Table Of ContentAdvanced Courses in Mathematics
CRM Barcelona
Centre de Recerca Matemàtica
Managing Editor:
Manuel Castellet
Alfred Geroldinger
Imre Z. Ruzsa
Combinatorial
Number Theory and
Additive Group Theory
Birkhäuser
Basel · Boston · Berlin
Authors:
Alfred Geroldinger Imre Z. Ruzsa
Institute for Mathematics and Alfréd Rényi Institute of Mathematics
Scientific Computing P.O. Box 127
University of Graz 1364 Budapest, Hungary
Heinrichstrasse 36 e-mail: [email protected]
8010 Graz, Austria
e-mail: [email protected]
2000 Mathematical Subject Classification 11P70, 11B50, 11R27
Library of Congress Control Number: 2008941509
Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.
ISBN 978-3-7643-8961-1 Birkhäuser Verlag AG, Basel – Boston – Berlin
This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data
banks. For any kind of use permission of the copyright owner must be obtained.
© 2009 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Printed on acid-free paper produced from chlorine-free pulp. TCF ∞
Printed in Germany
ISBN 978-3-7643-8961-1 e-ISBN 978-3-7643-8962-8
9 8 7 6 5 4 3 2 1 www.birkhauser.ch
Foreword
This book collects the material delivered in the 2008 edition of the DocCourse in
Combinatorics and Geometry which was devoted to the topic of Additive Combi-
natorics.
The two first parts, which form the bulk of the volume, contain the two
main advanced courses, Additive Group Theory and Non-unique Factorizations,
by Alfred Geroldinger, and Sumsets and Structure, by Imre Z. Ruzsa.
The first part focusses on the interplay between zero-sum problems, arising
from the Erdo˝s–Ginzburg–Ziv theorem, and nonuniqueness of factorizations in
monoids and integral domains.
The second partdeals with structural set addition. It aims at describing the
structure of sets in a commutative group from the knowledge of some properties
of its sumset.
Thethirdpartofthevolumecollectssomeoftheseminarswhichaccompanied
the main courses and covers several aspects of contemporary methods and prob-
lems in Additive Combinatorics: multiplicative properties of sumsets (Christian
Elsholtz), a step further in the inverse 3k−4-theorem (Gregory A. Freiman), the
isoperimetric method (Yahya O. Hamidoune), new developments around Følner’s
theorem(NorbertHegyva´ri),thepolynomialmethod(GyulaKa´rolyi),asurveyon
open problems (Melvyn B. Nathanson), spectral techniques for the sum-product
problem (Jozsef Solymosi), and multidimensional inverse problems (Yonutz V.
Stanchescu).
WearegratefultoItziarBardaj´ıandLlu´ısVenafortheircarefulproofreading
of all its chapters.
This edition of the DocCourse has been supported by the Spanish project
i-Math and by the Centre de Recerca Matem`atica, to which we express our grat-
itude. We particularly want to thank the director, Prof. Joaquim Bruna, and the
staffoftheCentredeRecercaMatema`ticafortheirexcellentjobinorganizingthis
edition of the DocCourse.
