Table Of ContentChirality at the Nanoscale
Edited by
David B. Amabilino
Further Reading
Carreira, E.M., Kvaerno, L.
Classics in Stereoselective Synthesis
2009
ISBN:978-3-527-32452-1
Amouri, H., Gruselle, M.
Chirality in Transition Metal Chemistry
Molecules,SupramolecularAssembliesandMaterials
2009
ISBN:978-0-470-06053-7
Ding, K./Uozumi,Y.(eds.)
Handbook of Asymmetric Heterogeneous Catalysis
2008
ISBN-13:978-3-527-31913-8
Köhler, M.,Fritzsche, W.
Nanotechnology
AnIntroductiontoNanostructuringTechniques
2007
ISBN:978-3-527-31871-1
Wagnière, G. H.
On Chirality and the Universal Asymmetry
ReflectionsonImageandMirrorImage
2007
ISBN:978-3-906390-38-3
Samori,P.(ed.)
Scanning Probe Microscopies Beyond Imaging
ManipulationofMoleculesandNanostructures
2006
ISBN:978-3-527-31269-6
Chirality at the Nanoscale
Nanoparticles, Surfaces, Materials and more
Edited by
David B. Amabilino
TheEditor AllbookspublishedbyWiley-VCHarecarefully
produced.Nevertheless,authors,editors,and
Dr.DavidB.Amabilino publisherdonotwarranttheinformationcontained
InstitutdeCiènciadeMaterials inthesebooks,includingthisbook,tobefreeof
deBarcelona(CSIC) errors.Readersareadvisedtokeepinmindthat
CampusUniversitari statements,data,illustrations,proceduraldetailsor
08193Bellaterra otheritemsmayinadvertentlybeinaccurate.
Spain
LibraryofCongressCardNo.: appliedfor
Graphicdesigner:Adam
BritishLibraryCataloguing-in-PublicationData
Acataloguerecordforthisbookisavailablefromthe
BritishLibrary.
Bibliographicinformationpublishedby
theDeutscheNationalbibliothek
TheDeutscheNationalbibliothekliststhis
publicationintheDeutscheNationalbibliografie;
detailedbibliographicdataareavailableonthe
Internetathttp://dnb.d-nb.de.
#2009WILEY-VCHVerlagGmbH&Co.KGaA,
Weinheim
Allrightsreserved(includingthoseoftranslationinto
otherlanguages).Nopartofthisbookmaybe
reproducedinanyform–byphotoprinting,
microfilm,oranyothermeans–nortransmittedor
translatedintoamachinelanguagewithoutwritten
permissionfromthepublishers.Registerednames,
trademarks,etc.usedinthisbook,evenwhennot
specificallymarkedassuch,arenottobeconsidered
unprotectedbylaw.
Typesetting ThomsonDigital,Noida,India
Printing betz-druckGmbH,Darmstadt
Binding Litges&DopfGmbH,Heppenheim
PrintedintheFederalRepublicofGermany
Printedonacid-freepaper
ISBN:978-3-527-32013-4
V
Contents
Preface XIII
List of Contributors XVII
List of Abbreviations XXI
1 AnIntroductiontoChiralityattheNanoscale 1
LaurenceD.Barron
1.1 HistoricalIntroductiontoOpticalActivityandChirality 1
1.2 ChiralityandLife 4
1.2.1 Homochirality 4
1.2.2 PasteursConjecture 7
1.3 SymmetryandChirality 8
1.3.1 SpatialSymmetry 8
1.3.2 InversionSymmetry:Parity,TimeReversalandChargeConjugation 9
1.3.3 TrueandFalseChirality 10
1.3.4 SymmetryViolation 14
1.3.5 SymmetryViolationversusSymmetryBreaking 16
1.3.6 ChiralityinTwoDimensions 17
1.4 AbsoluteEnantioselection 18
1.4.1 TrulyChiralInfluences 18
1.4.2 FalselyChiralInfluences 20
1.5 SpectroscopicProbesofChiralityinNanosystems 21
1.5.1 ElectronicOpticalActivity 22
1.5.2 VibrationalOpticalActivity 23
1.6 Conclusion 24
References 24
2 OpticallyActiveSupramolecules 29
