01 0.4(cid:7)0.02 4.8(cid:7)0.08 and ptp-3B were highly expressed in the postembryonic nervous system using Dataareexpressedasmean(cid:7)SEM. promoter-drivenGFPreportertransgenes aPercentageofanimalsthatreachadultstagewithVabphenotype. (Harrington et al., 2002). By modifying the immunostaining procedure, we im- TheresultingmeasurementswereexportedtoMicrosoftExcelforstatis- proved the sensitivity of detecting endogenous PTP-3. We ob- ticalanalysis.Significancewasdeterminedbyatwo-tailedStudent’sttest. servedthatPTP-3wasconcentratedatthenerveringandalong Results thenervecordsinlarvalandadultanimalsandshowedapunctate Isolationofnewmutationsinptp-3 pattern (Fig. 1D). To determine the subcellular localization of Thepreviouslyreportedptp-3mutation,op147,isatransposon PTP-3, we performed colocalization experiments with several insertioninthephosphatasedomaincommontobothisoforms known synaptic proteins including UNC-49, a GABA receptor 7520•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning present on the postsynaptic muscle sur- face(GallyandBessereau,2003),synapto- tagmin(SNT-1),acomponentofsynaptic vesicles(Nonetetal.,1993),andtwopre- synaptic density proteins, SYD-2 and UNC-10, the C. elegans RIM (Zhen and Jin,1999;Koushikaetal.,2001). Alongthenervecord,PTP-3wasadja- centtobutdidnotoverlapUNC-49(Fig. 2A),consistentwithitbeingexpressedin neurons.Withintheneurons,PTP-3par- tially overlapped the SNT-1-containing domainbutwasconcentratedattheedges oftheSNT-1staining(Fig.2B).Therewas a precise colocalization of PTP-3 with SYD-2 and UNC-10 (Fig. 2C,D). More specifically, we observed a smaller punc- tumofPTP-3inornearthecenterofeach ofthelargerSYD-2puncta.Thesedatain- dicatethatPTP-3ispredominantlyasso- ciatedwiththepresynapticdensity. ToaddresswhetherPTP-3localization wasdependentonsynapticvesicles,wean- alyzedtheaccumulationofSNT-1,PTP-3, and UNC-10 in unc-104(e1265) kinesin mutants,whichcausessynapticvesiclesto beretainedincellbodies(HallandHedge- cock,1991).WeobservedthatPTP-3and UNC-10punctashowedcolocalizationin regionsofthenervecordlackingsynaptic vesicles(Fig.2E,F).Thus,likeotherpre- Figure2. PTP-3Alocalizestopresynapticregions.A–D,CostainingofPTP-3(green)withproteins(red)thatlabeldifferent synaptic density components (Zhen and synapticdomains.Thebottompanelsarethemergedimages.A-A(cid:1),PTP-3(arrowheads)doesnotoverlapwithUNC-49(arrows). Jin, 1999; Koushika et al., 2001), PTP-3 B–B(cid:1),PTP-3(arrowheads)isconcentratedattheedgesofSNT-1(arrows).C–C(cid:1),PTP-3colocalizeswithSYD-2.Notethesmaller appearstobetraffickedtosynapsesinde- fociofPTP-3atthecenteroftheSYD-2puncta(arrows).D–D(cid:1),Seventy-fivepercentofUNC-10punctaareeitheroverlapped pendentofsynapticvesicles. (arrowheads)orcoincident(arrows)withPTP-3.E,F,PTP-3istraffickedtosynapsesindependentofsynapticvesicles.Awild-type animal(E)andanunc-104animal(F)areshownwithtriplelabelingofanti-PTP-3(green),anti-SNT-1(blue),andanti-UNC-10 PTP-3Aissynaptic,andPTP-3B (red).Themergedviewsareshowninthebottompanels.Inunc-104mutants,SNT-1ismostlyretainedincellbodies(arrow), whereasPTP-3andUNC-10arepresentalongthenervecord(arrowheads).G,H,ThelocalizationofthePTP-3isoform-specificGFP isextrasynaptic fusionproteinsisshownrelativetoUNC-10.G–G(cid:1),PTP-3A::GFPappearedpunctateandoverlappedwiththeUNC-10puncta Toaddressthesubcellularlocalizationof (arrows), although the protein was also observed in larger clusters than the endogenous protein (arrowheads). H–H(cid:1), the PTP-3A and PTP-3B isoforms, we PTP-3B::GFPshoweddiffusedstainingthroughoutthenervecord(arrows)andrarelyoverlappedwithUNC-10puncta(arrow- generated isoform-specific GFP fusion head).I–I(cid:1),Inptp-3A(ok244)mutants,PTP-3(arrowhead)stainingisreduced,andshowedlittleoverlapwithUNC-10(arrows). transgenes.GFPwasinsertedin-framein Scalebars,5(cid:5)m. the second phosphatase domain 53 aa fromthestopcodon,andeachfusionpro- teinwasexpressedundertheisoformen- dogenouspromoter(Fig.1B).Bothtrans- These results suggest that PTP-3A is the major isoform that is genes are functional (Harringon et al., 2002) (see below). localized to presynaptic domains. Consistent with this conclu- PTP-3B::GFP showed a temporally regulated expression, with sion, in ptp-3A(ok244) mutant animals, (cid:8)25% of the UNC-10 