Table Of Content(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
(cid:85)
CHEMISTRY
(cid:82)
(cid:73)
(cid:87)
(cid:85)
An Introduction to Organic, Inorganic and
(cid:72)
Physical Chemistry
(cid:43)
3rd edition (cid:3)
(cid:73)
(cid:82)
(cid:3)
(cid:92)
(cid:87)
(cid:76)
(cid:86)
(cid:85)
(cid:72)
(cid:89)
(cid:76)
(cid:81)
(cid:56)
(cid:3)
Catherine E. Housecroft
Edwin C. Constable
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
(cid:85)
(cid:82)
PearsonEducationLimited
EdinburghGate (cid:73)
Harlow
EssexCM202JE (cid:87)
England
(cid:85)
andAssociatedCompaniesthroughouttheworld (cid:72)
VisitusontheWorldWideWebat: (cid:43)
www.pearsoned.co.uk
(cid:3)
FirstpublishedundertheLongmanimprint1997 (cid:73)
Secondedition2002
Thirdedition2006 (cid:82)
(cid:3)
#PearsonEducationLimited1997,2006
(cid:92)
TherightsofCatherineE.HousecroftandEdwinC.Constabletobeidentifiedasauthors
ofthisworkhavebeenassertedbythemin(cid:87)accordancewiththeCopyright,Designsand
PatentsAct1988.
(cid:76)
Allrightsreserved.Nopartofthisp(cid:86)ublicationmaybereproduced,storedinaretrieval
system,ortransmittedinanyformorbyanymeans,electronic,mechanical,
photocopying,recordingorother(cid:85)wise,withouteitherthepriorwrittenpermissionofthe
publisheroralicencepermittingrestrictedcopyingintheUnitedKingdomissuedbythe
(cid:72)
CopyrightLicensingAgencyLtd,90TottenhamCourtRoad,LondonW1T4LP.
(cid:89)
Alltrademarksusedhereinarethepropertyoftheirrespectiveowners.Theuseofany
trademarkinthistextd(cid:76)oesnotvestintheauthororpublisheranytrademarkownership
rightsinsuchtrademarks,nordoestheuseofsuchtrademarksimplyanyaffiliationwith
(cid:81)
orendorsementofthisbookbysuchowners.
(cid:56)
ISBN0131275674
(cid:3)
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
10987654321
0908070605
Typesetin10ptTimesby60
PrintedbyAshfordColourPressLtd,Gosport
Thepublisher’spolicyistousepapermanufacturedfromsustainableforests.
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
(cid:85)
(cid:82)
Summary of contents (cid:73)
(cid:87)
(cid:85)
(cid:72)
(cid:43)
Preface xxi
(cid:3)
About the authors xxiii
Acknowledgements (cid:73) xxviii
(cid:82)
1 Somebasicconcepts (cid:3) 1
2 Thermochemistry (cid:92) 56
3 Atomsandatomicstructure (cid:87) 79
4 Homonuclearcovalentbonds 118
(cid:76)
5 Heteronucleardiatomicmolecules 167
(cid:86)
6 Polyatomicmolecules:shapes 200
(cid:85)
7 Polyatomicmolecules:bonding 236
(cid:72)
8 Ions 263
(cid:89)
9 Elements 301
(cid:76)
10 Massspectrometry 330
(cid:81)
11 Introductiontospectroscopy 344
12 Vibrationa(cid:56)landrotationalspectroscopies 356
13 Electron(cid:3)icspectroscopy 387
14 NMRspectroscopy 401
15 Reactionkinetics 428
16 Equilibria 487
17 Thermodynamics 530
18 Electrochemistry 575
19 Theconductivityofionsinsolution 597
20 Periodicity 609
21 Hydrogenandthes-blockelements 623
22 p-Blockandhighoxidationstated-blockelements 668
23 Coordinationcomplexesofthed-blockmetals 737
24 Carboncompounds:anintroduction 792
25 Acyclicandcyclicalkanes 831
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
vi Summaryofcontents
(cid:85)
(cid:82)
26 Alkenesandalkynes 839
(cid:73)
27 Polarorganicmolecules:anintroduction 904
28 Halogenoalkanes (cid:87) 911
29 Ethers (cid:85) 943
30 Alcohols (cid:72) 961
31 Amines (cid:43) 987
32 Aromaticcompounds 1007
(cid:3)
33 Carbonylcompounds 1060
(cid:73)
34 Aromaticheterocycliccompounds 1111
(cid:82)
35 Moleculesinnature 1150
(cid:3)
Appendices 1184
(cid:92)
Answerstonon-descriptiveproblems 1221
(cid:87)
Index 1235
(cid:76)
(cid:86)
(cid:85)
(cid:72)
(cid:89)
(cid:76)
(cid:81)
(cid:56)
(cid:3)
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
(cid:85)
(cid:82)
Contents (cid:73)
(cid:87)
(cid:85)
(cid:72)
(cid:43)