AlessandroScarsoandGiuseppeBorsato
2.1 IntroductiontoSupramolecularStereochemistry 29
2.1.1 SurveyofWeakIntermolecularAttractiveForces 31
2.1.2 TimescaleofSupramolecularInteractionsandRacemization
Processes 33
ChiralityattheNanoscale:Nanoparticles,Surfaces,Materialsandmore.EditedbyDavidB.Amabilino
Copyright(cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim
ISBN:978-3-527-32013-4
VI Contents
2.2 Self-AssemblyofIntrinsicallyChiralMolecularCapsules 37
2.2.1 Hydrogen-BondedAssemblies 37
2.2.1.1 DoubleRosettes 37
2.2.1.2 Hydrogen-BondedCapsules 39
2.2.2 Metal–ligandAssemblies 43
2.3 ChiralInductionintheFormationofSupramolecularSystems 46
2.3.1 ChiralMemoryEffectinHydrogen-BondedAssemblies 46
2.3.2 ChiralMemoryEffectinMetal–LigandAssemblies 49
2.4 ChiralSpacesforChiralRecognition 51
2.4.1 EnantioselectiveRecognitionwithinChiralRacemic
Self-AssembledHosts 52
2.4.1.1 Hydrogen-BondedHosts 52
2.4.1.2 Metal–LigandHosts 53
2.4.2 InterguestsChiralSensingwithinAchiralSelf-AssembledHosts 56
2.4.2.1 Hydrogen-BondedHosts 57
2.4.2.2 Metal–LigandHosts 60
2.5 ConclusionandOutlook 61
References 62
3 ChiralNanoparticles 67
CyrilleGautierandThomasBürgi
3.1 Introduction 67
3.2 NanoparticlePropertiesandSynthesis 68
3.2.1 NanoparticleProperties 68
3.2.2 Preparation,PurificationandSizeSeparation 71
3.2.2.1 Preparation 71
3.2.3 PurificationandSeparationofNanoparticles 74
3.3 ChiropticalPropertiesofInorganicNanoparticles 74
3.3.1 VibrationalCircularDichroism 74
3.3.2 CircularDichroism 75
3.3.3 OriginofOpticalActivityinMetal-BasedTransitions 78
3.4 OpticallyActiveCoordinationClusters 80
3.5 NanoparticlesofChiralOrganicCompounds 81
3.6 Applications 83
3.6.1 AsymmetricCatalysis 83
3.6.2 NanoparticlesinLiquid-CrystalMedia 85
3.6.3 ChiralDiscrimination 87
3.7 Outlook 87
References 87
4 GelsasaMediaforFunctionalChiralNanofibers 93
SudipMalik,NorifumiFujita,andSeijiShinkai
4.1 ABriefIntroductiontoGels 93
4.1.1 Introduction 93
4.1.2 DefinitionofGels 94
Contents VII
4.1.3 ClassificationofGels 94
4.1.4 ChiralityinGels 95
4.2 ChiralOrganogels 96
4.2.1 Steroid-BasedChiralGelators 96
4.2.2 Pyrene-BasedChiralGelators 103
4.2.3 Diaminoyclohexane-BasedChiralGelators 103
4.2.4 OPV-BasedChiralGelators 105
4.3 ChiralHydrogels 108
4.3.1 ChiralFattyAcids 108
4.3.2 ChiralSugar-BasedGelators 109
4.3.3 MiscellaneousChiralHydrogelators 110
4.3.3.1 TheFutureofChiralGelsinNanoscienceandNanotechnology 111
References 111
5 ExpressionofChiralityinPolymers 115
TeresaSierra
5.1 HistoricalPerspectiveonChiralPolymers 115
5.2 ChiralArchitectureControlinPolymerSynthesis 117
5.2.1 PolymerizationofChiralAssemblies 117
5.2.1.1 ChiralOrganizationThroughH-BondingInteractions 118
5.2.1.2 ChiralOrganizationThroughp-StackingInteractions 120
5.2.1.3 ChiralOrganizationThroughMesogenicDrivingForces 121
5.2.2 ControlofChiralArchitectureDuringPolymerization 123
5.2.2.1 PolymerizationinChiralSolvents 123
5.2.2.2 PolymerizationwithChiralTemplates 127
5.2.2.3 PolymerizationofChiralAssembliesbyCircularlyPolarized
Radiation 128
5.2.3 ChiralArchitectureControluponPolymerization:Noncovalent
Interactions 129
5.2.3.1 ControloftheChiralArchitecturebyH-BondingInteractions 129