highexpressionthroughoutembryogenesisandlarvaldevelop- puncta(n(cid:6)200)containedanyPTP-3,andtheamountofPTP-3 mentuntiltheL1–L2larvaltransition(datanotshown).Inthe presentatthoseUNC-10punctawasreduced(Fig.2I). adultnervoussystem,PTP-3B::GFPwaspresentinthenervering andalongaxonsoftheventralanddorsalnervecords(Fig.2H PTP-3Bhasamajorroleinmotoraxonguidance and data not shown) and was also observed in the pharyngeal Previous analyses using a pan-neuronal morphological marker epitheliumandthedevelopinguterusthroughoutdevelopment revealedthattheorganizationofthenervoussystemwasgrossly (datanotshown).MostofthePTP-3B::GFPwasadjacenttothe normal in ptp-3(op147) animals (Harrington et al., 2002). To UNC-10puncta,withonlyasmallamountofGFPoverlapping addresstheeffectsofptp-3mutationsonthenervoussystem,we withUNC-10(Fig.2H).PTP-3A::GFPexpressionwasfirstde- focusedouranalysisontheventralcordmotoraxonsusingcell tectedaroundthetwofoldstageofembryonicdevelopment(450 type-specific markers. The DA and DB neurons extend a den- min after fertilization) in the nerve ring and nerve cords and driticprocessalongtheventralnervecordandanaxonalcom- continuedataconstantlevelthroughlarvaldevelopment(data missurecircumferentiallyalongtheepidermistothedorsalnerve notshown).PTP-3A::GFPwasseeninapunctatepatternalong cord(Fig.3A).TheDDandVDneuronsextendasingleprocess nerveprocesses(Fig.2G)andoverlappedwithUNC-10inapat- alongtheventralnervecordthatbifurcatesandextendstothe tern that was similar to the endogenous protein (Fig. 2D,G) dorsalnervecord(Fig.3F).Theseaxonprojectionpatternsare Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning J.Neurosci.,August17,2005•25(33):7517–7528•7521 nationpoint(Fig.3E)orstopprematurely (Fig. 3H,J). The axon projection defects of the DD and VD neurons in mu256 in trans to mnDf90, a chromosomal defi- ciencyfortheptp-3locus,wascomparable withthatofmu256homozygousanimals, consistentwithmu256beingastrongloss- of-function mutation in ptp-3 (Fig. 3L). TofurtheraddresshowthetwoPTP-3iso- forms function in axon guidance, we in- troducedtheisoform-specificGFPtrans- genesintomu256animals.Expressionof thePTP-3B::GFPisoformessentiallyres- cued the DA and DB axon guidance de- fectsinmu256animals(Table2,Fig.3K). Specific expression of PTP-3A::GFP only showed a weak partial rescue (Table 2). ThesedatathereforearguethatPTP-3Bis themajorisoformthatfunctionsinaxon outgrowthandguidanceinC.elegans. ptp-3Acontributesto synapsedevelopment BecausePTP-3Aislocalizedtopresynap- ticregions,weaskedwhethermutationsin ptp-3causedanydefectsinsynapticdevel- opment.Wefirstexaminedthepatternof synapses by staining animals with UNC-10 antisera. In wild-type animals, UNC-10wasdistributedinasetofevenly sized and spaced puncta (Fig. 4A). We measuredthepunctaareaandthenumber ofpunctaalonga100(cid:5)msectionofnerve cord (see Materials and Methods for de- Figure3. Mutationsinptp-3causedefectsinaxonguidance.A,Schematicdiagramdescribingtheaxonoutgrowthpatternsfor tails).Inwild-typeanimals,theaverage theDAandDBcholinergicmotorneurons.Thecellbodiesareillustratedasopencircles,whereastheprocessesareindicatedas area was 0.17 (cid:7) 0.01 (cid:5)m2 (mean (cid:7) blacklines.Thepositionofthevulvaisindicatedbyaopendiamond.TheshadedboxistheregionshowninBandC.B,Inwild-type SEM), with an average of 87.3 (cid:7) 10.5 animals,theDB6andDB7neurons(indicatedbyarrows)extendprocessestotheright,whereastheadjacentneurons,DA6and punctaper100(cid:5)m(Fig.4E,Table3).In DA7,extendprocessestotheleft.C,Inthisptp-3(mu256)animal,theDB6andDB7axons(arrows)incorrectlyextendontheleft ptp-3Amutants(tm352andok244),the sideofthenervecord.D,Regionoftheventralnervecordthathasbecomedefasciculated(arrow)fromthemainbundle(arrow- overall UNC-10 puncta appeared to be heads).E,Twoaxonsthatfailedtoterminateattheendofthedorsalnervecord(arrow)areobservedtoturnanteriorlyand formedinlargeraggregatesthaninwild- continueextending.F,SchematicdiagramoftheDDandVDGABAergicmotorneurons.G,Inwild-typeanimals,thedorsalnerve type animals (Fig. 4B, Table 3). In ptp- cord(arrows)isobservedasacontinuousbundle.H,Inptp-3mutants,weobservedgapsalongthenervecordwheretheaxons 3A((cid:2))animals,UNC-10punctashowed appeartohaveterminatedtheirmigrationprematurely.I,Inwild-typeanimals,thecommissuralprocesses(arrows)extendfrom