Table Of ContentSpringer Geochemistry / Mineralogy
Ali Akbar Ramezanianpour
Cement
Replacement
Materials
Properties, Durability, Sustainability
onCcrete TTeecchhnnoolloogy & Durabilittyy RReesseeaarrch Cernet
Springer Geochemistry/Mineralogy
For furthervolumes:
http://www.springer.com/series/10171
Ali Akbar Ramezanianpour
Cement Replacement
Materials
Properties, Durability, Sustainability
123
AliAkbar Ramezanianpour
Concrete TechnologyCenter
Department of CivilEngineering
AmirkabirUniversity ofTechnology
Tehran
Iran
ISSN 2194-3176 ISSN 2194-3184 (electronic)
ISBN 978-3-642-36720-5 ISBN 978-3-642-36721-2 (eBook)
DOI 10.1007/978-3-642-36721-2
SpringerHeidelbergNewYorkDordrechtLondon
LibraryofCongressControlNumber:2013945143
(cid:2)Springer-VerlagBerlinHeidelberg2014
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor
informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe
work. Duplication of this publication or parts thereof is permitted only under the provisions of
theCopyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt
fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
While the advice and information in this book are believed to be true and accurate at the date of
publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor
anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with
respecttothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface
Sustainability is an important issue all over the world. Carbon dioxide emission
hasbeenaseriousproblemintheworldduetothegreenhouseeffect.Todaymany
countries agreed to reduce the emission of CO . Many phases of cement and
2
concrete technology can affect sustainability. Cement and concrete industry is
responsible for the production of 7 % carbon dioxide of the total world CO
2
emission. The use of supplementary cementing materials (SCM), design of con-
crete mixtures with optimum content of cement, and enhancement of concrete
durability are the main issues toward sustainability in concrete industry.
The aim of this book is to present the latest findings in the properties and
application of supplementary cementing materials and blended cements currently
used in the world in concrete. It consists of eight chapters. The book opens with
the Chap. 1 on natural pozzolans, a material which has been used for over 2500
years. This is followed by the Chap. 2 on fly ash, a by-product ofthe combustion
of pulverized coal and the most consumed artificial pozzolans in the cement
industry all over the world. The Chap. 3 deals with the granulated ground blast
furnaceslag,aby-productofthemetallurgicalindustryusedasahydraulicbinder
in large projects located in severe environments. In Chap. 4, silica fume a by-
product in the production of silicon and silicon alloys and a super pozzolan for
enhancement of concrete durability is discussed. The Chap. 5 deals with me-
takaolin (MK), commercially available since the mid-1990s, and one of the
recently developed supplementary cementing materials. Metakaolin differs from
other supplementary cementitious materials (SCMs), like fly ash, silicafume, and
slag,inthatitisnotaby-productofanindustrialprocess.Itisproducedbyheating
kaolin,oneofthemostabundantnaturalclayminerals,totemperaturesof650–900
(cid:3)C.Ricehuskash(RHA),anartificial pozzolan fromthecombustionofricehusk
in a control process and a very reactive material is explained in the Chap. 6.
Increasing the rice production and the usage of rice hull in electricity generation
and also incorporation of rice husk ash in concretes with enhanced durability, are
themainreasonsforthebetterfutureofricehuskash.TheChap. 7dealswiththe
properties of Portland limestone cements. Perhaps the main advantage of pro-
ducing Portland-limestone cements is that by introducing limestone into cement,
the total volume of cement would increase, or in other words, the amount of
clinker required to produce a certain amount of cement would decrease. This
wouldresultinasubstantialamountofenergysavingintheproductionofcement
v
vi Preface
astheconsumptionofnaturalrawmaterialsandthefuelneededforproductionof
clinker would be reduced. Finally, the role of supplementary cementing materials
onsustainabledevelopmentisincludedintheChap. 8ofthisbook.Supplementary
cementing materials have proven to be economic environmental alternatives to
typical concrete mixes. More researches are needed for further applications of
supplementary cementing materials to reduce energy consumption for the pro-
ductionofclinkercementsandreductionofcarbondioxideemissioninthecement
and concrete industry.
Each chapter begins with a introduction followed by production, physical,
chemical, and mineralogical properties, hydration reactions and pozzolanic
activity, effects on properties offresh concretes, effects on the mechanical prop-
erties of hardened concretes, effects on durability of concretes and their applica-
tions in concrete.
Author has tried to include his 35 years of experience in the field of concrete
technology specially the engineering properties and durability of concretes con-
tainingcementreplacementmaterialsinthisbook.Theauthor’sfindingsonnatural
and artificial pozzolans in numerous research projects in Iran and all over the
world during these years are discussed in different chapters.
TheauthorwishestothankProf.R.D.Hooton,Dr.Amir.M.Ramezanianpour,
Mr. M. Mahdikhani, and Mr. H. Bahrami, for their assistances in preparation of
somepartsofthebook.ParticularthanksareextendedtotheSpringerPublisherfor
publishing this book. I would also like to thank Mrs. Hashemi for processing this
publication.
May 2013 Ali A. Ramezanianpour
Contents
1 Natural Pozzolans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Natural Pozzolan Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pyroclastic Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Physical, Chemical, and Mineralogical Properties . . . . . . . . . . . . . . . 4
Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chemical and Mineralogical Properties . . . . . . . . . . . . . . . . . . . . 5
Pozzolanic Activity of Natural Pozzolans. . . . . . . . . . . . . . . . . . . 8
Evaluation of Pozzolanic Activity. . . . . . . . . . . . . . . . . . . . . . . . 9
Factors Affecting Pozzolanic Activity . . . . . . . . . . . . . . . . . . . . . 10
Reactivity of Thermally Treated Pozzolans . . . . . . . . . . . . . . . . . 10
Hydration Reactions and Hydration Products . . . . . . . . . . . . . . . . 11
Hydration of Natural Pozzolans with Lime. . . . . . . . . . . . . . . . . . 12
Hydration of Natural Pozzolan with Clinker. . . . . . . . . . . . . . . . . 13
Hydration of Pozzolan-Cement Mixture. . . . . . . . . . . . . . . . . . . . 13
Effects of Natural Pozzolans on the Properties
of Fresh Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Effects of Natural Pozzolans on the Mechanical Properties
of Hardened Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Strength of Mortars and Concretes . . . . . . . . . . . . . . . . . . . . . . . 16
Modulus of Elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Effect on Volume Changes of Concrete. . . . . . . . . . . . . . . . . . . . 21
Microstructure, Porosity and Permeability . . . . . . . . . . . . . . . . . . 23
Effect of Natural Pozzolans on Durability of Concrete . . . . . . . . . 27
Effect of Natural Pozzolan on Carbonation of Mortars
and Concretes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Effect of Chloride Ions on Durability of Pozzolanic Cement
Mortars and Concretes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Sulfate Resistance of Mortars and Concretes Containing
Natural Pozzolan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Combination of Sulfate and Chloride Attacks by Sea Water. . . . . . 35
Effect of Natural Pozzolans on Suppressing the Alkali
Aggregate Reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
vii
viii Contents
Freezing and Thawing of Concretes Containing
Natural Pozzolans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Application of Natural Pozzolans in Mortars and Concretes. . . . . . 40
Recent Researches on Natural Pozzolans . . . . . . . . . . . . . . . . . . . 41
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2 Fly Ash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Physical, Chemical, and Mineralogical Properties
of Fly Ash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Fineness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Specific Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Specific Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Chemical Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Mineralogical Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
The Fly Ash Hydration Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 57
The Effect of Fly Ash on the Hydration of Cement Compounds. . . 57
Factors Affecting Pozzolanic Reactivity of Fly Ashes . . . . . . . . . . . . 61
Effects of Fly Ash on the Properties of Fresh Concrete . . . . . . . . . . . 63
Influence of Fly Ash on the Setting Time of Portland
Cement Concrete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Effect of Fly Ash on Workability, Water Requirement,
and Bleeding of Fresh Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Effect of Fly Ash on Temperature Rise of Fresh Concrete. . . . . . . 69
Effect on the Mechanical Properties of Hardened Concrete . . . . . . . . 70
Strength Development in Fly Ash Concrete . . . . . . . . . . . . . . . . . . . 71
Effect of Fly Ash Type on Concrete Strength. . . . . . . . . . . . . . . . . . 72
Particle Size and Strength of Fly Ash Concretes. . . . . . . . . . . . . . . . 74
Effects of Temperature and Curing Regime on the Strength
Development in Fly Ash Concretes. . . . . . . . . . . . . . . . . . . . . . . . . 77
Effect of Fly Ash on Elastic Properties of Concrete. . . . . . . . . . . . . . 81
Effect of Fly Ash on Creep Properties of Concrete . . . . . . . . . . . . . . 83
Effect of Fly Ash on Volume Changes of Concrete. . . . . . . . . . . . . . 85
Effects of Fly Ash on Permeability of Concrete . . . . . . . . . . . . . . . . 89
Effects of Fly Ash on Carbonation of Concrete. . . . . . . . . . . . . . . . . 93
Effects of Fly Ash on the Durability of Concrete Subjected
to Repeated Cycles of Freezing and Thawing. . . . . . . . . . . . . . . . . . 101
Effects of Fly Ash on the Durability of Concrete Exposed
to Elevated Temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Abrasion and Erosion of Fly Ash Concrete. . . . . . . . . . . . . . . . . . . . 110
Effects of Fly Ash on the Durability of Concrete Exposed
to Chemical Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Effects of Fly Ash on Sulphate Resistance of Concrete . . . . . . . . . . . 114
Contents ix
Effects of Fly Ash on Alkali-Aggregate Reaction in Concrete . . . . . . 121
Effects of Fly Ash on the Corrosion of Reinforcing
Steel in Concrete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Effects of Fly Ash on Concrete Exposed to Sea Water . . . . . . . . . . . 133
Recent Development on the Durability of Fly Ash Concretes. . . . . . . 135
Application of Fly Ash in Concrete. . . . . . . . . . . . . . . . . . . . . . . . . 138
High-Strength Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Roller-Compacted Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3 Granulated Blast Furnace Slag. . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Physical, Chemical, and Mineralogical Properties . . . . . . . . . . . . . . . 159
Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Chemical Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Mineralogical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Structure of Glassy Slags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Hydraulic Properties of Slags. . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Hydration of Slag–Cement Mixture. . . . . . . . . . . . . . . . . . . . . . . 165
Effect of Thermal Treatments. . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Effects of Slag on the Properties of Fresh Concrete. . . . . . . . . . . . . . 167
Workability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Bleeding and Segregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Setting Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Effects of Slag on the Mechanical Properties
of Hardened Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Strength Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Modulus of Elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Effect on Volume Changes of Concrete. . . . . . . . . . . . . . . . . . . . 173
Microstructure, Porosity and Permeability . . . . . . . . . . . . . . . . . . 177
Effect of Slag on Durability of Concrete . . . . . . . . . . . . . . . . . . . 178
Effect of Slag on Carbonation of Mortars and Concrete. . . . . . . . . 178
Effect of Chloride Ions on Durability of Concretes
Containing Slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Sulfate Resistance of Mortars and Concretes Containing Slag. . . . . 181
Effect of Slag on Suppressing the Alkali Aggregate Reaction. . . . . 183
Freezing and Thawing of Concretes Containing Slag. . . . . . . . . . . 185
Application of Slag in Concrete . . . . . . . . . . . . . . . . . . . . . . . . . 186
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4 Silica Fume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
x Contents
Physical, Chemical and Mineralogical Properties. . . . . . . . . . . . . . . . 194
Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Chemical and Mineralogical Properties . . . . . . . . . . . . . . . . . . . . 196
Hydration Reactions and Pozzolanic Activity . . . . . . . . . . . . . . . . . . 197
Hydration of Silica Fume with Lime. . . . . . . . . . . . . . . . . . . . . . 197
Pozzolanic Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Hydration of Silica Fume with Clinker . . . . . . . . . . . . . . . . . . . . 198
Effect of Silica Fume on the Properties of Fresh Concrete. . . . . . . 199
Segregation and Bleeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Setting Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Effects of Silica Fume on the Mechanical Properties
of Hardened Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Strength of Mortar and Concrete. . . . . . . . . . . . . . . . . . . . . . . . . 200
Modulus of Elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Effect on Volume Changes of Concrete. . . . . . . . . . . . . . . . . . . . . . 204
Shrinkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Creep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Effect of Silica Fume on Durability of Concrete. . . . . . . . . . . . . . 209
Effect of Silica Fume on Carbonation of Mortars
and Concretes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Effect of Chloride Ions on Durability of Concretes
Containing Silica Fume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Sulfate Resistance of Mortars and Concretes
Containing Silica Fume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Effect of Silica Fume on Suppressing the Alkali
Aggregate Reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Freezing and Thawing of Concretes Containing Silica Fume . . . . . 217
Application of Silica Fume in Mortars and Concretes . . . . . . . . . . 218
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
5 Metakaolin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Physical, Chemical, and Mineralogical Properties . . . . . . . . . . . . . . . 228
Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Chemical and Mineralogical Properties . . . . . . . . . . . . . . . . . . . . 228
Pozzolanic Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Effects of Metakaolin on the Properties of Fresh Concrete. . . . . . . . . 230
Effects of Metakaolin on the Mechanical Properties
of Hardened Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Strength of Mortars and Concretes . . . . . . . . . . . . . . . . . . . . . . . 232
Modulus of Elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Effect on Volume Changes of Concrete. . . . . . . . . . . . . . . . . . . . 236
Microstructure, Porosity and Permeability . . . . . . . . . . . . . . . . . . 239
Description:The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in th