Preface xxi
(cid:3)
About the authors xxiii
Acknowledgements (cid:73) xxviii
(cid:82)
1 Some basic concepts 1
(cid:3)
1.1 Whatischemistry andwhy isit important? 1
(cid:92)
1.2 Whatisthe IUPAC? 3
1.3 SI units (cid:87) 3
1.4 The proton, electron and neutron 6
(cid:76)
1.5 The elements 7
1.6 Statesof matter 8
(cid:86)
1.7 Atomsand isotopes 11
1.8 The moleand the Avoga(cid:85)dro constant 14
1.9 Gas lawsand ideal gases 14
(cid:72)
1.10 The periodic table 24
1.11 Radicals and ions 26
(cid:89)
1.12 Molecules and compounds:bond formation 28
1.13 Molecules and c(cid:76)ompounds:relativemolecular mass and moles 29
1.14 Concentrationsof solutions 30
(cid:81)
1.15 Reactionstoichiometry 32
1.16 Oxidation andreduction, and oxidation states 39
(cid:56)
1.17 Empirical, molecular andstructural formulae 45
1.18 Basic no(cid:3)menclature 48
1.19 Final comments 52
Problems 53
2 Thermochemistry 56
2.1 Factors that control reactions 56
2.2 Change in enthalpyof a reaction 57
2.3 Measuring changesin enthalpy:calorimetry 58
2.4 Standardenthalpy of formation 63
2.5 Calculating standard enthalpies ofreaction 64
2.6 Enthalpies ofcombustion 66
2.7 Hess’sLaw ofConstantHeat Summation 68
2.8 Thermodynamic and kinetic stability 71
2.9 Phasechanges: enthalpies offusion and vaporization 71
2.10 An introduction to intermolecular interactions 74
Summary 76
Problems 76
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
viii Contents
(cid:85)
(cid:82)
3 Atoms andatomic structure 79
(cid:73)
3.1 The importance of electrons (cid:87) 79
3.2 The classical approach toatomicstructure 80
(cid:85)
3.3 The Bohr atom – still a classical picture 81
3.4 Quanta 82
(cid:72)
3.5 Wave–particle duality 82
3.6 The uncertainty principle (cid:43) 83
3.7 The Schro¨dinger wave equation 84
(cid:3)
3.8 Probability density 86
3.9 The radial distribution function, 4(cid:1)r2RðrÞ2 (cid:73) 87
3.10 Quantum numbers 88
3.11 Atomicorbitals (cid:82) 90
3.12 Relating orbitaltypes tothe principalquantum number 94
(cid:3)
3.13 Moreaboutradial distributionfunctions 94
3.14 Applying theSchro¨dinger equation to th(cid:92)e hydrogen atom 96
3.15 Penetration and shielding 98
3.16 The atomic spectrumof hydrogen and(cid:87)selection rules 100
3.17 Many-electron atoms 106
(cid:76)
3.18 The aufbauprinciple 106
3.19 Electronic configurations 108
(cid:86)
3.20 The octet rule 111
3.21 Monatomic gases (cid:85) 112
Summary 116
(cid:72)
Problems 117
(cid:89)
4 Homonuclearcovalent bonds 118
(cid:76)
(cid:81)
4.1 Introduction 118
4.2 Measuring internuclear distances 119
(cid:56)
4.3 The covalent radius ofan atom 123
4.4 An introduc(cid:3)tion to bondenergy: the formation of thediatomic
molecule H 125
2
4.5 Bond energiesandenthalpies 127
4.6 The standard enthalpy of atomization ofan element 129
4.7 Determining bond enthalpies from standard heats of formation 133
4.8 The nature of thecovalent bond inH 134
2
4.9 Lewisstructure of H 135
2
4.10 The problem of describingelectrons inmolecules 136
4.11 Valencebond (VB) theory 137
4.12 Molecular orbital (MO)theory 139
4.13 Whatdo the VBand MOtheories tellus aboutthe molecular
properties of H ? 144
2
4.14 Homonuclear diatomicmolecules ofthe first row elements –the
s-block 144
4.15 Orbital overlapof p atomic orbitals 146
4.16 Bond order 148
4.17 Relationships between bond order, bond length and bondenthalpy 149
4.18 Homonuclear diatomicmolecules ofthe first row p-block elements:
F and O 149
2 2
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
Contents ix
(cid:85)
(cid:82)
4.19 Orbital mixing and (cid:2)–(cid:1) crossover 152
4.20 Homonuclear diatomicmolecules ofthe first row p-block ele(cid:73)ments:
B ,C and N 154
2 2 2
4.21 Periodictrends in the homonuclear diatomicmolecules of(cid:87)the first
row elements 158
(cid:85)
4.22 The diatomic species O , [O ]þ,[O ] and [O ]2 159
2 2 2 2
4.23 Group trends among homonuclear diatomicmolecul(cid:72)es 160
Summary 164
Problems (cid:43) 165
(cid:3)
5 Heteronucleardiatomic molecules 167
(cid:73)
5.1 Introduction (cid:82) 167
5.2 Lewisstructures for HF, LiF and LiH 168
(cid:3)
5.3 The valence bond approach to the bonding in HF, LiF and LiH 168
5.4 The molecular orbital approach to(cid:92)the bonding in aheteronuclear
diatomicmolecule 170
5.5 The molecular orbital approach(cid:87)to the bonding in LiH, LiF and HF 172
5.6 Bond enthalpies of heteronuclear bonds 177
(cid:76)
5.7 Electronegativity – Pauling values ((cid:3)P) 179
5.8 The dependenceof electron(cid:86)egativityon oxidation state and bond order 181
5.9 An overview of thebonding inHF 182
5.10 Otherelectronegativity s(cid:85)cales 182
5.11 Polar diatomicmolecules 183
(cid:72)
5.12 Isoelectronic species 186
5.13 The bonding in CO(cid:89)bythe Lewisandvalence bond approaches 187
5.14 The bonding in carbon monoxide by MO theory 189
5.15 [CN] and [NO](cid:76)þ: two ions isoelectronic withCO 193
5.16 [NO]þ,NO and [NO] 196
(cid:81)
Summary 197
Problems (cid:56) 197
(cid:3)
6 Polyatomic molecules: shapes 200
6.1 Introduction 200
6.2 The geometries oftriatomic molecules 203
6.3 Molecules larger than triatomics described as having linear or bent
geometries 205
6.4 Geometries of molecules within thep-block: thefirstrow 206
6.5 Heavierp-block elements 208
Mid-chapter problems 211
6.6 The valence-shellelectron-pairrepulsion (VSEPR)model 212
6.7 The VSEPRmodel: some ambiguities 218
6.8 The Kepert model 220
6.9 Application of theKepert model 220
6.10 An exception tothe Kepert model: thesquareplanar geometry 222
6.11 Stereoisomerism 222
6.12 Two structures that are close in energy: thetrigonalbipyramid and
square-based pyramid 226
6.13 Shape and molecular dipole moments 228
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
x Contents
(cid:85)
(cid:82)
6.14 Carbon: an element with onlythree common geometries 232
Summary (cid:73) 233
Problems 234
(cid:87)
(cid:85)
7 Polyatomic molecules: bonding 236
(cid:72)
7.1 Introduction 236
(cid:43)
7.2 Molecular shape and the octet rule: the first row elements 236
7.3 Molecular shape and the octet rule: the heavier p-bl(cid:3)ock elements 243
7.4 Valencebond theory and hybridization 247
7.5 Hybridization and molecular shape inthe p-block(cid:73) 253
7.6 Hybridization:the (cid:2)-bonding framework 254
(cid:82)
7.7 Hybridization:the role of unhybridized atomic orbitals 255
7.8 Molecular orbital theory and polyatomic m(cid:3)olecules 257
7.9 How do theVB and MO pictures of thebonding inmethane compare? 259
Summary (cid:92) 261
Problems 261
(cid:87)
(cid:76)
8 Ions 263
(cid:86)
8.1 Introduction 263
(cid:85)
8.2 Electron densitymaps 265
8.3 Ionization energy (cid:72) 266
8.4 Trendsin ionization energies 267
(cid:89)
8.5 Electron affinity 273
8.6 Electrostatic interactions between ions 275
(cid:76)
8.7 Ionic lattices 277
8.8 The sodium chlori(cid:81)de (rock salt) structure type 279
8.9 Determining the stoichiometryof a compound from the solid state
(cid:56)
structure: NaCl 280
8.10 The caesium chloride structure type 282
(cid:3)
8.11 The fluorite (calcium fluoride) structure type 282
8.12 The rutile(titanium(IV) oxide) structure type 283
8.13 The structures of the polymorphs ofzinc(II) sulfide 285
8.14 Sizes ofions 286
8.15 Latticeenergy– a purely ionic model 290
8.16 Latticeenergy– experimentaldata 294
8.17 A comparisonof lattice energies determined by theBorn–Lande´
equation and the Born–Haber cycle 296
8.18 Polarization ofions 297
8.19 Determining the Avogadro constant from an ionic lattice 297
Summary 298
Problems 299
9 Elements 301
9.1 Introduction 301
9.2 Close-packingof spheres 301
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
Contents xi
(cid:85)
(cid:82)
9.3 Simple cubicand body-centred cubic packing ofspheres 305
9.4 A summary of thesimilarities and differences between close-p(cid:73)acked
and non-close-packed arrangements 307
9.5 Crystalline and amorphous solids (cid:87) 308
9.6 Solid state structures ofthe group 18 elements 308
(cid:85)
9.7 Elementalsolids containingdiatomic molecules 309
9.8 Elementalmolecular solids in groups 15 and 16 (cid:72) 311
9.9 A molecular allotrope of carbon: C 314
60
9.10 Solids with infinite covalent structures (cid:43) 316
9.11 The structures of metallic elements at298K 321
(cid:3)
9.12 Metallic radius 324
9.13 Metallic bonding (cid:73) 324
Summary 328
Problems (cid:82) 328
(cid:3)
(cid:92)
10 Mass spectrometry 330
(cid:87)
10.1 Introduction 330
(cid:76)
10.2 Recording a mass spectrum 330
10.3 Isotope distributions (cid:86) 332
10.4 Fragmentation patterns 336
10.5 Casestudies (cid:85) 337
Summary 341
(cid:72)
Problems 342
(cid:89)
(cid:76)
11 Introduction to spectroscopy 344
(cid:81)
11.1 Whatissp(cid:56)ectroscopy? 344
11.2 The relationship between the electromagnetic spectrum and
spectros(cid:3)copic techniques 346
11.3 Timescales 347
11.4 The Beer–Lambert Law 348
11.5 Colorimetry 349
Summary 353
Problems 353
12 Vibrational androtational spectroscopies 356
12.1 Introduction 356
12.2 The vibration ofa diatomicmolecule 356
12.3 Infrared spectra of diatomic molecules 362
12.4 Infrared spectroscopy oftriatomic molecules 363
12.5 Vibrational degrees of freedom 366
12.6 The useof IR spectroscopy as an analytical tool 367
12.7 Deuteration:the effects on IR spectroscopic absorptions 376
12.8 Rotating molecules and momentsof inertia 378
(cid:72)
(cid:85)
(cid:76)
(cid:75)
(cid:86)
(cid:71)
xii Contents
(cid:85)
(cid:82)
12.9 Rotational spectroscopy of linear rigid rotor molecules 380
Summary (cid:73) 383
Problems 383
(cid:87)
(cid:85)
13 Electronicspectroscopy 387
(cid:72)
13.1 Introduction (cid:43) 387
13.2 Absorption ofultraviolet and visible light 387
(cid:3)
13.3 Electronic transitionsin the vacuum-UV 389
13.4 Choosing a solvent forUV–VIS spectroscopy (cid:73) 389
13.5 (cid:1)-Conjugation 390
13.6 The visibleregion of thespectrum (cid:82) 397
Summary 399
(cid:3)
Problems 400
(cid:92)
(cid:87)
14 NMR spectroscopy 401
(cid:76)
14.1 Introduction (cid:86) 401
14.2 Nuclear spinstates 401
14.3 Recording an NMR spectrum(cid:85) 402
14.4 Nuclei: resonance frequencies, isotope abundances and chemicalshift
(cid:72)
values 404
14.5 Choosing a solvent for(cid:89)NMRspectroscopy 407
14.6 Molecules with one environment 407
14.7 Molecules with more(cid:76)than one environment 408
14.8 1HNMR spectra: chemicalenvironments 411
(cid:81)
14.9 Nuclear spin–spincoupling between nuclei with I ¼1 414
2
Summary (cid:56) 425
Problems 426
(cid:3)
15 Reaction kinetics 428
15.1 Introduction 428
15.2 Rateequations: thedependenceof rate on concentration 432
15.3 Does a reaction show azero, first or second order dependence on A? 435
15.4 Rateequations for reactions with more than one reactant 441
15.5 Integratedrate equations 443
15.6 Radioactive decay 450
15.7 The dependenceof rate on temperature:the Arrhenius equation 453
15.8 Catalysisand autocatalysis 458
15.9 Reversible reactions 461
15.10 Elementary reactions and molecularity 463
15.11 Microscopic reaction mechanisms: unimolecular and bimolecular
elementary steps 465
15.12 Combining elementary steps into areaction mechanism 466
15.13 Proposing a mechanism consistent with experimental rate data 469