anaverageareaof0.48(cid:7)0.03(cid:5)m2,with theventralnervecordtothedorsalcord(arrowheads).J,Twoaxoncommissuresfailedtoreachthedorsalnervecord(arrow- heads):onestoppedmigratingprematurely(arrow),whereasasecondturnedprematurely(dashedarrow).DAandDB(K)andDD anaverageof53.0(cid:7)4.0punctaper100 andVD(L)axonguidancedataaredisplayedasthepercentageofanimalsthatexhibitedasidechoiceerror((cid:2)),targetingerror (cid:5)m. In ptp-3(mu256) animals, the de- (u),ordefasciculation(f).InformationonspecificaxonoutgrowthphenotypesisinTable2.L/R,Left/right. fectsseenwithUNC-10expressionwere notworse(0.36(cid:7)0.03(cid:5)m2,43.0(cid:7)10.2 punctaper100(cid:5)m),suggestingthatthe loss of PTP-3A would account for the highlystereotyped.UsingaGFPmarkerdrivenfromtheunc-25 observeddefects. promoterforDtypeneuronsandaGFPmarkerdrivenfromthe Toevaluatetheeffectonthemorphologyofindividualsyn- acr-2promoterfortheAandBtypeneurons(Huangetal.,2002), apses,weusedthetransgeneexpressingsynaptobrevinfusedto weobserved(cid:8)10%ofwild-typeanimalsthatexhibitedanydevi- GFP(SNB-1::GFP)drivenbytheunc-25promoter(Hallamand ations(Table2). Jin,1998;Nonet,1999).ThisSNB-1::GFPmarkerprovidesspa- Neitheroftheptp-3A-specificalleles,tm352orok244,exhib- tialresolutiontodetectchangesinGABApresynapticmorphol- itedgrossdefectsinmotorneuronaxonoutgrowthandguidance ogy.Inwildtypeanimals,SNB-1::GFPappearsasasetofevenly (Table 2). However, the mu256 and op147 mutations caused a sizedandspacedfluorescentpuncta,withanaverageareaof0.8(cid:7) significant level of projection defects, such as axons that made 0.0(cid:5)m2(Fig.5A,Table4).Inptp-3Aandptp-3(mu256)mutants, incorrectchoicesintheirexitfromtheventralmidline(Fig.3C). theSNB-1::GFPpunctashowedsignificantenlargement,withan Themostnoticeabledefectwasthedefasciculationofmotorax- averageareaof1.5(cid:7)0.1(cid:5)m2.TheareaofSNB-1::GFPpunctain onsalongthedorsalorventralnervecords(Fig.3D).Inaddition, tm352/mnDf90 animals (1.7 (cid:7) 0.2 (cid:5)m2) was not significantly someaxonswereobservedtoovergrowtheirappropriatetermi- differentfromtheptp-3A(tm352)homozygousanimals,support- 7522•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning ingthattm352andok244representacom- Table2.Axonguidancedefectsinptp-3mutantanimals pletelossoffunctionforptp-3A,andsug- Genotype n Left/righta Targetingb Defasciculationc gesting that the defects in SNB-1::GFP DA/DBcholinergicneurons puncta are mostly caused by the loss of Wildtype 60 8.3% 0.0% 1.7% PTP-3A.Asanotherwayofassessingthe ptp-3A(tm352) 15 13.3% 0.0% 6.7% overall effect of ptp-3 mutations on ptp-3A(ok244) 20 5.0% 0.0% 0.0% SNB-1::GFP puncta, we plotted the ob- ptp-3(op147) 40 22.5% 10.0% 20.0% served areas using a box-and-whiskers ptp-3(mu256) 20 40.0% 10.0% 50.0% plot(Fig.6).Thisanalysisrevealedthatthe ptp-3(mu256);juEx563(PTP-3A::GFP) 50 36.0% 8.0% 40.0% populationofSNB-1::GFPpunctainptp-3 ptp-3(mu256);juEx686(PTP-3B::GFP) 60 12.3% 5.3% 8.3% mutantshadagreaternumberofpuncta DD/VDGABAergicneurons Wildtype 50 2.0% 0.0% 0.5% that were larger than those in wild type. ptp-3A(tm352) N/D Wecalculatedthevaluesrepresentingthe ptp-3A(ok244) N/D 10thand90thpercentilesinwild-typean- ptp-3(op147) 50 22.0% 12.0% 50.0% imalsasbeing0.2–1.5(cid:5)m2,respectively, ptp-3(mu256) 50 30.0% 22.0% 52.0% and found that 30% of the SNB-1::GFP ptp-3(mu256)/mnDf90 25 16.0% 28.0% 56.0% punctainptp-3A((cid:2))mutantswere(cid:9)1.5 N/D,Notdetermined. (cid:5)m2,whereasonly1.5%were(cid:8)0.2(cid:5)m2. aPercentageofanimalswithaxonsthatmadeasidechoiceerrorinexitfromtheventralnervecord. Overall,thedefectinSNB-1::GFPwaspar- bPercentageofanimalswithaxonsthatterminatedprematurelyorovergrewthetarget. alleltothealterationsinUNC-10staining. cPercentageofanimalsthatexhibitedtwoormoreregionsofdefasciculatedaxonsalongthenervecords. TofurtheraddresstheroleofPTP-3A in synapse formation, we tested whether expressing PTP-3A::GFP could specifi- cally rescue the synaptic defects in ptp- 3(mu256) animals. Because of interfer- encefromtheGFPtags,wewereunableto use the SNB-1::GFP and instead used UNC-10 immunostaining. Neither PTP-3A::GFPnorPTP-3B::GFPcauseda significantchangeinthesizeofUNC-10 punctainwild-typeanimals(Fig.4E,Ta- ble3).ptp-3(mu256)animalsthatwereex- pressing PTP-3A::GFP had an average area