Barcelona,July 2008
Javier Cilleruelo, Marc Noy and Oriol Serra
Coordinators of the DocCourse
Contents
Foreword v
I Additive Group Theory and Non-unique Factorizations
Alfred Geroldinger 1
Introduction 3
Notation 5
1 Basic concepts of non-unique factorizations 7
1.1 Arithmetical invariants . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Krull monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Transfer principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Main problems in factorization theory . . . . . . . . . . . . . . . . 20
2 The Davenport constant and first precise arithmetical results 21
2.1 The Davenport constant . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Group algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Arithmetical invariants again . . . . . . . . . . . . . . . . . . . . . 29
3 The structure of sets of lengths 35
3.1 Unions of sets of lengths . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Almost arithmetical multiprogressions . . . . . . . . . . . . . . . . 38
3.3 The characterizationproblem . . . . . . . . . . . . . . . . . . . . . 42
4 Addition theorems and direct zero-sum problems 45
4.1 The theorems of Kneser and of Kemperman-Scherk . . . . . . . . . 45
4.2 OntheErdo˝s–Ginzburg–Zivconstants(G)andonsomeofitsvariants 48
5 Inverse zero-sum problems and arithmetical consequences 57
5.1 Cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Groups of higher rank . . . . . . . . . . . . . . . . . . . . . . . . . 70
viii Contents
5.3 Arithmetical consequences . . . . . . . . . . . . . . . . . . . . . . . 75
Bibliography 79
II Sumsets and Structure
Imre Z. Ruzsa 87
Introduction 89
Notation 91
1 Cardinality inequalities 93
1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
1.2 Plu¨nnecke’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 95
1.3 Magnification and disjoint paths . . . . . . . . . . . . . . . . . . . 97
1.4 Layered product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
1.5 The independent addition graph . . . . . . . . . . . . . . . . . . . 101
1.6 Different summands . . . . . . . . . . . . . . . . . . . . . . . . . . 102
1.7 Plu¨nnecke’s inequality with a large subset . . . . . . . . . . . . . . 104
1.8 Sums and differences . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.9 Double and triple sums . . . . . . . . . . . . . . . . . . . . . . . . 109
1.10 A+B and A+2B . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.11 On the non-commutative case . . . . . . . . . . . . . . . . . . . . . 114
2 Structure of sets with few sums 119
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.2 Torsion groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.3 Freiman isomorphism and small models . . . . . . . . . . . . . . . 125
2.4 Elements of Fourier analysis on groups . . . . . . . . . . . . . . . . 128
2.5 Bohr sets in sumsets . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2.6 Some facts from the geometry of numbers . . . . . . . . . . . . . . 134
2.7 A generalized arithmetical progressionin a Bohr set . . . . . . . . 135
2.8 Freiman’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.9 Arithmetic progressions in sets with small sumset . . . . . . . . . . 139
3 Location and sumsets 141
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.2 The Cauchy–Davenportinequality . . . . . . . . . . . . . . . . . . 142
3.3 Kneser’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.4 Sumsets and diameter, part 1 . . . . . . . . . . . . . . . . . . . . . 146
3.5 The impact function . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.6 Estimates for the impact function in one dimension . . . . . . . . . 149
3.7 Multi-dimensional sets . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.8 Results using cardinality and dimension . . . . . . . . . . . . . . . 154
Contents ix
3.9 The impact function and the hull volume . . . . . . . . . . . . . . 157
3.10 The impact volume . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.11 Hovanskii’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4 Density 167
4.1 Asymptotic and Schnirelmann density . . . . . . . . . . . . . . . . 167
4.2 Schirelmann’s inequality . . . . . . . . . . . . . . . . . . . . . . . . 169
4.3 Mann’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.4 Schnirelmann’s theorem revisited . . . . . . . . . . . . . . . . . . . 173
4.5 Kneser’s theorem, density form . . . . . . . . . . . . . . . . . . . . 177
4.6 Adding a basis: Erdo˝s’ theorem . . . . . . . . . . . . . . . . . . . . 177
4.7 Adding a basis: Plu¨nnecke’s theorem, density form . . . . . . . . . 179
4.8 Adding the set of squares or primes. . . . . . . . . . . . . . . . . . 182
4.9 Essential components. . . . . . . . . . . . . . . . . . . . . . . . . . 184
5 Measure and topology 185
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.2 Raikov’s theorem and generalizations . . . . . . . . . . . . . . . . . 185
5.3 The impact function . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.4 Meditation on convexity and dimension . . . . . . . . . . . . . . . 188
5.5 Topologies on integers . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.6 The finest compactification . . . . . . . . . . . . . . . . . . . . . . 193
5.7 Banach density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.8 The difference set topology . . . . . . . . . . . . . . . . . . . . . . 196
Exercises 199
Bibliography 207
III Thematic seminars 211
1 A survey on additive and multiplicative decompositions of sumsets and
of shifted sets, Christian Elsholtz 213
1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
1.2 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
1.2.1 Multiplicative decompositions of sumsets . . . . . . . . . . 214
1.2.2 Multiplicative decompositions of shifted sets. . . . . . . . . 216
1.2.3 Some background from sieve methods . . . . . . . . . . . . 217
1.2.4 Proof of Theorem ?? . . . . . . . . . . . . . . . . . . . . . . 219
1.3 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
1.3.1 Sumsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
1.3.2 Counting methods . . . . . . . . . . . . . . . . . . . . . . . 222
1.3.3 A result from extremal graph theory . . . . . . . . . . . . . 223
Description:Additive combinatorics is a relatively recent term coined to comprehend the developments of the more classical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture