Table Of ContentFAC-SIMILE THESIS 4-YEAR BACHELOR’S DEGREE AND MASTER’S DEGREE FRONTISPIECE
Department of Economics and Finance
Cities in the EU: economic performance and
resilience in the aftermath of the financial crisis
SUPERVISOR
Prof. Giovanna Vallanti
Valentin Vander Borght
Number: 677241
CO-SUPERVISOR
Prof. Salvatore Niticò
ACADEMIC YEAR 2015 2016
Acknowledgements
IwouldliketoexpressmygratitudetomysupervisorsProfessorGillesVanHammeandProfessor
Giovanna Vallanti. At first, thank you for your patience and flexibility that allow me to do this
master thesis at Universite´ Libre de Bruxelles and Libera Universita` Internazionale degli Studi
Sociali. Thankstoyou,Ihaveenjoyedthisgreatexperienceofdoubledegree. Then,Iwouldliketo
thankyouforbeingalwaysavailableforanyquestions. Finally,Iwouldliketothankyouforyour
guidanceandexpertisethatallowmetodothismasterthesis.
Inaddition,thismasterthesisisalsothefulfillmentoffivefantasticyears. Iwouldliketothank
myfriendsandtheAnalysisteamforhelpingmetoaccomplishmydegree.
Lastbutnotleast,Iwouldliketothankmyparentfortheirunconditionalsupportduringmy
studies and my girlfriend for her encouragement. I would not have been able to complete this
thesiswithoutthem.
Cities in the EU: economic performance and resilience in
the aftermath of the financial crisis
MasterThesis
Valentin Vander Borght
2015–2016
Abstract
ThecityisdefinedasafunctionalurbanareabasedonEurostatdataatNUTS3level. Ifirst
regresstheeconomicperformanceofEuropeancitiesoneconomicstructure,includinghuman
capital, andsize-basedtypologyacrosstheperiod2003–2013usingfixedeffectspaneldata.
Atfirst,IfindevidenceofconvergencebetweenEuropeancitiesoverthestudiedperiod. But,
thedivergenceoccursduringthecrisis. Secondly,Ifindthatmetropolitancitiesoutperform
thesmallestcities. Thirdly,constructionsectorandhumancapitalaretheengineofeconomic
growthduringthestudiedperiod. IthenregresstheeconomicperformanceofEuropeancities
duringthecrisisandpost-crisisperiodoninitialeconomicstructure,includinghumancapital,
andsize-basedtypologyusingrobustOLSmodel. Giventheirinitialfeatures,manufacturing,
administrative,financialandadvancedserviceshaveanegativeimpactonthecrisiseconomic
growth. Besides,thenegativeeffectofmanufacturingandadministrationpersistduringthe
post-crisis. Onlyhumancapitalhasapositiveimpactonbothcrisisandpost-crisiseconomic
growth.
1
Contents
1 Introduction 13
2 LiteratureReview 15
2.1 Triumphofmetropolitancities? Atheoreticalperspective . . . . . . . . . . . . . . . 15
2.1.1 Agglomerationeconomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Networkparadigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Fromthebottomtothetop: doEuropeancitiesconvergeacrosstime? . . . . . . . . 17
2.3 Resilience: fromdefinitiontoevidence . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Data 21
3.1 Citiesasfunctionalurbanareas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Citiestypology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Descriptivestatistics 25
4.1 Theconvergenceofcitiesacross2003–2013 . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Relationshipbetweentypologyandeconomicperformance . . . . . . . . . . . . . . 27
4.3 Resilience: afirstdescriptiveassessment . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Modelspecifications 33
5.1 AnalysisofeconomicperformanceofEuropeancitiesovertheperiod2003–2013 . . 33
5.2 AnalysisofEuropeancitiesresilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 Results 38
6.1 EconomicperformanceofEuropeancities2003–2013 . . . . . . . . . . . . . . . . . 38
6.2 Citiesresilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7 Conclusion 44
2
List of Tables
1 DescriptionvariablesdatasetatNUTS3level . . . . . . . . . . . . . . . . . . . . . . 22
2 Citiestypology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 AverageGDPgrowthratesbycitygroupings(in%) . . . . . . . . . . . . . . . . . . . 26
4 AverageGDPgrowthratesbytypology(in%) . . . . . . . . . . . . . . . . . . . . . . 27
5 Resultsoftheeconometricmodelusingthefixedeffectspaneldatamodel . . . . . . 39
6 Coefficientsignofinteractionbetweeneconomicstructureandtypologyresulting
fromtheequation(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7 ResultsoftheeconometricmodelusingtherobustOLSmodel . . . . . . . . . . . . 43
8 Mainfunctionalurbanareas(numberofFUApercountry) . . . . . . . . . . . . . . . 50
9 Summarystatisticsvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10 RelationshipbetweenaverageGDPgrowth2003–2007andtypology . . . . . . . . . 52
11 RelationshipbetweenaverageGDPgrowth2008–2010andtypology . . . . . . . . . 53
12 RelationshipbetweenaverageGDPgrowth2011–2013andtypology . . . . . . . . . 54
13 Average gross value added per sector growth rates by period (in %): financial
andadvancedservices(1),manufacturing(2),construction(3),administration(4),
agriculture(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3
List of Figures
1 Relationshipbetweentheaveragepre-crisisshareoffinancialandadvancedservices
andtheaveragecrisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . 29
2 Relationshipbetweentheaveragepre-crisisshareofmanufacturingandtheaverage
crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Relationshipbetweentheaveragepre-crisisshareofconstructionandtheaverage
crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Relationship between the average pre-crisis share of agriculture and the average
crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Relationshipbetweentheaveragepre-crisisshareofadministrationandtheaverage
crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6 EU-28GDPinpurchasingpowerstandardsperinhabitantatNUTS3level–2008.. 47
7 EUtypologyontechnologicallyadvancedregionsatNUTS2level–2007. . . . . . . 48
8 EUpopulationdensityclassificationatNUTS3level–2007. . . . . . . . . . . . . . 49
4
Thesis summary
Citiesareconsideredasthemajordriverforterritorialcohesionandeconomicgrowthaccording
to European policy. In line with this perspective, my thesis aims at analyzing the impact of the
financialcrisisonEuropeancities. Ontheonehand,Iregresstheeconomicperformanceofcities
ontheeconomicstructure,includinghumancapital,andpopulationsizebasedtypologyoverthe
period2003–2013. Ontheotherhand,Itrytoidentifythesourceofresiliencebyanalyzingthe
impactofinitialeconomicstructure,includinghumancapital,ofcitiesandpopulationsizebased
typologyonthecrisisandpost-crisiseconomicgrowth. Insummary,theobjectivesofthisstudy
areoutlinedasfollows:
1. IsthereaconvergencebetweenEuropeancities? Inwhichextentthefinancialcrisisalters
thistrend?
2. Whatisthestrongestcityintermsofeconomicperformanceovertheperiod2003–2013?
3. Whatarethedrivingfactorsofresilienceintheaftermathofthefinancialcrisis?
I develop three strands of literature that I deem relevant to answer to these questions: ag-
glomerationeconomicsandnetworkparadigm,convergencetheoriesandtheconceptofresilience.
Accordingtoagglomerationeconomicsandnetworkparadigm,ithasbeenarguedthatmetropoli-
tancitiesbenefitfromtheirpositionofcentralnodesintheworldeconomyandtheavailability
of a diversified labor pool. Globalization and the development of ICT accentuate this trend by
fostering the concentration of highly value added sector in metropolitan areas. Nevertheless,
negativeexternalitiesarisingfromcongestion,suchaspollutionandincreasingcommutingtime,
arelikelytocounterbalancethisphenomenoninmetropolitanareas. Tocapturetheimportanceof
agglomerationandnetworkeffect,Iusetheclassificationofcitybasedonpopulationsizedescribed
intable1. Secondly,Idrawadistinctionbetweentwotheoriesconcerningconvergence. Onthe
onehand,theclassicalconvergencetheoryexplainsthecatchingupprocessofpoorregionsasa
result of a differential marginal productivity between labor and capital intensive cities. On the
otherhand,thecumulativecausationtheoryexplainswhyregionsdoesnotfollowthepathrecog-
nizedbytheclassicsandhighlightstheimportanceoflong-termstructureinordertounderstand
regionaldivergence. Inotherwords,initialdisparitiesreproduce,ornot,spatialinequalitydue
to the cumulative consequences of the regional situation. To assess the extent of a convergence
betweenEuropeancities,Idefineconvergenceasaβ-convergence,thatis,thenegativecorrelation
5
betweentheeconomicgrowthandtheinitiallevelofincome. Thirdly,severalfactorsofresilience
areemphasizedintheeconomicliterature. Itcanbedividedintodifferentstrands. Atfirst, the
importanceofinstitutions,cultureandpolitical,toensuretheresilience. Then,theimportanceof
smallandmediumsizedcompaniesandacreativeclassintheeconomytodealwithanegative
shock. Finally,someauthorspointouttheimpactofspecializationinsomeactivitiesasashield
for the economy. I define resilience as a two-step process, that is, the role of initial features of
citiesthatmitigatethenegativeshockduringthecrisisperiodandfostertheadaptationduringthe
post-crisisperiod.
Table1: Citiestypology
Typology Criteria
Metropolitanarea FUApopulation>500000inhabitants
PolyFUAs 2metropolitanareaswiththeircenters<60kmapartand
laborbasinstouchingeachother;
2 large areas with their centers < 30 km apart and labor
basinstouchingeachother;
1metropolitanand1large/mediumareawiththeircenters
<30kmapartandlaborbasinstouchingeachother;
2metropolitanareaswiththeircenters<60kmapartand
laborbasinsseparatedonlybythelaborbasinofasmaller
FUAtouchingthebothofthem.
Largearea FUApopulation>250000inhabitants
Mediumarea FUApopulation>100000inhabitants
Smallarea FUApopulation>50000inhabitants
Otherarea FUApopulation<50000inhabitants
Mydatabaseconsistsonapaneldatacomposingof1515unitsofobservation,functionalurban
areasconsideredascities,comingfrom26countriesovertheperiod2003–2013. Iconstructthe
functional urban areas based on Eurostat data at NUTS 3 level. By constructing the functional
urban areas, I define the concept of city. A city is not only an administratively-delineated area
butaplacecharacterizedbyalaborpool. Inotherwords,acityiscomposedbythecityitselfand
the share of surrounding agglomeration which economically contributes to the city. The extent
ofalaborpoolassociatedwithaNUTS3unitisdeterminedbyacoefficientbasedoncommuting
statistics. Inthisanalysis,thecoefficientsareconsideredasgivenbymysupervisor,ProfessorG.
6
VanHamme. ThiscoefficientrepresentsthepercentagegivingwhatpartoftheNUTS3variable,
such as gross domestic product, is associated with a single functional urban area. The sum of
each adjusted NUTS 3 value corresponding to a functional urban area gives the variable value
ofthisfunctionalurbanarea. Todefinetheeconomicstructureofacity,Ibringtogetherasetof
indicatorthatproxytheimportanceoftheprimarysector,manufacturing,construction,financial
andadvancedservices,administrativesectorsandhumancapital. Thesevariablesaredescribed
in table 2. In addition, it is important to note that I use a restricted sample when I include the
variablerelatedtohumancapitalbecauseIhaveonlythedataforthemostimportantEuropean
cities. For this reason, I do interpret the result of the other variables when I use human capital
variable.
Table2: DescriptionvariablesdatasetatNUTS3level
Indicator Explanation Period Source
Economicgrowth BasedonGDPatcurrentmarketpricepur- 2003-2013 Eurostat
chasingpowerstandardinmillion€. No
dataofGDPatbasicpriceonEurostat.
Population Criteria used for the typology. I assume 2014 Eurostat
topology is constant for the studied pe-
riod.
Agriculture GrossvalueaddedatbasicpricesinAEu- 2003-2013 Eurostat
rostatactivityinmillion€. Itcorresponds
totheprimarysector.
Manufacturing GrossvalueaddedatbasicpricesinCEu- 2003-2013 Eurostat
rostatactivityinmillion€. Exceptionfor
PolandwhereIuseB-EEurostatcategories
inmillion€.
Construction GrossvalueaddedatbasicpricesinFEu- 2003-2013 Eurostat
rostatactivityinmillion€
Finance and ad- GrossvalueaddedatbasicpricesinK-N 2003-2013 Eurostat
vancedservices Eurostatactivityinmillion€. Exception
forUKwhereIuseonlyKEurostatactiv-
ityinmillion€.
Administration GrossvalueaddedatbasicpricesinO-U 2003-2013 Eurostat
Eurostatactivityinmillion€. Exception
forUKwhereIuseonlyO-QEurostatac-
tivityinmillion€.
Education Shareoftertiarydiplomaintheactivepop- 2001 Eurostat; Labour
ulation. I assume the share is constant ForceSurvey
throughtime.
Inthisthesis,Iusetwoempiricalapproaches. Atfirst,thespecificationisdesignedtoemphasize
7
theeconomicperformanceofcitiesacross2003–2013usingfixedeffectspaneldata. Takinginto
accountthedependentvariables,thespecificationofthemodelisasfollows:
GDPgrowthit =α+β1ln(GDPit−1)+β2ln(GDPit−1)×crisist+β3EcoStructurej +β4EcoStructurej ×crisist
it it
+β EcoStructure ×typology +β EcoStructure ×typology ×crisis +β education +(cid:15) (1)
5 j i 6 j i t 7 i it
it it
where(cid:15) =typology +λ +φ +u ;
it i t c it
ji ==11,,......,,nk wwhheerree nk==5151n5umnbuemrboferecoofncoitmieiscstructurevariables
where
ctr=is2is00=31,..w.,h20en13t=T20=081,1200n9u,m20b1e0rof;yeacrrsisis=0otherwise
The methodology I use to estimate this equation is the fixed effects panel data regression. This
modelallowstocontrolforomittedvariablesthatvaryeitheracrosstimebutdonotchangeacross
country/typologyoracrosscountry/typologybutdonotchangeovertime. Therefore,theerror
termcanbedecomposedintoacountryfixedeffect,φ ,atypologyfixedeffect,typology ,atime
c i
fixedeffect,λ ,andaresidualerrorterm,u . Giventhenatureofmydata,thismodelisthemost
t it
coherent. That is why I put aside the test for random effect model or pooled model. My first
specificationallowsmetodrawseveralinterestingresults.
Fromageneralpointofview,myanalysisshowsthatmetropolitancitiesperformsbetterthan
large, medium, small and other cities over the period 2003–2013. All things being equal, the
smallerthepopulationsize,theloweristheeconomicgrowthinthecity. Thisresultconfirmsthe
importanceoftheeffectsofagglomerationandnetworkthatcharacterizemetropolitanareas.
Then, I test the extent of β-convergence process between cities and I check the impact of
the financial crisis on this convergence process. I find a consistent result through the different
specifications. Thecoefficientassociatedwiththeinitiallevelofgrossdomesticproductisnegative
andsignificantatlevel1percent. Therefore,thisresultadvocatesthehypothesisofconvergence
betweencitiesbecauseacitywithhigherlevelofgrossdomesticproductexperiencelowereconomic
growth. Further,Itesthowthecrisishasaffectedtheconvergenceprocessbyaddinganinteraction
variablebetweentheinitiallevelofgrossdomesticproductandtheperiod2008–2010. Thisresult
bringsamorenuancedpointofviewonconvergence. Duringthefinancialcrisis,divergenceoccurs
between European cities. The estimate of convergence during the crisis period can be defined
8
Description:are outlined as follows: 1. Is there a convergence between European cities? In which extent the financial crisis alters this trend? 2. What is the strongest city in terms of economic performance over the period 2003–2013? 3. What are the driving factors of resilience in the aftermath of the finan