that was equivalent to wild type (0.17 (cid:7) 0.01 (cid:5)m2), whereas UNC-10 puncta in mu256 animals expressing PTP-3B::GFPweresignificantlylargerthan wildtype(0.35(cid:7)0.05(cid:5)m2)(Fig.4E,Table 3).ThedistributionofUNC-10punctawas alsorescuedinPTP-3A::GFP-expressingan- imals(96.0(cid:7)14.5punctaper100(cid:5)m)but not in PTP-3B::GFP-expressing animals (43.6(cid:7)3.5punctaper100(cid:5)m)(Table3). We conclude from these analyses that PTP-3Aisthemajorfunctionalisoformat synapsesandthatlossofPTP-3Aresultsin UNC-10andSNB-1::GFPaccumulatingin larger-than-normalpuncta. BecausePTP-3AandPTP-3Bonlydif- ferintheextracellulardomain,weasked whethertheextracellulardomainwassuf- Figure4. ExpressionofUNC-10inmutants.A–D,UNC-10punctaareindicatedbyarrows,whereasabnormallysizedgapsare ficientforthefunctionatsynapses.Exper- indicatedbyarrowheads.A,Inwild-typeanimals,UNC-10punctawereevenlysizedandspacedalongthenervecords.B,Inptp-3, iments from Drosophila have demon- UNC-10punctaappearedmisshapen.Inthisptp-3Amutant,weobservedsmallerandlargerpunctathatwereaberrantlyspaced. strated that the extracellular portion of C,D,Similardefectswereobservedinnid-1(cg119)(C)andsyd-2(ju37)(D)animals.E,AreaofUNC-10punctainwildtypeandin ptp-3,nid-1,andsyd-2mutants,plottedasthemean(cid:7)SEM. LARmayacttosignaltoothercells,inde- pendent of the phosphatase domains (Maurel-Zaffranetal.,2001).Wegenerated aversionofPTP-3A::GFPlackingthephos- phatasedomains(PTP-3A(cid:3)phos::GFP).ptp-3A(tm352)transgenic ptp-3geneticallyinteractswithsyd-2/(cid:1)-liprinandnid-1 animals expressing this protein had an average UNC-10 area of duringsynapseformation 0.39(cid:7)0.08(cid:5)m2(Fig.4E,Table3),indicatingthatthefunctionof TounderstandhowPTP-3Acouldfunctionatsynapses,weex- PTP-3A in synapse formation is dependent on the cytoplasmic amined whether ptp-3 mutants exhibited genetic interactions domain. with other known synaptogenesis genes. LAR–RPTPs can bind Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning J.Neurosci.,August17,2005•25(33):7517–7528•7523 Table3.RIMpunctameasurementsbygenotype actionsbetweenptp-3andthesegenes,we Numberof Numberof constructed double and triple mutants Genotype synapses Area(mm2) animals Puncta/100mm amongthethreegenesandexaminedthe Wildtype 804 0.17(cid:7)0.01 8 87.3 (cid:7)10.5 synapse morphology using the ptp-3A((cid:2)) 613 0.49(cid:7)0.03** 8 51.2 (cid:7)4.5* SNB-1::GFPtransgene. ptp-3(mu256) 442 0.36(cid:7)0.03** 4 43.0 (cid:7)10.2* TheSNB-1::GFPpunctainsyd-2(ju37) juIs194(PTP-3A::GFP) 131 0.22(cid:7)0.02 3 71.3 (cid:7)2.5 animalshadanaverageareaof1.2(cid:7)0.1 ptp-3(mu256);juIs194 493 0.17(cid:7)0.01 3 96.2 (cid:7)14.5 (cid:5)m2andwerenotenhancedintheptp-3A; juIs197(PTP-3B::GFP) 501 0.18(cid:7)0.01 3 89.7 (cid:7)2.2 syd-2 (1.0 (cid:7) 0.1 (cid:5)m2) or ptp-3(mu256); ptp-3(mu256);juIs197 982 0.35(cid:7)0.05** 3 43.6 (cid:7)3.5* syd-2 (1.3 (cid:7) 0.1 (cid:5)m2) double mutants ptp-3A(tm352);juEx584(PTP-3ADphos::GFP) 85 0.39(cid:7)0.08** 3 39.0 (cid:7)23.0* (Fig.5E,6;Table4).Thesyd-2;ptp-3dou- nid-1(cg119) 345 0.39(cid:7)0.04** 3 66.8 (cid:7)2.8 ble mutants were significantly different nid-1(cg119);juIs194 700 0.18(cid:7)0.01** 3 37.0 (cid:7)6.7** fromptp-3A((cid:2))alone(p(cid:8)0.05)butnot syd-2(ju37) 563 0.43(cid:7)0.02** 5 67.03(cid:7)10.4 syd-2(ju37);juIs194 583 0.12(cid:7)0.01** 3 55.0 (cid:7)7.1* from syd-2(ju37) (p (cid:9) 0.05). Box-and- whiskers plot analysis revealed that syd-2 Dataareexpressedasmean(cid:7)SEM.Valuessignificantlydifferentfromwildtype:*p(cid:8)0.05;**p(cid:8)0.001. mutants had more small puncta ((cid:8)0.2 (cid:5)m2; 30.0%) and more large puncta ((cid:9)1.5 (cid:5)m2; 19.6%) than the wild type. syd-2;ptp-3A double mutants resembled syd-2, having 42.3% smaller puncta and 18.4%largerpuncta.Thus,ourresultsin- dicatethatthelossofsyd-2isepistaticto themutationsinptp-3. Loss-of-function mutations in nid-1 causeSNB-1::GFPpunctatoappearelon- gated,withmoresevereeffectsintheven- tralnervecordthanthedorsalcord(Ack- leyetal.,2003).Intheventralnervecord, nid-1(cg119) animals had an average punctum area of 1.7 (cid:7) 0.1 (cid:5)m2, which was significantly larger than in wild type (p(cid:8)0.005).Thepunctasize,distribution, and morphology in the ventral cords of nid-1;ptp-3A(ok244) (1.9 (cid:7) 0.1 (cid:5)m2) or nid-1;ptp-3(mu256)(1.7(cid:7)0.1(cid:5)m2)dou- blemutantswerenotsignificantlydiffer- entfromnid-1singlemutants(p(cid:9)0.05) (Figs.5E,6;Table4).Theseresultssuggest that mutations in ptp-3 do not enhance theSNB-1::GFPaccumulationdefectsas- sociatedwiththelossofnid-1. In contrast, in either ptp-3A;cle-1 or ptp-3(mu256);cle-1 double mutants, we observedmoreseverephenotypesthanin either single mutant alone. In cle-1 mu- tants,SNB-1::GFPpunctaarelargerthan Figure5. PatternofSNB-1::GFPinGABAergicsynapsesinmutants.A,Inwild-typeanimals,theSNB-1::GFPpatternwas inwildtype,withanaverageareaof2.3(cid:7) observedasequallysizedandevenlyspacedfluorescentpuncta(arrow).B,Inptp-3A(tm352)mutants,SNB-1::GFPwaspresentin 0.1 (cid:5)m2, and are separated by long dis- larger,irregularlyspacedpuncta(arrows).C,Insyd-2(ju37)mutants,SNB-1::GFPpunctawerediffusedandoftenappeared tances(Ackleyetal.,2003).Thesedefects contiguous.D,SNB-1::GFPpunctainnid-1(cg119)mutantswereelongatedandaberrantlyspaced.Cellbodies(arrowhead)were aremorphologicallydistinctfromthosein occasionallyvisiblealongtheventralnervecordinallgenotypes.E,TheareaofSNB-1::GFPpunctainthewild-typeandvarious the syd-2 or nid-1 mutants. In cle-1 mu- mutants,plottedasthemean(cid:7)SEM. tants, 57.1% of the puncta were larger thanthe90thpercentileinwildtype,and noneweresmallerthanthe10thpercentile (cid:1)-liprinsviathesecondphosphatasedomain,andthetwopro- (Fig.6).Inthedoublemutants,weobservedanaverageareaof teinshavebeenreportedtofunctiontogetherinsynapseforma- 1.7 (cid:7) 0.1 (cid:5)m2 for ptp-3A;cle-1 and 1.1 (cid:7) 0.1 (cid:5)m2 for ptp- tion(Kaufmannetal.,2002;Dunahetal.,2005).Wehaveshown 3(mu256);cle-1, as well as a new phenotype such that 26.7 and thatmutationsinC.elegans(cid:1)-liprin,syd-2,alterthemorphology 40.0%ofthepuncta,respectively,were(cid:8)0.2(cid:5)m2,aphenotype ofsynapses(Figs.4D,5C)(ZhenandJin,1999).Theextracellular thatwasnotseenineitherofthesinglemutants(Table4).The portion of LAR-like receptors can bind nidogen–laminin and combinedlossofcle-1andptp-3hasamoredetrimentaleffecton collagenXVIII.WehaveshownthatmutationsinC.elegansni- SNB-1::GFP accumulation than the loss of either single gene. dogen,nid-1,andcollagenXVIII,cle-1,resultindistinctchanges Thesedataarguethatcle-1andptp-3likelyaffectsynapticdevel- insynapticmorphology(Ackleyetal.,2003).Toassaytheinter- opmentviadistinctmechanisms. 7524•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning Becausebothnid-1andsyd-2appeared Table4.SNB-1::GFPareabygenotype epistatic to ptp-3, we asked whether re- Wild-typeoutliersa Numberof movingnid-1fromeitherthesyd-2single- synapses Area(mm2) (cid:8)0.22mm2 (cid:9)1.31mm2 mutantorthesyd-2;ptp-3double-mutant Wildtype 874 0.8(cid:7)0.0 8.8% 10.1% animalscausedanyfurtheralterationsin ptp-3A(tm352) 289 1.6(cid:7)0.1** 1.5% 30.0% SNB-1::GFP accumulation. The nid-1; ptp-3A(ok244) 569 1.4(cid:7)0.1** 3.7% 28.1% syd-2 double mutants and nid-1; syd-2; ptp-3A/mnDf90 202 1.7(cid:7)0.2** 9.4% 36.1% ptp-3Aornid-1;syd-2;ptp-3(mu256)triple ptp-3(mu256) 418 1.5(cid:7)0.1** 2.9% 38.3% mutants all resembled syd-2 single mu- syd-2(ju37) 852 1.2(cid:7)0.1** 30.0% 19.6% tants in terms of the shape and distribu- syd-2(ju37);ptp-3A(tm352) 982 1.0(cid:7)0.1* 42.3% 18.4% tion of SNB-1::GFP puncta (Figs. 5E, 6; syd-2(ju37);ptp-3(mu256) 501 1.3(cid:7)0.1** 26.1% 29.1% nid-1(cg119) 331 1.7(cid:7)0.1** 10.9% 34.1% Table4).nid-1;syd-2animalshadanaver- nid-1(cg119);ptp-3A(ok244) 493 1.9(cid:7)0.1** 14.0% 44.2% ageareaof1.5(cid:7)0.2(cid:5)m2,andthetriple nid-1(cg119);ptp-3(mu256) 717 1.7(cid:7)0.1** 3.5% 35.6% mutantshadaverageareasof1.2(cid:7)0.1and cle-1(cg120) 205 2.3(cid:7)0.1** 0.5% 57.1% 1.3(cid:7)0.1(cid:5)m2,respectively.Allweresig- cle-1(cg120);ptp-3A(tm352) 146 1.7(cid:7)0.2** 26.7% 32.9% nificantlydifferentfromwildtype(p(cid:8) cle-1(cg120);ptp-3(mu256) 100 1.1(cid:7)0.2 41.0% 28.0% 0.005)butnotfromsyd-2singlemutants syd-2(ju37);nid-1(cg119) 484 1.5(cid:7)0.2** 36.1% 20.2% (p (cid:9) 0.05). In addition, all of the mu- syd-2(ju37);nid-1(cg119);ptp-3A(tm352) 366 1.2(cid:7)0.1** 33.6% 23.5% syd-2(ju37);nid-1(cg119);ptp-3(mu256) 438 1.4(cid:7)0.1** 14.2% 28.5% tant combinations with syd-2 mutants were observed to have SNB-1::GFP