5.2.3.2 ControloftheChiralArchitecturebyp-StackingandStericFactors 133
5.2.3.3 ChiralSuperstructuresbyp-Interactions:ChiralAggregates 134
5.3 AsymmetryInductioninNonchiralPolymers 137
5.3.1 InductionThroughNoncovalentInteractionwithChiralMolecules 137
5.3.1.1 ChiralInductionbyAcid–BaseInteractions 137
5.3.1.2 ChiralInductionbyHost–CationInteractions 143
5.3.1.3 ChiralInductionbyMetalCoordination 143
5.3.2 InductionThroughNoncovalentInteractionwithChiralPolymers 146
5.3.3 InductionThroughtheFormationofInclusionComplexes 147
5.3.4 InductionbyaChiralExternalStimulus 150
5.3.4.1 Solvent-InducedChirality 150
5.3.4.2 Light-InducedChirality 151
5.4 ChiralMemoryEffects.TuningHelicity 154
5.4.1 MemoryEffectsfromChiralPolymers 154
5.4.1.1 Temperature-and/orSolvent-DrivenMemoryEffects 154
VIII Contents
5.4.1.2 Light-DrivenMemoryEffects 157
5.4.2 MemoryEffectsfromAchiralPolymers 158
5.5 ChiralBlock-CopolymersandNanoscaleSegregation 161
5.5.1 ChiralBlock-Copolymers:NanoscaleSegregationintheBulk 162
5.5.2 ChiralBlock-Copolymers:NanoscaleSegregationintheMesophase 162
5.5.3 ChiralBlock-Copolymers:NanoscaleSegregationinSolvents.
AmphiphilicBlock-Copolymers 165
5.6 TemplatesforChiralObjects 169
5.6.1 TemplatesforChiralSupramolecularAggregates 169
5.6.1.1 TemplatingwithNaturalHelicalPolymers 169
5.6.1.2 TemplatingwithSyntheticHelicalPolymers 172
5.6.2 MolecularImprintingwithHelicalPolymers 174
5.6.3 TemplatingbyWrappingwithHelicalPolymers 175
5.6.4 AlignmentofFunctionalGroups 176
5.6.4.1 Polyisocyanides 176
5.6.4.2 Polypeptides 178
5.6.4.3 Polyacetylenes 178
5.6.4.4 Foldamers 179
5.7 Outlook 180
References 181
6 NanoscaleExplorationofMolecularandSupramolecularChirality
atMetalSurfacesunderUltrahigh-VacuumConditions 191
RasmitaRaval
6.1 Introduction 191
6.2 TheCreationofSurfaceChiralityin1DSuperstructures 192
6.3 TheCreationof2DSurfaceChirality 196
6.3.1 2DSupramolecularChiralClustersatSurfaces 196
6.3.2 2DCovalentChiralClustersatSurfaces 199
6.3.3 LargeMacroscopic2-DChiralArrays 200
6.3.4 ChiralNanocavityArrays 204
6.4 ChiralRecognitionMappedattheSingle-MoleculeLevel 205
6.4.1 HomochiralSelf-Recognition 205
6.4.2 DiastereomericChiralRecognition 207
6.4.2.1 DiastereomericChiralRecognitionbyHomochiralStructures 207
6.4.2.2 DiastereomericChiralRecognitionbyHeterochiralStructures 209
6.5 Summary 211
References 212
7 ExpressionofChiralityinPhysisorbedMonolayersObserved
byScanningTunnelingMicroscopy 215
StevenDeFeyter,PatriziaIavicoli,andHongXu
7.1 Introduction 215
7.2 HowtoRecognizeChiralityattheLiquid/SolidInterface 217
7.2.1 ChiralityattheLeveloftheMonolayerSymmetry 217
Contents IX
7.2.2 ChiralityattheLeveloftheMonolayer–SubstrateOrientation 219
7.2.3 DeterminationAbsoluteConfiguration 220
7.3 ChiralityinMonolayersComposedofEnantiopureMolecules 221
7.4 Polymorphism 228
7.5 IsChiralityAlwaysExpressed? 230
7.6 RacemicMixtures:SpontaneousResolution? 231
7.6.1 ChiralMolecules 231
7.6.2 AchiralMolecules 234
7.7 MulticomponentStructures 237
7.8 PhysicalFields 240
7.9 Outlook 240
References 243
8 StructureandFunctionofChiralArchitecturesofAmphiphilic
MoleculesattheAir/WaterInterface 247
IsabelleWeissbuch,LeslieLeiserowitz,andMeirLahav
8.1 AnintroductiontoChiralMonolayersonWaterSurface 247
8.2 Two-DimensionalCrystallineSelf-AssemblyofEnantiopureand
RacematesofAmphiphilesattheAir/WaterInterface;Spontaneous
SegregationofRacematesintoEnantiomorphous2DDomains 248
8.3 LangmuirMonolayersofAmphiphilica-AminoAcids 249
8.3.1 DomainMorphologyandEnergyCalculationsinMonolayers
ofN-acyl-a-AminoAcids 253
8.4 StochasticAsymmetricTransformationsinTwoDimensionsatthe
WaterSurface 254
8.5 Self-AssemblyofDiastereoisomericFilmsattheAir/Water
Interface 255
8.6 InteractionsofthePolarHeadGroupswiththeMoleculesofthe
AqueousEnvironment 256
8.7 InterdigitatedBi-orMultilayerFilmsontheWaterSurface 261
8.8 StructuralTransferfrom2DMonolayersto3DCrystals 263
8.9 HomochiralPeptidesfromRacemicAmphiphilicMonomersatthe
Air/WaterInterface 265
8.10 Conclusions 268
References 268
9 NanoscaleStereochemistryinLiquidCrystals 271
CarstenTschierske
9.1 TheLiquid-CrystallineState 271
9.2 ChiralityinLiquidCrystalsBasedonFixedMolecularChirality 273
9.2.1 ChiralNematicPhasesandBluePhases 274
9.2.2 ChiralityinSmecticPhases 276
9.2.3 PolarOrderandSwitchinginChiralLCPhases 276
9.2.3.1 FerroelectricandAntiferroelectricSwitching 276
9.2.3.2 ElectroclinicEffect 279
X Contents
9.2.3.3 Electric-Field-DrivenDeracemization 279
9.2.4 ChiralityTransferviaGuest–HostInteractions 279
9.2.5 InductionofPhaseChiralitybyExternalChiralStimuli 281
9.2.6 ChiralityinColumnarLCPhases 282
9.3 ChiralityDuetoMolecularSelf-AssemblyofAchiralMolecules 284
9.3.1 HelixFormationinColumnarPhases 284
9.3.2 HelicalFilamentsinLamellarMesophases 287
9.4 PolarOrderandChiralityinLCPhasesFormedbyAchiral
Bent-CoreMolecules 288
9.4.1 PhaseStructuresandPolarOrder 288
9.4.2 SuperstructuralChiralityandDiastereomerism 290
9.4.3 SwitchingofSuperstructuralChirality 291
9.4.4 MacroscopicChiralityandSpontaneousReflectionSymmetry
Breakingin‘‘BananaPhases’’ 292
9.4.4.1 LayerChirality 292
9.4.4.2 DarkConglomeratePhases 292
9.5 SpontaneousReflection-SymmetryBreakinginOtherLCPhases 295
9.5.1 ChiralityinNematicPhasesofAchiralBent-CoreMolecules 295
9.5.2 SpontaneousResolutionofRacematesinLCPhasesofRod-Like
Mesogens 295
9.5.3 DeracemizationofFluxionalConformersviaDiastereomeric
Interactions 296
9.5.4 ChiralityinNematic,SmecticandCubicPhasesofAchiral
Rod-LikeMolecules 296
9.5.5 SegregationofChiralConformersinFluids,FactorFiction? 296
9.6 LiquidCrystalsasChiralTemplates 298
9.7 Perspective 299
References 299
10 TheNanoscaleAspectsofChiralityinCrystalGrowth:Structure
andHeterogeneousEquilibria 305
GérardCoquerelandDavidB.Amabilino
10.1 AnintroductiontoCrystalSymmetryandGrowthforChiral
Systems.MessagesforNanoscience 305
10.2 SupramolecularInteractionsinCrystals 308
10.2.1 HydrogenBonds 309
10.2.2 InteraromaticInteractions 310
10.2.3 ElectrostaticInteractions 311
10.2.4 ModulationofNoncovalentInteractionswithSolvent 312
10.2.5 Polymorphism 312
10.3 SymmetryBreakinginCrystalFormation 312
10.3.1 SpontaneousResolutionofChiralCompounds 313
10.3.2 SpontaneousResolutionofAchiralCompounds 315
10.4 ResolutionsofOrganicCompounds 317