Table Of Contenthttp://researchcommons.waikato.ac.nz/ 
 
 
Research Commons at the University of Waikato 
 
Copyright Statement: 
The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 
The thesis may be consulted by you, provided you comply with the provisions of the 
Act and the following conditions of use:  
  Any use you make of these documents or images must be for research or private 
study purposes only, and you may not make them available to any other person.  
  Authors control the copyright of their thesis. You will recognise the author’s right 
to be identified as the author of the thesis, and due acknowledgement will be 
made to the author where appropriate.  
  You will obtain the author’s permission before publishing any material from the 
thesis.
CARBONATE ALTERATION OF THE SAMS 
CREEK GOLD DEPOSIT  
NW NELSON, NEW ZEALAND 
 
A THESIS SUBMITTED IN PARTIAL FULFILMENT  
OF THE REQUIREMENTS FOR THE DEGREE  
OF  
Masters of Science (Research) 
AT THE 
UNIVERSITY OF WAIKATO  
BY  
Ryan John Lee 
UNIVERSITY OF WAIKATO 
2016
Abstract 
Located near Upper Takaka, NW Nelson, the Sams Creek Gold Deposit is host to 
significant gold mineralisation, which has been extensively explored since being 
first discovered in 1974 by CRA exploration. The gold mineralisation, hosted 
largely within the Sams Creek Granite Dyke has since been the focus of continual 
ongoing exploration and research by various companies and academia. The dyke is 
a peralkaline microgranite, is up to 60 meters wide and has a strike length totalling 
7 kilometres. Multiple stages of hydrothermal alteration have affected the granite 
dyke which is host to a series of sheeted, stock work and irregular fracture veins. 
At the time of writing, Sams Creek is New Zealand’s largest undeveloped gold 
project. 
Despite extensive research and exploration, the origin of Au bearing fluids and 
hence classification of the deposit is still debated. Little is also known about the 
role of which the wide spread carbonate alteration has had during the genesis of this 
deposit. Siderite/ankerite (carbonate) veins are a common occurrence at Sams 
Creek, occurring in both the highly mineralised granite and seemingly unaltered 
metasedimentary rock, of which the Sams Creek Granite and various other mafic 
dykes intrude. 
This study presents a detailed paragenetic study of the multiple phases of carbonate 
alteration throughout the prospect. Trace element geochemistry for individual vein 
generations was obtained by in-situ analysis of the carbonate vein minerals using 
LA-ICP-MS. Oxygen and carbonate stable isotope ratios were also determined for 
many of the carbonate minerals.  
The carbonate alteration was found to be largely structurally controlled and coeval 
with the multiple stages of Au mineralisation and alteration. The veins were often 
comprised of multiple siderite and ankerite intergrowths, reflecting temporally 
distinct fluids of varying Ca/Fe/Mn/Mg concentrations. Whole vein geochemical 
analysis confirmed an overall ankerite composition, contrary to the previous reports 
of siderite only veins.  Major and trace element signatures showed geochemically 
distinct ankerite veins for each host rock. Notably, the geochemistry of the veins 
iii
indicates that the surrounding metasediments are an unlikely fluid source for the 
carbonate alteration. This has implications for models which suggest an orogenic 
fluid is responsible for the alteration.  The fluid likely received its trace element and 
isotopic signature from a high temperature, reduced and 18O-depleted fluid source, 
consistent with a fluid source that is not metamorphogenic. The carbonate minerals 
associated with the mineralisation and/or the dyke have a unique trace element 
signature in relation to carbonate of other lithologies.       
Overall, this study provides evidence that is in agreement with the Sams Creek 
Dyke being classified as an Intrusion Related Gold System. Further implications 
for  exploration  potential  are  the  distinctions  between  metamorphogenic  and 
hydrothermal carbonate minerals, which could be easily undertaken using pXRF 
based upon anomalous Mn and Mg contents.  
 
 
 
 
 
iv
Acknowledgements 
Firstly, a huge thanks to my chief supervisor Dr. Shaun Barker for the great support 
and wisdom throughout this project. I am also very grateful for the support of Paul 
Angus and MOD Resources, whom made this research possible by providing access 
to drill core, exploration data and facilities.   
A special thanks to Richard Jongens and Rose Turnbull for all of the knowledge 
and assistance provided, especially the long day spent out in the field. Also Mark 
McCulloch, Michael Southern and Bob Brathwaite for helping with this project.  
The NZ Branch of AusIMM have given me tremendous financial and professional 
support throughout my studies. In particular, through the G B O’Malley Medal, 
Jock Braithwaite Award and EET Scholarship. Also The University of Waikato for 
the Masters Research Scholarship and the other awards and contributions which I 
have received during my study. ARANZ Geo for providing me with and supporting 
my use of Leapfrog Geo software. I would also like to acknowledge support from 
the NZ Ministry of Business Innovation & Employment and GNS science.  
A big thanks to my fellow students of GHOSTED Research Group: Rosie Hughes, 
John Mering, Ben Andrew and Anna Eames. Also, the many technicians who 
helped me gather data; Annette Rodgers, Renat Radosinsky and Helen Turner.  
Finally, I would like to thank my Mum and dad, friends and family for all the 
support I have received during my time at university.  
iii
Table of Contents 
Abstract .................................................................................................................. iii 
Acknowledgements ................................................................................................ iii 
Table of Contents ................................................................................................... iii 
List of Figures ........................................................................................................ iii 
List of Tables ......................................................................................................... iii 
CHAPTER 1 INTRODUCTION ............................................................................. 1 
1.1  Overview ....................................................................................................... 1 
1.2  Study Objectives ........................................................................................... 3 
1.3  Deposit Models ............................................................................................. 4 
1.3.1  Intrusion related .................................................................................... 5 
1.3.1.1  Sams Creek – IRGS ...................................................................... 6 
1.3.1.2  IRGS and Carbonate Veins ........................................................... 7 
1.3.2  Orogenic ................................................................................................ 8 
1.3.2.1  Sams Creek –Orogenic/Metamorphic ........................................... 9 
1.3.3  Mineralising fluid Origin Debate .......................................................... 9 
1.4  Oxygen and Carbon stable isotopes ............................................................ 13 
1.4.1  Oxygen ................................................................................................ 14 
1.4.2  Carbon ................................................................................................. 15 
1.4.3  Stable isotopes of hydrothermal systems ............................................ 16 
1.5  Carbonate Trace Element Geochemistry .................................................... 17 
CHAPTER 2 GEOLOGICAL SETTING .............................................................. 21 
2.1  Regional Geology ....................................................................................... 21 
2.2  Deposit Geology ......................................................................................... 23 
2.2.1  Stratigraphy ......................................................................................... 28 
2.2.1.1  Metasediments............................................................................. 28 
2.2.1.2  Mafic Dykes ................................................................................ 33 
2.2.1.3  Lamprophyre ............................................................................... 33 
2.2.1.4  Hornfels ....................................................................................... 38 
2.2.1.5  Diorite ......................................................................................... 39 
2.2.2  Structure and Deformation .................................................................. 42 
iii
2.2.3  Mineralogy and geochemistry of the SCD ......................................... 46 
2.2.3.1  A-type classification .................................................................... 47 
CHAPTER 3 PREVIOUS EXPLORATION AND RESEARCH ......................... 49 
3.1  History of Mineral Exploration .................................................................. 49 
3.2  Academic Research .................................................................................... 52 
3.2.1  Timing of dyke emplacement and mineralisation .............................. 52 
3.3  Exploration Models .................................................................................... 54 
3.3.1  Deformation (folding) Model ............................................................. 54 
3.3.2  Faulting Model ................................................................................... 56 
3.3.3  IRGS Exploration Model .................................................................... 57 
CHAPTER 4 CARBONATE ALTERATION & PARAGENESIS ...................... 59 
4.1  Methods ...................................................................................................... 59 
4.2  Alteration and Mineralisation of the Sam’s Creek Dyke ........................... 60 
4.2.1  TYPE 1 Magnetite-Carbonate Alteration ........................................... 62 
4.2.2  TYPE 2 Quartz-Carbonate-Pyrite Alteration...................................... 63 
4.2.3  TYPE 3 Au-bearing Arsenopyrite Alteration & Mineralisation......... 64 
4.2.4  TYPE 4 Au-Bearing Base Metal Mineralisation ................................ 67 
4.2.5  TYPE 5 Au-Bearing Quartz Carbonate veins ..................................... 68 
4.3  Carbonate Alteration .................................................................................. 69 
4.3.1  Carbonate species control ................................................................... 70 
4.3.2  Carbonate species appearance ............................................................ 72 
4.4  Carbonate Paragenesis ............................................................................... 73 
4.4.1  Host rock carbonates .......................................................................... 74 
4.4.2  Sams Creek Granite Dyke Carbonates ............................................... 80 
4.4.2.1  TYPE 1 ........................................................................................ 80 
4.4.2.2  TYPE 2 ........................................................................................ 81 
4.4.2.3  TYPE 3 ........................................................................................ 82 
4.4.2.4  TYPE 4 ........................................................................................ 83 
4.4.2.5  TYPE 5 ........................................................................................ 84 
4.4.3  Lamprophyre Carbonates ................................................................... 84 
4.4.4  Diorite carbonate ................................................................................ 89 
4.4.5  Discussion ........................................................................................... 89 
iv
4.4.6  Conclusions ......................................................................................... 92 
CHAPTER 5 GEOCHEMISTRY .......................................................................... 97 
5.1  Introduction ................................................................................................. 97 
5.1.1  Exploration Drill Assays ..................................................................... 97 
5.2  Methods .................................................................................................... 100 
5.2.1  Introduction ....................................................................................... 100 
5.2.2  X-RAY FLUORESCENCE .............................................................. 100 
5.2.3  Stable Isotopes .................................................................................. 101 
5.2.4  Laser-ablation inductively coupled plasma mass spectrometry ........ 103 
5.2.4.1  LA-ICP-MS data reduction using Iolite® ................................. 106 
5.3  Carbonate Geochemistry........................................................................... 108 
5.3.1  XRF ................................................................................................... 108 
5.3.2  LA-ICP-MS ....................................................................................... 113 
5.3.2.1  Raw LA-ICP-MS data ............................................................... 113 
5.3.2.2  LA-ICP-MS Data Reduction ..................................................... 117 
5.3.2.3  Major Elements ......................................................................... 120 
5.3.2.4  Trace Elements .......................................................................... 125 
5.4  Stable Isotopes .......................................................................................... 136 
5.4.1  Introduction ....................................................................................... 136 
5.4.2  Results ............................................................................................... 138 
5.5  Conclusions ............................................................................................... 144 
CHAPTER 6 DISCUSSION ................................................................................ 147 
6.1  Introduction ............................................................................................... 147 
6.2  Carbonate Mineral Paragenesis ................................................................ 148 
6.3  Geochemistry ............................................................................................ 149 
6.3.1  Carbonate Species ............................................................................. 149 
6.3.2  LREE Depletion and HREE Enrichment .......................................... 149 
6.3.3  Carbonate Mineral Accessory REE Phases ....................................... 151 
6.3.4  Europium Anomaly ........................................................................... 152 
6.3.5  Source of the carbonate alteration ..................................................... 156 
6.3.5.1  Trace elements .......................................................................... 157 
6.3.5.2  Stable isotopes ........................................................................... 160 
v
Description:generations was obtained by in-situ analysis of the carbonate vein minerals using. LA-ICP-MS. Oxygen  1.3.1 Intrusion related. This newly defined class of gold deposit is now widely accepted as the geological  of the lamprophyre has been proven through petrography and geochemistry as well.