Table Of ContentEditedby
YahachiSaito
CarbonNanotubeand
RelatedFieldEmitters
Related Titles
Kim,DaeMann Hierold,C.(ed.)
IntroductoryQuantum CarbonNanotubeDevices
MechanicsforSemiconductor Properties,Modeling,Integrationand
Nanotechnology Applications
2008
2010
ISBN:978-3-527-31720-2
ISBN:978-3-527-40975-4
Tsimring,S.E.
Kru¨ger,Anke
ElectronBeamsandMicrowave
CarbonMaterialsand
VacuumElectronics
Nanotechnology
2006
2010
ISBN:978-0-470-04816-0
ISBN:978-3-527-31803-2
Oks,E.
Guldi,DirkM.,Mart´ın,Nazario.(eds.)
PlasmaCathodeElectron
CarbonNanotubesand
Sources
RelatedStructures
Physics,Technology,Applications
Synthesis,Characterization,
Functionalization,andApplications
2005
ISBN:978-3-527-40634-0
2010
ISBN:978-3-527-32406-4
Edited by Yahachi Saito
Carbon Nanotube and Related Field Emitters
Fundamentals and Applications
TheEditor AllbookspublishedbyWiley-VCHarecare-
fullyproduced.Nevertheless,authors,edi-
Prof.YahachiSaito tors,andpublisherdonotwarrantthein-
NagoyaUniversity formationcontainedinthesebooks,includ-
Dept.ofQuantumEngineering ingthisbook,tobefreeoferrors.Readers
Furo-cho,Chikusa-ku areadvisedtokeepinmindthatstatements,
Nagoya464-8603 data,illustrations,proceduraldetailsorother
Japan itemsmayinadvertentlybeinaccurate.
LibraryofCongressCardNo.:appliedfor
BritishLibraryCataloguing-in-Publication
Data
Acataloguerecordforthisbookisavailable
fromtheBritishLibrary.
Bibliographicinformationpublishedbythe
DeutscheNationalbibliothek
TheDeutscheNationalbibliothekliststhis
publicationintheDeutscheNationalbibli-
ografie;detailedbibliographicdataareavail-
ableontheInternetat
<http://dnb.d-nb.de>.
2010WILEY-VCHVerlagGmbH&Co.KGaA,
Boschstr.12,Weinheim
Allrightsreserved(includingthoseof
translationintootherlanguages).Nopart
ofthisbookmaybereproducedinany
form–byphotoprinting,microfilm,orany
othermeans–nortransmittedortranslated
intoamachinelanguagewithoutwritten
permissionfromthepublishers.Registered
names,trademarks,etc.usedinthisbook,
evenwhennotspecificallymarkedassuch,
arenottobeconsideredunprotectedbylaw.
CoverDesign Formgeber,Eppelheim
Typesetting LaserwordsPrivateLimited,
Chennai,India
PrintingandBinding StraussGmbH,
Mo¨rlenbach
PrintedintheFederalRepublicofGermany
Printedonacid-freepaper
ISBN:978-3-527-32734-8
V
Contents
Preface XVII
ListofContributors XIX
PartI PreparationandCharacterizationofCarbonNanotubes 1
1 StructuresandSynthesisofCarbonNanotubes 3
YahachiSaito
1.1 StructuresofCarbonNanotubes 3
1.1.1 Single-WallCNTs 3
1.1.2 MultiwallCNTs 6
1.1.3 Thin-WalledCNTs 7
1.2 SynthesisofCarbonNanotubes 7
1.2.1 ArcDischarge 7
1.2.2 ChemicalVaporDeposition 8
1.2.2.1 ThermalCVD 9
1.2.2.2 Plasma-EnhancedCVD 9
1.3 ElectricalandMechanicalPropertiesofCarbonNanotubes 10
1.3.1 ElectronicStructure 10
1.3.2 ElectricProperties 11
1.3.3 MechanicalProperties 12
1.3.4 Heat-TransportProperties 13
References 13
2 PreparationofCNTEmitters 15
YahachiSaito
2.1 Introduction 15
2.2 CNTPointEmitters 15
2.2.1 ManualAttachmentofaCNTBundle 15
2.2.2 MountingInsideanSEM 16
2.2.3 ElectrophoricandMagnetophoreticMethods 16
2.2.4 DirectGrowthontheApexofaTip 18
2.2.5 OtherMethods 19
CarbonNanotubeandRelatedFieldEmitters:FundamentalsandApplications.EditedbyYahachiSaito
Copyright2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim
ISBN:978-3-527-32734-8
VI Contents
2.3 CNTFilmEmitters 19
2.3.1 SprayCoating 19
2.3.2 ScreenPrinting 19
2.3.3 Electrophoresis 20
2.3.4 CVDMethod 20
References 21
3 PreparationofPatternedCNTEmitters 23
MarkMann,WilliamIrelandMilne,andKennethBohKhinTeo
3.1 Background 23
3.2 GrowthofCarbonNanotubesfromPatternedCatalysts 25
3.2.1 PatternedGrowthfromCatalystFilmEdges 25
3.2.2 PatternedGrowthfromCatalystThinFilmsonaDiffusionBarrier 27
3.3 SingleNanotubeGrowth – RequirementsandUniformity 28
3.4 NanotubeGrowthwithoutSurfaceCarbon 32
3.4.1 AnalysisofSubstrateSurfacesExposedtothePlasma 32
3.4.2 AnalysisofSubstrateSurfacesShieldedfromthePlasma 37
3.5 Summary 38
Acknowledgments 40
References 40
PartII FieldEmissionfromCarbonNanotubes 41
4 FieldEmissionTheory 43
SeungwuHan
4.1 Fowler–NordheimTheory 43
4.2 FieldEmissionfromCNTs 44
4.2.1 ComputationalMethodstoCalculatetheEmissionCurrentsfrom
CarbonNanotubes 46
4.2.1.1 TheIntegrationofTime-DependentSchro¨dingerEquation 46
4.2.1.2 TransferMatrixMethod 47
4.2.1.3 OtherQuantumMechanicalMethods 49
4.2.1.4 SemiclassicalApproaches 49
4.2.2 Current–VoltageCharacteristicsofFieldEmissionCurrentsfrom
CarbonNanotubes 51
4.3 ConcludingRemarks 52
References 52
5 FieldEmissionfromGraphiticNanostructures 55
KazuyukiWatanabeandMasaakiAraidai
5.1 Introduction 55
5.2 MethodandModel 56
5.3 Results 57
5.3.1 GraphiticRibbons:HTerminationandFieldDirection 57
5.3.2 GrapheneArrays:InterlayerInteraction 61
Contents VII
5.3.3 GrapheneSheet:Defects 61
5.3.4 DiamondSurfaces:Impurities 62
5.4 Conclusion 64
Acknowledgments 64
References 65
6 TheOpticalPerformanceofCarbonNanotubeFieldEmitters 67
NielsdeJonge
6.1 Introduction 67
6.2 MakinganElectronSourcefromanIndividualCarbonNanotube 68
6.3 TheEmissionProcess 69
6.3.1 TheFowler–NordheimModel 69
6.3.2 MeasurementoftheFowler–NordheimPlot 70
6.3.3 TheEnergySpread 71
6.3.4 MeasurementofEnergySpectra 72
6.3.5 ComparingtheMeasuredTunnelingParameterwithTheory 74
6.3.6 DeterminingtheWorkFunction 74
6.4 TheBrightness 74
6.4.1 MeasuringtheBrightness 74
6.4.2 NewModelfortheBrightness 75
6.4.3 DiscussionoftheNewModel 76
6.4.4 TheTotalFigureofMeritforCarbonNanotubeElectronSources 77
6.5 Conclusions 78
Acknowledgments 78
References 78
7 HeatGenerationandLossesinCarbonNanotubesduringField
Emission 81
StephenT.Purcell,PascalVincent,andAnthonyAyari
7.1 Introduction 81
7.2 HeatDiffusionEquationforNanotubes 83
7.3 Simulations 85
7.4 Experiments 88
7.5 Conclusion 92
References 92
8 FieldEmissionMicroscopyofMultiwallCNTs 95
YahachiSaito
8.1 Introduction 95
8.2 FEMofCarbonNanotubes 96
8.2.1 FEMMeasurement 96
8.2.2 MWNTswithCleanSurfaces 97
8.2.3 FEMPatternsDependingonTipRadius 98
8.3 FieldEmissionfromAdsorbatesonanMWNT 99
8.3.1 Molecules 99
VIII Contents
8.3.1.1 Hydrogen 99
8.3.1.2 Nitrogen 99
8.3.1.3 Oxygen 101
8.3.1.4 CarbonMonoxide 101
8.3.1.5 CarbonDioxide 101
8.3.1.6 Methane 102
8.3.1.7 ComparisonwithRelatedTheoreticalStudies 103
8.3.2 AluminumClusters 103
8.4 ResolutioninFEMandPossibleObservationofAtomicDetail 105
8.5 ConcludingRemarks 106
References 107
9 InsituTransmissionElectronMicroscopyofCNTEmitters 109
KojiAsakaandYahachiSaito
9.1 Introduction 109
9.2 DegradationandFailureofNanotubesatLargeEmissionCurrent
Conditions 110
9.3 EffectofTipStructureofNanotubesonFieldEmission 112
9.4 RelationshipbetweenFieldEmissionandGapWidth 113
9.5 OtherStudiesbyInsituTEMofCNTEmitters 114
References 116
10 FieldEmissionfromSingle-WallNanotubes 119
KennethA.Dean
10.1 Introduction 119
10.2 Single-WallNanotubesandFieldEmission 119
10.3 MeasuringthePropertiesofaSingleSWNT 120
10.4 FieldEmissionfromaCleanSWNTSurface 121
10.4.1 CleanSWNTFieldEmissionMicroscopeImages 122
10.4.2 CleanSWNTI–Vs 124
10.4.3 ThermalFieldEmission 126
10.4.4 HighCurrentandFieldEvaporation 128
10.4.5 AnomalousHigh-TemperatureBehavior 130
10.5 SWNT-AdsorbateFieldEmission 131
10.5.1 FieldEmissionMicroscopy 131
10.5.2 ElectronEnergyDistributions 133
10.5.3 CurrentSaturationandField-Emission-InducedSurface
Cleaning 134
10.6 FieldEmissionStability 136
10.6.1 CurrentFluctuation 137
10.6.2 CurrentDegradation 137
10.7 Conclusions 140
References 140
Contents IX
11 SimulatedElectricFieldinanArrayofCNTs 143
HidekazuMurataandHiroshiShimoyama
11.1 Introduction 143
11.2 SimulationMethod 143
11.3 ComputationalModel 145
11.4 FieldAnalysisfortheVA-CNTSystem 148
11.4.1 DependenceofNumericalAccuracyinElectricFieldCalculationonthe
DiscretizationNumber 148
11.4.2 Appropriatenessof9×9CNTComputationalModel 149
11.5 FieldAnalysisforVA-CNTSystemwithUniformLength 150
11.5.1 DependenceoftheElectricFieldStrengthattheCNTApexon
GeometricalParametersoftheCNTs 152
11.5.2 UniversalCurve 153
11.6 FieldAnalysisforVA-CNTSystemwithNonuniformLength 154
11.7 EffectofShapeofCNTApex 157
11.8 EffectofCNTLength 158
11.9 ElectricFieldAnalysisofNetwork-StructuredCNTSystem 160
References 162
12 SurfaceCoatingofCNTEmitters 163
YoshikazuNakayama
12.1 EffectsofSurfaceCoatingofCNTEmitters 164
12.1.1 ParametersDeterminingFieldEmissionProperties 164
12.1.2 LoweringofthePotentialBarrier 165
12.1.2.1 CoatingLayerwithLowWorkFunction 165
12.1.2.2 CoatingLayerwithWideBandGap 165
12.1.3 StabilizationofEmissionCurrent 167
12.2 FieldEmissionfromIndividualCNTCoatedwithBN 167
12.3 FieldEmissionfromBrush-LikeCNTsCoatedwithMgO 169
12.4 FieldEmissionfromBrush-LikeCNTsCoatedwithTiC 172
References 174
PartIII FieldEmissionfromRelatedNanomaterials 177
13 GraphiteNanoneedleFieldEmitter 179
TakahiroMatsumotoandHidenoriMimura
13.1 Introduction 179
13.2 FabricationandStructureCharacterization 179
13.3 FieldEmissionCharacteristics 181
13.4 Applications 182
13.4.1 PulseX-rayGenerationandTime-ResolvedX-rayRadiography 182
13.4.2 ConstructionofaCompactFEScanningElectronMicroscope
(FE-SEM)System 184
13.4.3 StabilizationoftheFE-SEMSystembyThermalFieldOperation 186
13.5 StochasticModel 188
X Contents
13.6 Summary 191
References 191
14 FieldEmissionfromCarbonNanowalls 193
MasaruHoriandMineoHiramatsu
14.1 GeneralDescriptionofCarbonNanowalls 193
14.2 SynthesisofCarbonNanowallFilms 194
14.2.1 SynthesisTechniques 194
14.2.2 Characterization 195
14.2.3 MorphologyofCarbonNanowallFilm 197
14.3 FieldEmissionPropertiesofCarbonNanowalls 199
14.4 SurfaceTreatmentforImprovementofFieldEmissionProperties 200
14.4.1 MetalNanoparticleDeposition 200
14.4.2 N PlasmaTreatment 202
2
14.5 ProspectsfortheFuture 203
References 203
15 FlexibleFieldEmitters:CarbonNanofibers 205
MasakiTanemuraandShu-PingLau
15.1 Introduction 205
15.2 RoomTemperatureFabricationofIon-InducedCarbon
Nanofibers 205
15.3 ApplicationstoFieldElectronEmissionSources 208
15.3.1 Current–Voltage(I–V)Characteristics 208
15.3.2 Lifetime 209
15.3.3 FlexibleCNFCathode 211
15.4 Summary 215
References 215
16 DiamondEmitters 219
ShozoKono
16.1 FieldEmissionfromIntrinsicorp-TypeDiamonds 219
16.2 FieldEmissionfromNitrogen-Dopedn-TypeDiamonds 220
16.3 FieldEmissionfromPhosphorus-Dopedn-TypeDiamonds 221
16.4 ElectronEmissionfrompn-JunctionDiamondDiodes 225
16.5 OtherApplicationofDiamondEmitter 228
16.5.1 DiamondCold-DischargeCathodesforCold-CathodeFluorescent
Lamps 228
16.5.2 Low-TemperatureThermionicEmittersBasedonN-Incorporated
DiamondFilms 229
References 229
17 ZnONanowiresandSiNanowires 231
BaoqingZengandZhiFengRen
17.1 Introduction 231