Dataareexpressedasmean(cid:7)SEM.Valuessignificantlydifferentfromwildtype:*p(cid:8)0.05;**p(cid:8)0.001. aPercentageofpunctabelowthe10thpercentileorabovethe90thpercentileofwildtype. punctathatwereofasizeandmorphol- ogymostsimilartosyd-2singlemutants (Table4).Thesedatashowthattheloss ofsyd-2isepistatictomutationsinnid-1 andptp-3. PTP-3localizationisdependenton nid-1andsyd-2 The genetic interactions between ptp-3, nid-1,andsyd-2couldbeexplainedbysev- eral different models. NID-1 and PTP-3 couldacttorecruitSYD-2tosynapses,or SYD-2andPTP-3couldfunctiontoorga- nize NID-1 in the ECM. To differentiate between these models, we examined the amount of PTP-3 immunofluorescence thatcolocalizedwithUNC-10inthenid-1 andsyd-2singlemutantsandnid-1;syd-2 double-mutantanimals(Fig.7)(seeMa- terials and Methods). In wild-type ani- mals,41.7%ofPTP-3signalabovethresh- old was colocalized with UNC-10 (n (cid:6) 13). In nid-1 mutants, PTP-3 levels ap- peared reduced, and the protein was ab- normally distributed into smaller and largerpunctawithgapsinthestainingpat- tern(Fig.7B).However,35.1%ofthere- maining PTP-3 was colocalized with UNC-10 (n (cid:6) 15). This suggests that Figure6. BoxplotsofSNB-1::GFPquantitation.TheareaofallSNB-1::GFPmeasurementsbygenotypewererepresentedasbox plots.Theboxrepresentsthevalueswithinthe25thto50thpercentiles,andthewhitebar(orgrayarrowhead)indicatesthemean NID-1isrequiredtomaintainPTP-3lev- observedvalue.Theendsofthewhiskersshowthe10thto90thpercentiles,withthe5thand95thpercentilesindicatedbyblack elsbutdoesnotseemtobenecessaryfor circles.Thedottedlinesillustratethevaluesthatwesetaslimitstodefinepunctathatareoutliersfromwildtypeasdefinedbythe theassociationofPTP-3withUNC-10. 10th(0.2(cid:5)m2)and90th(1.5(cid:5)m2)percentilevalues.Inwildtype,theboxandwhiskersarecompact,indicatingthemeasure- In syd-2 animals, the levels of PTP-3 mentsfallintoareproduciblepattern.TheSNB-1::GFPpunctainmutantswasmorevariableinsize,resultinginlargerplots.The proteinwerecomparablewiththatofwild shapeoftheboxandwhiskersissimilarinthesyd-2single,double,andtriplemutantsdemonstratingthatthesemutantsare type,butPTP-3wasdistributeddiffusely phenotypicallysimilarintheireffectonSNB-1::GFPaccumulation.nid-1singleandnid-1;ptp-3Adoublemutantsexhibitasimilar alongthenervecords.Only14.7%ofthe distribution.Incontrast,cle-1singleandcle-1;ptp-3Adoublemutantsarephenotypicallydistinct. PTP-3 present was colocalized with UNC-10(Fig.7C)(n(cid:6)8).PTP-3wasseen insomecellbodiesinsyd-2animals(15of100).Thisphenotype effectwasseensuchthatPTP-3levelswerereduced,and(cid:5)19.9%of wasnotobservedinwildtype(0of100)ornid-1mutants(0of the remaining PTP-3 protein was colocalized with UNC-10 (Fig. 100).TheseobservationsaresuggestiveofSYD-2actingasamo- 7D)(n(cid:6)10).Thus,NID-1andSYD-2havedistinctrolesinthe lecularscaffoldatsynapsesandbeingimportantforPTP-3traf- synapticaccumulationofPTP-3. ficking to synapses. In nid-1;syd-2 double mutants an additive ThedecreasedPTP-3levelsinnid-1mutantssuggestedthat Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning J.Neurosci.,August17,2005•25(33):7517–7528•7525 mutants, SYD-2 was abnormally spaced andclusteredintolargeraggregates,with anaverageof1.0(cid:7)0.1(cid:5)m2(p(cid:8)0.05) (Fig.8K).Theseobservationssuggestthat bothNID-1andPTP-3arerequiredtolo- calizeormaintainSYD-2atsynapses. ExpressionofPTP-3Abypassesnid-1 butnotsyd-2mutants Tofurthertestwhethernid-1solelyfunc- tionsinmaintainingsynapticPTP-3Alev- els,weelevatedtheexpressionofPTP-3A innid-1mutantsandexaminedUNC-10 expression.Althoughtheaveragenumber ofpunctaper100(cid:5)m(41.9(cid:7)8.9)wasnot restoredtowild-typelevels(87.3(cid:7)10.5), measurementofUNC-10punctashowed that the average area (0.17 (cid:7) 0.01 (cid:5)m2) was restored to wild-type levels (p (cid:9) 0.05).TheUNC-10areawassignificantly differentfromnid-1animalsnotexpress- ingPTP-3A::GFP(0.39(cid:7)0.04(cid:5)m2)(Fig. 4E,Table3).Moreover,immunostaining of anti-SYD-2 showed that SYD-2 accu- mulation was more punctate in nid-1; Figure7. NID-1andSYD-2havedistincteffectsinPTP-3localization.ThelocalizationofPTP-3(green)andUNC-10(red)in juIs194[PTP-3A::GFP] than nid-1 alone nid-1(cg119),syd-2(ju37),andnid-1(cg119);syd-2(ju37)doublemutantsisshown.Theboxedregionsaremagnifiedintheright panels.A,A(cid:3),PTP-3andUNC-10exhibitedanoverlappedpatternofaccumulationinwild-typeanimals.B,B(cid:3),Innid-1animals, (Fig. 8H). In contrast to the effects with PTPlevelswerereduced,butthepatternremainedpunctate.Whenpresent,PTP-3coincidedwithUNC-10puncta(arrowhead), nid-1, PTP-3A::GFP expression in syd-2 whereassomeUNC-10punctalackedPTP-3(arrow).C,C(cid:3),Insyd-2mutants,PTP-3wasdiffuseandhadareducedcoincidencewith mutant animals did not restore UNC-10 UNC-10(arrowhead).PTP-3andUNC-10hadaccumulatedindependently(arrows),aneventthatwasrarelyseeninwildtype punctatowild-typelevels(Fig.4E,Table ((cid:8)25%).D,D(cid:3),Innid-1;syd-2doublemutants,PTP-3detectionwasmoderatebutpresentinamorepunctatepatternthansyd-2 3).Theseresultssupportourconclusion singlemutants.However,PTP-3andUNC-10onlyrarelycoincided(arrowhead);rather,eachappearedtobeexclusivelypunctate that NID-1 is required to maintain (arrows).Scalebar,5(cid:5)m. PTP-3A protein levels at synapses and that SYD-2 is required for PTP-3A to regulateUNC-10accumulation. PTP-3doesnotfunctiontoorganizeNID-1.Toconfirmthis,we Discussion examinedtheaccumulationofnidogeninptp-3mutants.Inwild- LAR–RPTPisoformsprovidefunctionalspecificity type animals, NID-1 was present in the mantle of the mech- LAR-likereceptortyrosinephosphataseshavebeenbroadlyim- anosensoryneuronsandbetweenthemuscleedgeandnervepro- plicated in the patterning of the nervous system by regulating cesses(KangandKramer,2000)(Fig.8A).NID-1accumulation eventssuchasneuriteoutgrowth,targetrecognition,andsynap- wasnormalinptp-3mutants,indicatingthatPTP-3Adoesnot togenesis(Clandininetal.,2001;JohnsonandVanVactor,2003; acttoorganizeNID-1inthesynapticECM(Fig.8B). Dunahetal.,2005).OnechallengeinunderstandingRPTPfunc- tionisidentifyinghowthesemoleculesfunctioninmultipleas- SYD-2synapticlocalizationisalteredinptp-3and pectsofneurogenesis.AlternativesplicingofRPTPgenesgener- nid-1mutants atesreceptorisoformdiversity,suggestingthatdistinctisoforms WesubsequentlyexaminedthelocalizationofSYD-2intheptp-3 could regulate specific RPTP functions (O’Grady et al., 1994; andnid-1mutantanimalsusingSYD-2antibodies(ZhenandJin, Pulido et al., 1995). We have shown here that the two PTP-3 1999).Inwild-typeanimals,SYD-2localizationwasdetectedas isoforms exhibit distinct roles in axon guidance and synaptic puncta along the nerve cords (Fig. 8C) and in the body wall organization.Thetypesofaxonoutgrowthandguidancedefects muscles(ZhenandJin,1999).Inptp-3mutants,SYD-2puncta inptp-3mutantsresemblethosethathavebeenreportedforLAR werelargeanddiffusewithfrequentgapsalongthenervecord homologs in Drosophila and vertebrates (Desai et al., 1996; (Fig.8E,F).Innid-1mutants,SYD-2appeareddiffusebuthad Kruegeretal.,1996;Garrityetal.,1999;Clandininetal.,2001;Xieet fewgaps(Fig.8G). al.,2001;Stepaneketal.,2005).Ourobservationsindicatethese To quantitate the effect of the loss of ptp-3A and nid-1 on functionsofLARareevolutionarilyconservedandthatreceptor SYD-2,weusedaSYD-2::GFPfusionproteinthatwasexpressed isoformsprovidefunctionalspecificity. undertheunc-25promoter(Yehetal.,2005).Inwild-typeani- mals, the SYD-2::GFP appears as a set of regularly sized and PTP-3isoformssignalviadistinctpathways spacedpunctaalongthenervecords,withanaverageof0.7(cid:7)0.1 Inadditiontoaxonguidanceandsynapticdefects,mutationsthat (cid:5)m2(Fig.8I).Inptp-3A(tm352)mutants,wefoundthepuncta affectbothptp-3isoformscancauseembryoniclethalityresulting weresignificantlyenlargedandclusteredtogether(Fig.8J).The fromdefectsinneuroblastmigration.ptp-3mutationssynergize average area of SYD-2::GFP puncta in ptp-3A(tm352) mutants strongly with mutations affecting other pathways involved in was1.0(cid:7)0.1(cid:5)m2(p(cid:8)0.05).Similarly,wefoundthatinnid-1 neuroblast migration (VAB-1/Eph receptor, EFN-4/Ephrin) 7526•J.Neurosci.,August17,2005•25(33):7517–7528 Ackleyetal.