Table Of ContentThis page intentionally left blank
REFERENCE PAGES
ALGEBRA GEOMETRY
e Arithmetic Operations Geometric Formulas
c
n
ere a(cid:2)b(cid:3)c(cid:3)(cid:2)ab(cid:3)ac a (cid:3) c (cid:2) ad(cid:3)bc Formulas for area A, circumference C, and volume V:
ef b d bd
p for r a(cid:3)c a c ab a d ad ATri(cid:2)an12gbleh C Air(cid:2)cle(cid:4)r2 ASe(cid:2)cto12rr o2(cid:5)f Circle
e (cid:2) (cid:3) (cid:2) (cid:10) (cid:2)
nd ke b b b dc b c bc (cid:2)12ab sin (cid:5) C(cid:2)2(cid:4)r s(cid:2)r(cid:5) (cid:2)(cid:5) in radians(cid:3)
a
e
her Exponents and Radicals a h r s
ut xm ¨ r
C xmxn(cid:2)xm(cid:3)n (cid:2)xm(cid:2)n b ¨
xn r
1
(cid:2)xm(cid:3)n(cid:2)xmn x(cid:2)n(cid:2)
xn
(cid:4) (cid:5)
x n xn Sphere Cylinder Cone
(cid:2)xy(cid:3)n(cid:2)xnyn (cid:2)
y yn V(cid:2)4(cid:4)r3 V(cid:2)(cid:4)r2h V(cid:2)1(cid:4)r2h
3 3
x1(cid:8)n(cid:2)snx xm(cid:8)n(cid:2)snxm(cid:2)(snx)m A(cid:2)4(cid:4)r2 A(cid:2)(cid:4)rsr2(cid:3)h2
(cid:7)
snxy(cid:2)snxsny n x (cid:2) snx r
y sny
r h
h
Factoring Special Polynomials
r
x2(cid:2)y2(cid:2)(cid:2)x(cid:3)y(cid:3)(cid:2)x(cid:2)y(cid:3)
x3(cid:3)y3(cid:2)(cid:2)x(cid:3)y(cid:3)(cid:2)x2(cid:2)xy(cid:3)y2(cid:3)
x3(cid:2)y3(cid:2)(cid:2)x(cid:2)y(cid:3)(cid:2)x2(cid:3)xy(cid:3)y2(cid:3)
Distance and Midpoint Formulas
Binomial Theorem
Distance between P(cid:2)x, y(cid:3)and P(cid:2)x, y(cid:3):
1 1 1 2 2 2
(cid:2)x(cid:3)y(cid:3)2(cid:2)x2(cid:3)2xy(cid:3)y2 (cid:2)x(cid:2)y(cid:3)2(cid:2)x2(cid:2)2xy(cid:3)y2
(cid:2)x(cid:3)y(cid:3)3(cid:2)x3(cid:3)3x2y(cid:3)3xy2(cid:3)y3 d(cid:2)s(cid:2)x2(cid:2)x1(cid:3)2(cid:3)(cid:2)y2(cid:2)y1(cid:3)2
(cid:2)x(cid:2)y(cid:3)3(cid:2)x3(cid:2)3x2y(cid:3)3xy2(cid:2)y3 (cid:4) (cid:5)
(cid:2)x(cid:3)y(cid:3)n(cid:2)xn(cid:3)nxn(cid:2)1y(cid:3) n(cid:2)n(cid:2)1(cid:3) xn(cid:2)2y2 Midpoint of P1P2: x1(cid:3)2 x2, y1(cid:3)2 y2
2
(cid:4) (cid:5)
n
(cid:3)(cid:9)(cid:9)(cid:9)(cid:3) xn(cid:2)kyk(cid:3)(cid:9)(cid:9)(cid:9)(cid:3)nxyn(cid:2)1(cid:3)yn
k
(cid:4) (cid:5) Lines
n n(cid:2)n(cid:2)1(cid:3)(cid:9)(cid:9)(cid:9)(cid:2)n (cid:2)k(cid:3)1(cid:3)
where (cid:2) Slope of line through P(cid:2)x, y(cid:3)and P(cid:2)x, y(cid:3):
k 1(cid:2)2(cid:2)3(cid:2)(cid:9)(cid:9)(cid:9)(cid:2)k 1 1 1 2 2 2
y (cid:2)y
Quadratic Formula m(cid:2) 2 1
x (cid:2)x
2 1
(cid:2)b(cid:8)sb2(cid:2)4ac
If ax2(cid:3)bx(cid:3)c(cid:2)0, then x(cid:2) .
2a Point-slope equation of line through P(cid:2)x, y(cid:3)with slope m:
1 1 1
Inequalities and Absolute Value y(cid:2)y (cid:2)m(cid:2)x(cid:2)x(cid:3)
1 1
If a(cid:6)band b(cid:6)c, then a(cid:6)c.
Slope-intercept equation of line with slope mand y-intercept b:
If a(cid:6)b, then a(cid:3)c(cid:6)b(cid:3)c.
If a(cid:6)band c(cid:7)0, then ca(cid:6)cb. y(cid:2)mx(cid:3)b
If a(cid:6)band c(cid:6)0, then ca(cid:7)cb.
If a(cid:7)0, then
Circles
(cid:6)x(cid:6)(cid:2)a means x(cid:2)a or x(cid:2)(cid:2)a
(cid:6)x(cid:6)(cid:6)a means (cid:2)a(cid:6)x(cid:6)a Equation of the circle with center (cid:2)h, k(cid:3)and radius r:
(cid:6)x(cid:6)(cid:7)a means x(cid:7)a or x(cid:6)(cid:2)a (cid:2)x(cid:2)h(cid:3)2(cid:3)(cid:2)y(cid:2)k(cid:3)2(cid:2)r2
1
REFERENCE PAGES
TRIGONOMETRY
Angle Measurement Fundamental Identities
(cid:4) radians(cid:2)180(cid:11) 1 1
s csc (cid:5)(cid:2) sec (cid:5)(cid:2)
r sin (cid:5) cos (cid:5)
(cid:4) 180(cid:11)
1(cid:11)(cid:2) rad 1 rad(cid:2) ¨
180 (cid:4) sin (cid:5) cos (cid:5)
s(cid:2)r(cid:5) r tan (cid:5)(cid:2) cos (cid:5) cot (cid:5)(cid:2) sin (cid:5)
(cid:2)(cid:5) in radians(cid:3) cot (cid:5)(cid:2) 1 sin2(cid:5)(cid:3)cos2(cid:5)(cid:2)1
tan (cid:5)
Right Angle Trigonometry 1(cid:3)tan2(cid:5)(cid:2)sec2(cid:5) 1(cid:3)cot2(cid:5)(cid:2)csc2(cid:5)
opp hyp
sin (cid:5)(cid:2) hyp csc (cid:5)(cid:2) opp hyp sin(cid:2)(cid:2)(cid:5)(cid:3)(cid:2)(cid:2)sin (cid:5) cos(cid:2)(cid:2)(cid:5)(cid:3)(cid:2)cos (cid:5)
opp (cid:4) (cid:5)
adj hyp (cid:4)
cos (cid:5)(cid:2) sec (cid:5)(cid:2) ¨ tan(cid:2)(cid:2)(cid:5)(cid:3)(cid:2)(cid:2)tan (cid:5) sin (cid:2)(cid:5) (cid:2)cos (cid:5)
hyp adj 2
adj (cid:4) (cid:5) (cid:4) (cid:5)
opp adj
tan (cid:5)(cid:2) cot (cid:5)(cid:2) (cid:4) (cid:4)
adj opp cos (cid:2)(cid:5) (cid:2)sin (cid:5) tan (cid:2)(cid:5) (cid:2)cot (cid:5)
2 2
Trigonometric Functions
The Law of Sines B
sin (cid:5)(cid:2) y csc (cid:5)(cid:2) r y
r y sin A (cid:2) sin B (cid:2) sin C a
(x, y) a b c
x r
cos (cid:5)(cid:2) sec (cid:5)(cid:2) r C
r x c
tan (cid:5)(cid:2) xy cot (cid:5)(cid:2) yx ¨ x The Law of Cosines b
a2(cid:2)b2(cid:3)c2(cid:2)2bc cos A
Graphs of Trigonometric Functions b2(cid:2)a2(cid:3)c2(cid:2)2ac cos B
y y y y=tan x c2(cid:2)a2(cid:3)b2(cid:2)2ab cos C A
y=sin x y=cos x
1 1
π 2π 2π Addition and Subtraction Formulas
x π 2πx π x sin(cid:2)x(cid:3)y(cid:3)(cid:2)sin x cos y(cid:3)cos x sin y
_1 _1 sin(cid:2)x(cid:2)y(cid:3)(cid:2)sin x cos y(cid:2)cos x sin y
cos(cid:2)x(cid:3)y(cid:3)(cid:2)cos x cos y(cid:2)sin x sin y
y y=csc x y y=sec x y y=cot x cos(cid:2)x(cid:2)y(cid:3)(cid:2)cos x cos y(cid:3)sin x sin y
tan x(cid:3)tan y
tan(cid:2)x(cid:3)y(cid:3)(cid:2)
1 1 1(cid:2)tan x tan y
tan x(cid:2)tan y
π 2πx π 2πx π 2πx tan(cid:2)x(cid:2)y(cid:3)(cid:2) 1(cid:3)tan x tan y
_1 _1
Double-Angle Formulas
sin 2x(cid:2)2 sin x cos x
Trigonometric Functions of Important Angles cos 2x(cid:2)cos2x(cid:2)sin2x(cid:2)2 cos2x(cid:2)1(cid:2)1(cid:2)2 sin2x
(cid:5) radians sin (cid:5) cos (cid:5) tan (cid:5) 2 tan x
tan 2x(cid:2)
0(cid:11) 0 0 1 0 1(cid:2)tan2x
30(cid:11) (cid:4)(cid:8)6 1(cid:8)2 s3(cid:8)2 s3(cid:8)3
45(cid:11) (cid:4)(cid:8)4 s2(cid:8)2 s2(cid:8)2 1 Half-Angle Formulas
60(cid:11) (cid:4)(cid:8)3 s3(cid:8)2 1(cid:8)2 s3 1(cid:2)cos 2x 1(cid:3)cos 2x
90(cid:11) (cid:4)(cid:8)2 1 0 — sin2x(cid:2) 2 cos2x(cid:2) 2
2
Calculus
Concepts and Contexts | 4e
Calculus and the Architecture of Curves
The cover photograph shows the
DZ Bank in Berlin, designed and
built 1995–2001 by Frank Gehry
and Associates. The interior atrium
is dominated by a curvaceous four-
story stainless steel sculptural ehry
G
shell that suggests a prehistoric O.
nk
cferereantucree s apnadc eh.ouses a central con- esy of Fra
The highly complex structures urt
o
C
that Frank Gehry designs would be
impossible to build without the computer.
The CATIA software that his archi-
tects and engineers use to produce the
computer models is based on principles of hry
e
calculus—fitting curves by matching tangent O. G
lines, making sure the curvature isn’t too nk
a
large, and controlling parametric surfaces. of Fr
“Consequently,” says Gehry, “we have a lot esy
urt
of freedom. I can play with shapes.” Co
The process starts with Gehry’s initial
sketches, which are translated into a succes-
sion of physical models. (Hundreds of different
physical models were constructed during the design
of the building, first with basic wooden blocks and then
evolving into more sculptural forms.) Then an engineer
uses a digitizer to record the coordinates of a series of
points on a physical model. The digitized points are fed
into a computer and the CATIA software is used to link hry
e
G
these points with smooth curves. (It joins curves so that O.
nk
their tangent lines coincide; you can use the same idea to a
design the shapes of letters in the Laboratory Project on esy of Fr
page 208 of this book.) The architect has considerable free- urt
o
dom in creating these curves, guided by displays of the C
curve, its derivative, and its curvature. Then the curves are
hry
e
G
O.
nk
a
of Fr
esy
urt
o
C
hry
e
G
O.
nk
a
of Fr
esy
urt
o
C
m
o
e.c
hiv
arc
er
ay
m
as
m
o
h
t
connected to each other by a parametric surface, The CATIA program was developed in France
and again the architect can do so in many possible by Dassault Systèmes, originally for designing
ways with the guidance of displays of the geometric airplanes, and was subsequently employed in
characteristics of the surface. the automotive industry. Frank Gehry, because of
The CATIA model is then used to produce his complex sculptural shapes, is the first to use
another physical model, which, in turn, suggests it in architecture. It helps him answer his ques-
modifications and leads to additional computer tion, “How wiggly can you get and still make a
and physical models. building?”
Calculus
Concepts and Contexts | 4e
James Stewart
McMaster University
and
University of Toronto
Australia . Brazil . Japan . Korea . Mexico . Singapore . Spain . UnitedKingdom . United States
Calculus: Concepts and Contexts, Fourth Edition © 2010, 2005Brooks/Cole, Cengage Learning
James Stewart
ALL RIGHTS RESERVED. No part of this work covered by the copy-
right herein may be reproduced, transmitted, stored, or used in any
form or by any means graphic, electronic, or mechanical, including
Publisher: Richard Stratton
but not limited to photocopying, recording, scanning, digitizing,
Senior DevelopmentalEditor: Jay Campbell taping, Web distribution, information networks, or information
Associate Developmental Editor: Jeannine Lawless storage and retrieval systems, except as permitted under Section
107or 108of the 1976United States Copyright Act, without the
Editorial Assistant: Elizabeth Neustaetter
prior written permission of the publisher.
Media Editor: Peter Galuardi
Senior MarketingManager: Jennifer Jones
For product information and technology assistance, contact us at
MarketingAssistant: Angela Kim Cengage Learning Customer & Sales Support, 1-800-354-9706
MarketingCommunicationsManager: Mary Anne Payumo
For permission to use material from this text or product,
Senior ProjectManager,EditorialProduction: submit all requests online at www.cengage.com/permissions.
Cheryll Linthicum Further permissions questions can be e-mailed to
[email protected].
Creative Director: Rob Hugel
Senior ArtDirector: Vernon Boes
Library of Congress Control Number: 2008941257
Senior PrintBuyer: Becky Cross
ISBN-13: 978-0-495-55742-5
PermissionsEditor: Bob Kauser
ISBN-10: 0-495-55742-0
ProductionService: TECHarts
TextDesigner: Jeanne Calabrese
Brooks/Cole
PhotoResearcher: Nina Smith
10Davis Drive
CopyEditor: Kathi Townes Belmont, CA 94002-3098
Illustrator: Brian Betsill USA
CoverDesigner: Irene Morris
Cengage Learning is a leading provider of customized learning
CoverImage and page iv: thomasmayerarchive.com
solutions with office locations around the globe, including Singa-
Compositor: Stephanie Kuhns, TECHarts pore, the United Kingdom, Australia, Mexico, Brazil, and Japan.
Locate your local office at www.cengage.com/international.
Cengage Learning products are represented in Canada by
Nelson Education, Ltd.
To learn more about Brooks/Cole, visit
www.cengage.com/brookscole
Purchase any of our products at your local college store or at our
preferred online store www.ichapters.com.
Trademarks
Derive is a registered trademark of Soft Warehouse, Inc.
Maple is a registered trademark of Waterloo Maple, Inc.
Mathematica is a registered trademark of Wolfram Research, Inc.
Tools for Enriching is a trademark used herein under license.
9
Printed in Canada T0
3
1 2 3 4 5 6 7 13 12 11 10 09 K0