•TheC.elegansLARRegulatesAxonalandSynapticPatterning (Chin-Sangetal.,2002;Harringtonetal., 2002). Both neuroblast migration and axonguidanceappeartobefulfilledbythe short isoform PTP-3B, because ptp-3A- specific mutations do not exhibit axon guidance or embryonic morphogenesis defects, nor do they synergize with Eph signaling mutations (our unpublished results). PTP-3A regulates synapse formation, as does NID-1 and SYD-2. Mutations in nid-1causeaxonguidancedefectsthatare distinct from those in ptp-3 mutant ani- mals(KimandWadsworth,2000;Ackley et al., 2003). Likewise, mutations in Eph signaling cause synaptic defects that are distinctfromthoseinptp-3(B.D.Ackley andY.Jin,unpublisheddata).Theseob- servationssuggestthatventralneuroblast migration and axon guidance are regu- latedbysimilarmechanisms. ThePTP-3Aproteincontainsallofthe domainsofPTP-3B,butthetwoproteins are not functionally equivalent. What mightleadtothedifferencesobservedin function for PTP-3B and PTP-3A? PTP-3Bisexpressedearlier,andinmore tissue types, than is PTP-3A, suggesting that some of the differences in PTP-3 functionmaybeattributabletoexpression differences.However,withinneurons,we foundthatPTP-3AandPTP-3Barelocal- izedtodistinctsubcellularcompartments. Figure8. PTP-3andNID-1regulateSYD-2accumulation.A,B,NID-1localizationinwild-type(A)andptp-3A(B)animalsis comparable.NID-1(green)islocalizedinacontinuouspatternattheinterfaceoftheventralnervecordfasciclesandthemuscles AninteractionbetweenPTP-3Aandali- (arrowheads)andinapunctatepatterninthemantleofthemechanosensoryneurons(arrows).C–H,SYD-2(red)localization.C, gand that is dependent on the PTP-3A- Inwild-typeanimals,SYD-2waspresentalongthenervecordsinapunctatepattern(arrowheads).D,syd-2(ju37)animalslacked specificdomainscouldexplainthediffer- staining(thepositionoftheventralnervecordisindicatedbyarrowheads).E,F,Inptp-3mutants,SYD-2wasobservedinlarger ences in subcellular accumulation. puncta(arrows)andalsoretainedincellbodies(arrowhead).G,Innid-1animals,SYD-2wasdiffuse,andthepuncta(arrows) Together,ourresultssuggestthatPTP-3A appearedenlarged.SYD-2wasalsofoundincellbodies(arrowheads).H,Innid-1mutantsexpressingPTP-3A::GFP,SYD-2expres- and PTP-3B likely interact with distinct sionispunctate(arrows),andtheamountofSYD-2incellbodiesisreduced(arrowheads).I,SYD-2::GFPexpressedintheGABAer- molecularpartnersincontrollingspecific gicneuronsofwild-typeanimalsappearspunctatewiththeclustersbeingevenlysizedandspaced(arrowheads).GFPisobserved aspectsofneuronaldevelopment. inthecellbodiesinallgenotypes(arrows;I–K).Thiseffectislikelyaresultofoverexpressionandnotthegeneticbackground.J, ptp-3A(tm352)mutantsexhibitanalteredpatternofSYD-2::GFPaccumulation,withlargerclustersofGFP(arrowheads).K, nid-1(cg119)animalshaveenlargedSYD-2::GFPpuncta(arrowheads)thatareseparatedbylargegaps.L,Themeanareaof PTP-3Afunctionsasamolecularlinker SYD-2::GFPpunctawasplottedbygenotype.Scalebars,10(cid:5)m. atsynapses Thegeneticinteractionsweidentifiedbe- tweenptp-3andsyd-2wereexpectedgiven thatLARhasbeenfoundtofunctionwith (cid:1)-liprin to regulate synaptic morphology in vertebrates and in cellularligandscouldregulatethedistinctfunctionswehaveob- Drosophila(Kaufmannetal.,2002;Dunahetal.,2005).However, servedforthetwoPTP-3isoforms. thecytoplasmicdomainsofPTP-3AandPTP-3Bareidentical, Thegeneticepistasisofptp-3andnid-1indicatesthetwogenes suggestingbothshouldinteractwithSYD-2equally.PTP-3Ais have a common output in synaptic development. PTP-3 and sufficient to rescue the synaptic defects of ptp-3 mutants, but SYD-2arepresentatpresynapticdensities(ZhenandJin,1999; PTP-3Bisnot.Thus,aninteractionwithSYD-2doesnotexplain Yehetal.,2005;presentstudy).Wefoundthattheaccumulation thespecificityofPTP-3Ainsynapseformation. of SYD-2 was aberrant in both ptp-3 and nid-1 mutants. The Previousworkhasshownthat(cid:1)-liprinsarecapableofinduc- functionofNID-1inSYD-2localizationis,atleastpartially,de- ingLARtoaccumulateatfocaladhesion-likeplaquesincultured pendent on PTP-3, because we could restore a normal SYD-2 cells(Serra-Pagesetal.,1998).Focaladhesionsaresitesofcell– accumulationpatterninnid-1mutantsbysupplyingadditional matrix interactions, suggesting that (cid:1)-liprins may regulate an PTP-3A.Likewise,PTP-3localizationisalteredinnid-1mutants, interactionofLARreceptorswiththeECM.SpecificECMmole- suggestingtheSYD-2mislocalizationmaybeadirectresultofthe culesare,infact,ligandsforLARreceptors,andbiochemicaland PTP-3mislocalization.ThesedataindicatethattheECMisnec- geneticworkhasshownthatLARisoformsexhibitligandspeci- essaryforPTP-3andSYD-2toremainatspecificfoci.Supplying ficity(O’Gradyetal.,1998).Thedatasuggestthatspecificextra- additional PTP-3A also overcomes the UNC-10 accumulation
Description: