Table Of Contentsustainability
Article
Building Energy Opportunity with a Supply Chain
Based on the Local Fuel-Producing Capacity
FlavioAndreoliBonazzi1,SirioR.S.Cividino2,IlariaZambon3,* ID,EnricoMariaMosconi4 ID
andStefanoPoponi3,5 ID
1 EPICOBiomassLtd,VialeDegliAmmiragli67,I-00136Rome,Italy;[email protected]
2 DepartmentofAgriculture,UniversityofUdine,ViadelleScienze206,I-33100Udine,Italy;
[email protected]
3 DepartmentofAgriculturalandForestrySciences(DAFNE),TusciaUniversity,ViaSanCamillodeLellis,
I-01100Viterbo,Italy;[email protected]
4 DepartmentofEconomics,Engineering,SocietyandBusinessOrganization,TusciaUniversity,
ViadelParadiso47,I-01100Viterbo,Italy;[email protected]
5 FacultyofEconomics,NiccolòCusanoUniversity,ViaDonCarloGnocchi,3,I-00166Rome,Italy
* Correspondence:[email protected]
(cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1)
(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)
Received:20May2018;Accepted:21June2018;Published:22June2018
Abstract: Studyingandmodelingplantsforproducingelectricpowerobtainedfromvegetalwood
cellulose biomass can become an opportunity for building a supply chain based on the local
fuel-producingcapacity.Focusingonenergy-producingtechnologies,suchaspyrolysisorgasification,
thepresentworkassessedtheamountofvegetalbiomassthatmaybeusedasfuel,bothintermsof
actualavailabilityandsupplyprice,intheProvinceofRieti(Italy). Theaimistodrawupasupply
planthathasanintrinsicrelationshipwiththelocalarea.Theresultsconfirmedaproductionof24MW
ofprojectthermalpowerand4MWofprojectelectricpower. Theensuingplantwasthenstudied
following current norms about renewable energy, environmental consistency, and atmospheric
emissions. Aneconomicanalysisofthecostinvestmentwasalsocarriedout,wherethetotalreturn
isapproximatelyof19%. Theresultsexposedthatplantcostsareacceptableonlyifshort-supply
chain fuel is purchased. The costs of generating energy from agroforestry biomass are certainly
higher;however,theplantrepresentsasignificantterritorialopportunity,especiallyfortheeconomic
sectors of agriculture and forestry. The employment effect plays a central role in the concession
process,whichisrelevantfortheinteractionamongrenewableenergyproductionandagriculture.
Theenvironmentalimpactofabiomassplantfromagroforestryresiduescanbemeasuredexclusively
onatmosphericemissions: theplantmustbeplacedinindustrialareaswithoutanylandscapeor
naturalisticvalue.
Keywords: supplychain;biomass;energy;sustainabledevelopment
1. Introduction
The current energy guidelines requested by the European Community encourage the use of
renewableresourcesasapotentialalternativesupplytotraditionalfossilfuels[1–4]. Bysupporting
sustainabledevelopment,energyneedscanbemetthroughtheconversionofagroforestrybiomass
intobiofuels[5–10]. Therefore,arequirementforestablishingsustainableproductionandconsumption
chainsatthelocallevelemerges[11,12]. Accurateplanningbecomescrucialtoensuretheplanningand
establishmentofagroenergydistricts[2,13–15].Suchaprocedurerequiresacarefulanalysisofpotential
energycapitalsthatcanbeobtainedineachterritorialarea[9,16]. Itshouldbereminiscedthatthe
primarysectorinEurope(andmorespecificallyinItaly)hassufferedaseveredeclineinrecentdecades,
Sustainability2018,10,2140;doi:10.3390/su10072140 www.mdpi.com/journal/sustainability
Sustainability2018,10,2140 2of15
e.g.,thelossofemploymentandanincreaseofabandonedruralareas[16–19]. Byre-establishingrural
landscapesandpromotingmultifunctionalagriculture,agroenergydistrictsariseascompetitiveand
sustainablecertaintiesforagriculturalcontexts[2,9,20].
Inrecentdecades,thetraditionaluseofbiomassforthepapermarkethasbeenaccompaniedby
increasingdemandintheenergysector[21–24]. Theproductionofbiomassfortheenergyindustry
isassociatedwithspecificsilviculture[2,7,25,26],whichisveryoftenlinkedtoartificialreforestation
ratherthantothedevelopmentofnaturalforests[12]. Inrecentyears,manystudieshavefocusedon
bioenergyplants[2,6–8,24,27–29]. However,veryoften,onlyvariousaspectsareconsidered,e.g.,with
engineeringorenergyperformancenature,withoutunderstandingtheimpactthatabioenergyplant
cangenerateinthesurroundingarea. Regardingbioenergy,itisindispensabletoevaluatethe(natural)
resourcesavailableinthegivenregionguaranteeinganadequatedegreeofenvironmentalsustainability.
Therecoveryofbiomassforenergypurposesisconditionedbymanylimitingfactors,e.g.,(i)difficulties
inrecovering(alsoresidual)biomassandmechanizingharvesting;(ii)theabsenceofanindustrial
dimension;(iii)limitsimposedbyforestmanagementrules,whichinsomecasespreventtherecovery
ofthetrash,and(iv)procurementcosts[2,5,30,31]. Inthepresentstudy,thefirstphaseistoestimate
the potential biomass that a definite area can assure, and therefore enable a suitable sustainable
development. Then,theeconomicsustainabilityofthebiomassplant,withitstechnicalcharacteristics
andperformance,wascalculated. Throughasupplychainbasedonlocalfuelproductioncapacity,
innovativeopportunitiescanbebuiltbyreusingbiomass,whichcanbeconsideredagriculturaland
forestrywaste,andprovidinglong-termjobopportunitiesthroughareliableandefficientbioenergy
plant(bothineconomicandenergyterms).
TherearetwostatisticalsourcesinItalythatprovideinformationonforests: TheNationalForest
Inventory(NFI)andNationalInstituteofStatistics(ISTAT).TheforestheritageoftheLazioregion
accountsforabout5%oftheentirenationalforestryinItaly. ThemostaffectedareasaretheApennine
and pre-Apennine ridge in Italy, which are mainly located in the marginal and internal areas of
hillsandmountains[2]. AsexposedbytherecentEnergyPlanoftheLazioRegionadoptedin2017,
thequantitiesofbiomass(suchasforestpruning)availableintheprovincesofRieti,Viterbo,andin
the northern area of Rome are mostly adequate to establish a local supply chain based on the use
of biomass to produce energy. About 25% of the forest cover is in the province of Rieti. Owing
to the incidence of rich aquifers at minimum depths [32,33] and the current crisis of traditional
crops[14,34,35],thesecontextsintheLazioregionownmodeltopographiesfordevelopingenergy
crops,andthusagroenergydistricts[2,36,37].
Italyhasadoptedmanystrategiestowardsustainabledevelopmentinrecentyears,includingthe
useofrenewableresources,e.g.,biomass[11].Withtheaimofprotectingthesurroundingenvironment,
the plant designed for the present work aims to use the most efficient technologies available by
examiningtheexperiencesofsmall-scalelocalinstallations[38,39]. Thepresentworkwasbasedon
aninnovativeframeworkbasedonthedesignofacompleteplantfortheenergyproductionwitha
netpoweroutputof4MWe,whichessentiallyconsistsofacombustionfurnacewithamobilegrid
integratedbyasuperheatedsteamRankinecycle(Hirncycle),atanindustrialsiteofthemunicipalityof
Rieti(Italy).Theproposedplantispoweredbycombustiblebiomass(definedbytheDPCM(Ministerial
Decree)March8,2002andmodifiedbytheDPCM08/10/2004)withreferencetobiomasswastefrom
agricultural,forestry,forestryandagro-industrialactivities,andenergycrops(shortrotationforestry)
treatedexclusivelywithmechanicalsystems. Thechiefaimistoofferacompleteinvestigationstarting
from a geographical analysis of the context, as it is often underestimated in earlier studies [16,20],
movingtoengineering, technical, economic, andenvironmentalmeasures[12,15,27,28]sothatthe
plantisreallyfunctionable. Astrongfocuswasprovidedontwokeythemesfortheplant: (i)biomass
availabilityinthelocalcontexts;and(ii)afeasibilitystudy. Furtherobjectivesemergesuchasthat
(i)thefluegastreatmentsystemfortheabatementofpollutantscomplieswiththemostrestrictive
requirementsimposedbytheregulationsinforce;that(ii)theashanddustextractedaresubjectedto
aninertizationprocessandthat(iii)allofthewasteandmeteoricwateriscollectedandconveyedto
Sustainability2018,10,2140 3of15
Sustainability 2018, 10, x FOR PEER REVIEW 3 of 15
theconsortiumpurifier. Particularly,safeguardingthesurroundingenvironmentasfarastheemission
of ppolalnlut twanatss diesscigonnecde runseidng, tthhee pmloanstt ewffaicsiednet stiegcnhendoluogsiiensg wthiteh mthoes otbejfefictciiveen toft ercehdnuocilnogg ipeoslwluittahnttsh e
objeacntdiv ceoomfprleydinugci wngitph othlleu tmanotsst arensdtrcicotmivpe lryeiqnugirwemithentthse immpoostserdes btryi ctthiev ecurerrqeunitr elemgeisnlatstioimn.p osedbythe
currentLleagsitslyla, tpiorenv.ious works habitually focused on monothematic subjects, e.g., studying bioenergy
plLanatsst liyn, pterremviso oufs ewngoirnkeserhianbgi toura elnlyerfgoyc upseerdfoormnamnocen owtihthemouatt iwcesiugbhjiencgt st,hee.igr .s,osctuiod-eycionngobmioice nanedrg y
plaenntsviirnontemrmenstaol fimenpgaicntes e[r2in,6g–8o,2r4e,2n7e–r2g9y]. pTehrfeorermforaen, ctehew iptrheosuenttw peaipgehri npgritmheairrilyso dcieoa-les cwonitohm tihcreaen d
tasks with the aim of: (i) assessing the biomass potential from a sustainable perspective; (ii)
environmentalimpacts[2,6–8,24,27–29]. Therefore,thepresentpaperprimarilydealswiththreetasks
providing an economic accounting of an exemplary biomass plant in terms of its technical
with the aim of: (i) assessing the biomass potential from a sustainable perspective; (ii) providing
characteristics and performance; and (iii) evaluating social and environmental impacts.
aneconomicaccountingofanexemplarybiomassplantintermsofitstechnicalcharacteristicsand
performance;and(iii)evaluatingsocialandenvironmentalimpacts.
2. Materials and Methods
2. MaterialsandMethods
2.1. Regional Energy Plan and the Potential of Biomass in the Lazio Region
2.1. RegBioyn amleEannesr goyf PRleagnioannadl tCheouPnotceinl tRiaelsoolfuBtiioomn ansos. i6n5t6h eofL a1z7i oORcteogbioenr 2017 (published in the Official
Bulletin of the Lazio Region or BURL of 31 October 2017, No. 87, Suppl. Nos. 2, 3, and 4), the
BymeansofRegionalCouncilResolutionno. 656of17October2017(publishedintheOfficial
proposal for a “Regional Energy Plan” (P. E. R. Lazio) was adopted in the Lazio region. Biomasses
BulletinoftheLazioRegionorBURLof31October2017,No. 87,Suppl. Nos. 2,3,and4),theproposal
can assume a crucial role in this plan. The main types of biomasses are related in this Italian region
fora“RegionalEnergyPlan”(P.E.R.Lazio)wasadoptedintheLazioregion. Biomassescanassumea
to:
crucialroleinthisplan. ThemaintypesofbiomassesarerelatedinthisItalianregionto:
• agricultural and agro-industrial residues (grass, pruning, shells, pomace);
• agriculturalandagro-industrialresidues(grass,pruning,shells,pomace);
• forestry;
• • forfeesrtmrye;ntable residues (pigs, cattle, cattle, slaughter waste, organic fraction).
• fermentableresidues(pigs,cattle,cattle,slaughterwaste,organicfraction).
In the present work, data relating to the potential availability of biomass was obtained from
evIanlutahtieonpsr ecsoennttaiwneodr k,ind asetaverrealla tdinagtabtaosetsh: e(ip) ottehne tiaAltlaavs aiolfa bBiliiotymaosfsebsi oamboausst wagarsicuolbtutarianl,e d
fromagreov-ianlduuasttiorinals, fcoornetsatriny,e danidn fesremveernatlabdlea traebsaidseuse:s e(ix)cltuhdeinAgt ltahse oofrgBainoimc farsascetisona bforoumt amgruinciuclitpuarla l,
agrwo-aisntde;u s(tiri)i alt,hfeo rResetgriyo,naanl dWfearsmte enPtlaabnl, eersepseidciuaellsy exocf lutdhein gLathzieo orreggainoinc; fr(aiici)t iotnhef roInmstimtuuten icfoipr al
wasEtnev;i(riio)ntmheenRteagl iPornoatlecWtiaosnt eanPdla nR,eesesparecchia (lIlSyPoRfAth) eWLaaszteio Rreepgoiornt; ;a(niidi) (tihve) Itnhset idtuetteerfmoirnEantivoinr oonf mvietnalt al
Prorteeqcutieosntsa n(ed.gR.,e saebaoructh t(hISeP oRrAga)nWica sftreacRtieopno rot;f amndun(iivci)ptahle wdaesteter mainnda ttiohne ofrfavcittiaolnr eoqf uwesatsste(e .sge.n,ta btoou t
thelaonrdgfainll)i.c Ffurartchtieornmoorfe,m puonteicnitpiaalls wofa fsoteresatnryd bthioemfarsasc tairoen roepfowrtaesdt efrsoemn tNtoatiloannadl fiAllg)e.nFcyu rftohre Nrmewor e,
potTeencthianlosloofgfieosr,e Estnreyrgbyio amnads sSuasrtearinepabolret eEdcofrnoommiNc aDteiovnelaolpAmgeenntc (yEfNoErAN)e dwatTae cphroncoelsosginiegs,, dEensecrrgibyinagn d
Sustthaein garbolses Eancodn noemt aicvaDileavbeilliotyp mofe cnutr(rEenNt EuAse)sd inat taerpmrosc oefs sdirnyg m,daettsecrr iabnidn gditshjoeignrteodss eannedrgnye ptoatveanitliaabl ialti ty
ofctuhrer penrotvuisnecsiailn letevreml (sFoigfudrrey 1m). atteranddisjointedenergypotentialattheprovinciallevel(Figure1).
Total forest biomass (ton/year) Total (GJ)
Total (kTep)
Figure 1. Gross potential for forestry biomass in each province of the Lazio region expressed in
Figure 1. Gross potential for forestry biomass in each province of the Lazio region expressed in
ton/year,GJ,andkTep.Source:elaborationfromENEA,AtlasofBiomasses.
ton/year, GJ, and kTep. Source: elaboration from ENEA, Atlas of Biomasses.
Sustainability 2018, 10, x FOR PEER REVIEW 4 of 15
Sustainability2018,10,2140 4of15
2.2. Study Case
2.2. StudyCase
The research design concerns a plant to produce electricity, with a net power output of 4 MWe,
fundTamheenretsaellayr cchondseissitginngc oofn ac ecronmsbaupsltaionnt tfourpnraocdeu wceitehl eac tmriocivtayb,wle igthriall ninettepgorawteedr obuyt pa usutopfer4hMeaWteed,
fsutenadmam Reanntkailnlye ccoyncslies t(iHngironf cayccolem).b Ausst idonefifnuernda bcey wthiteh DaPmCoMva b8 leMgarricllhi n2t0e0g2r aatendd bmyoadsiufipeder hbeya ttehde
sDtePaCmMR a8n kOincetocbyecrl e2(0H0i4r,n tchyec lep)l.aAnst dperfionpeodsebdy tchaenD bPeC Mfed8 Mbya rcchom20b0u2satinbdlem boidoimfieadssb ywtahseteD PfrCoMm
8agOrcictoublteurr2a0l,0 f4o,rtehsetrpyl,a anntdp raogproos-einddcuasntrbiealf eadctbivyitcioesm obbutsatiinbeledb firoomma lsoscwala pstreimfraormy asegcrtiocur latuctriavli,tfioesre, satnrdy,
afrnodma gsproe-ciinfidcu esnteriraglya cctriovpitsi etrseoabtetadi neexdclufrsoivmellyo cwalitphr mimeacrhyanseiccatol rsyasctteivmitsi.e Ts,haen mdafrionm tysppeesc oifif cbeionmeragsys
cthroapt smtraeya tbede euxsceldu saivs efluyewl aitrhe:m neacthuaranli cwalosoyds tfermoms. Tsihlveicmualtiunrtayl paecstiovfitbieios manasds ftohraetsmt mayaibneteunsaendcaes, feu.ge.l,
aprreu:nninatgu oraf ltrweeoso d(e.fgro., molisvielv gicruolvteusr)a; lhaecrtbivaciteioeussa nredsifdoureesst fmroamin ategnriacnucletu,rea.gl .a,cptirvuintiiensg; hoafzterleneust(se a.gn.d,o flriuviet
gshroelvlse s(t)y;phiecrabl alocceaolu csulrteivsaidtiuones); fvriorgmina agnrdic suplteunrta olliavcet ipvoitmieasc;eh farozmeln thuets acatnivditfierus iotf sohlievlels m(tiyllsp;i scaawl ldoucsatl,
cbualrtkiv, ashtiaovni)n;gvsi,r gcihnipasn, dpaspneelnst, ovleinveeeprso,m anacde wfraosmte tfhreomac tpivriimtieasryo faonldiv seemcoinllds;asrayw wdouosdt, pbraorcke,ssshinagv in(ngost,
cchheipmsi,cpalalyn etrlse,atveedn);e aenrsd, naantdurwal awstoeodfr ofrmomp priompalarry caronpds sweictohn adnanruyalw aonodd/opr rboiecnenssiainl gro(tantoiotnc.h emically
treateTdh)e; ainndvensatitguartaeldw aoroeda ifnroitmialplyo pcloavrecrreodp sthwe iwthhaonlen uParloavnindc/eo orfb Rieinetni.i aTlhroe tlaattitoenr. area is an Italian
centrTahl eprinovveinsctieg asitteudaaterdea inin itthiea llLyaczoiov erreegdiotnh ethwaht ohlaesP Rroievtiin acse iotfs Rciaeptii.taTl hceitlya,t tceorvaerreinagis aann aIrtaeali aonf
caebnoturat l3p0r0o0v inkcme si²t uaantedd iinnctlhuedLinagz io73re gmiounntihciaptahliatsieRs.i etEinavsiistasgcianpgi tathlcei tyg,rceoavteesrti nlgocaantiaornea roefqaubioreudt
3c0o0n0sikdmer2inagn dwinhcicluhd ainrega7 c3omuludn iecnipsualrieti eas .suEfnfviciiseangti nagmtohuengtr eoaft ebsitolmocaastsi ofnorr eeqnueirrgeyd csounstsaidinearibnilgitwy hainchd
athreea ocpoeurladtieonns uorfe tahes upffilacniet.n tCaomnsoiudnertionfgb tihome aEsnsefrogrye nPelarngy osfu tshtaei nLaabziiloit yRaengdiotnh, ethoep eqruatainotnitoiefst hoef
plilgannot.ceCllounlosisdice rbiinogmtahseseEsn (eer.gg.y, fPolraensto pfrtuhneiLngaz, eio.gR., eogliivoen ,gtrhoeveqsu)a anvtaitiileasbloef ilnig tnhoe cPerloluvlionsciec obfi oRmieatis saeres
(lea.rgg.e,lfyo rseusftfipcrieunnti ntog ,feee.gd. ,thoeli vpelagnrto. vIne sf)aactv, afoillalbolweiinngt htheeP irnovveinntcoeryo foRf iNetaitaiornealal rFgoerleysts uInffivecinetnotryto (NfeFedI)
tahnedp IlSaTntA.TIn, afabcotu,fto 2ll5o%w ionfg tthhee fionrveesnt tcooryveorf oNf atthioen LaalzFioor ersetgIinovne inst oinry th(Ne FpIr)oavnidncIeS ToAf TR,iaebtio, uwt2h5ic%h oisf
tshiteufaotereds tinco tvheer ocefnthtrealL aazreioa roefg iIotanlyis (iFnitghuerep r2o)v. iTnhcee oPfrRoiveitni,cew hoifc hRiiestis ihtuaast ead minaitnhleyc emnotruanltaarienaouosf
Iotraolygr(aFpighuyr teh2a)t. iTs hcehaPrraocvteinriczeedof bRyi ethtieh parseasemncaein olyf gmoorguenst,a vinaloleuysso, raongdr applahiynsth. Iatt iiss ocnhea roafc ttherei zriecdhebsyt
tIhtaeliparne steenrrcietoorfiegso ringe sw,avtaelrl edyus,ea ntod pthlae innsu.mItbiesro nofe olafktehse arincdh ersitvIetrasli ainnsteerrtreidto riine sainn wenavteirrodnumeetnot
tchhearnaucmtebriezredof blayk wesoaondds, rhivilelsr,s ainnsde rptleadinisn. aTnhee nPvriorvoinnmcee notf cRhieatria, cet.egr.i,z deudeb tyo wthoeo dwsa,theirl lps,reasnedncpel aainnds.
Tthhee sPtraotve inocf ecorifsRisi eotif, ter.agd.,idtiuoenatol tchreopwsa, therasp riedseeanlc feeaantudrtehse fsotra tdeeovfeclroipsiisnogf etrnaedrigtiyo ncarolpcrso. pFsi,nhaallsyi,d tehael
fleoactautiroens ofof rthdee pvelalonpt iwngase ansesrugmyecdr otpo sb.e Finin aanll yi,ndthuestlroicaal tsiioten ionf tthhee pprolavnitncwe aosf aRsiseutim. Tehdet olocbaetiionn aonf
itnhde upsltarniat lmsiatkeeisn itt hpeospsriobvlei ntoce oopftiRmieiztei. tTheh edilsotcraibtiuotnioonf otfh beiopmlanastsm toa kbees uistepdo asss iebnleertgoyo fputeiml, bizoetht hine
dteirsmtrisb ouft iqounaonftibtyio amnads strtaonbspeourste ldogaissteincse.r gyfuel,bothintermsofquantityandtransportlogistics.
FFiigguurree 22.. TTeerrrriittoorriiaall ffrraammeewwoorrkk ooff tthhee ccaassee ssttuuddiieedd..
TThhee ssppaatitaialle veavlaulautaiotinonw awsadse vdeelovpeleodpaetdt haet mthuen imcipuanlisccipaalel bsacsaelde obnasaeGd ISonp roac eGdIuSr ep,rporcoevdiudreed,
bpyrotvhiedeadrc Mbya pthpe roagrcrMamapo fpEroSgRrIam[9 ].ofT EhSaRnkI s[9to]. GTIhSantekcsh ntoo lGogISie steacnhdnooloffigciieasl annadti oonfafilcdiaol cnuamtieonntasl,
documents, the optimal area can identify where place the proposed plant. Estimating how much
Sustainability2018,10,2140 5of15
the optimal area can identify where place the proposed plant. Estimating how much biomass the
territorycanoffer,optimizingenergeticandevenlogisticprocesses,theprovisionsoftheplanwere
designedforalmost60,000tonsoffuelwherethechemicalandphysicalcharacteristicsareconsistent
withmodernsteam-producingboilers. Thesupplyplandefinesamixtureoflocalvegetalbiomass
madeoffruitandolivetreethinning,wastematterfromurbangreenareas,matterfromforesthandling,
andpoplarharvesting,accordingtoshortrotationforestry[40,41]. Theterritorialanalysiswascarried
outforeachoneofthetreecomponents. Inthisway,itispossibletoidentifytheidealcontextinwhich
tolocatetheplant.
2.3. EconomicandFinancialExamination
Assessing the economic and financial performance, the following concepts will be applied in
thisresearch. Economicandfinancialinvestigationenabledestimatingthecalorificvalue(CV),price,
andenergyprice,alongwiththeresultingcostsandconsumption. Assumingthenecessaryquantityof
biomassperyearandtheinstallablepower,thesizeoftheplantandthereforealsotheinvestmentcost
thatshouldbesustainedwereprojected. Furthermore,otherkeyindicatorswerecalculated,suchas:
electricenergy(EE),sellingprice(€/MWh),andunitinvestment(bothin€/kWand€/kWh).
The resulting return on equity (in percentage terms) can be incorporated in the fundamental
conceptofthefinanceoftheWACC,whichdefinestheweightedaverageofthecostofcapitalcoming
fromboththeequityandthedebt[42,43]. Theinternalrateofreturn(IRR),thepaybackperiod,andthe
netpresentvalue(NPV)werecalculated. Precisely,theworkalsoappliedthefollowingformulasand
definitions: (i)EBITDA(earningsbeforeinterest,taxes,depreciation,andamortization),whichoffers
the ability to generate an economic margin in percentage terms by considering financial policies
(interestincomeandexpense)andbudgettechniques(e.g.,amortization,depreciation,andtaxation).
Itisindispensableforprofitabilityanalysisatamanagementleveltoestimatetheprofitabilityofan
investment,andassistsinthecomparisonofresultsfromdifferentbusinessesoperatingintheidentical
economicsector. Itsapplicationforeachyear(n)isspecifiedaccordingtothefollowingequations:
EBITDA(n)=Addedvalue(n)−Costofemployees(n)
EBITDA%=EBITDA(n)/Revenues(n)×100
Then,(ii)thedebtservicecoverageratio(DSCR)wasruntocalculatetheannualcapacityofan
activitytocoveritsdebts,thereforehighlightinghowmuchoftheinvestmentcanbefinancedthrough
afinancialstructure(knownasthebankabilityoftheproject):
DSCR=FCO/(Df(n)+I(n))
where‘FCO’isthecashflow;‘Df’istheprincipalrepayments;‘I’representstheinterestpayments;
and ‘n’ is the i year. Furthermore, DSCR can assume different values: >1 (positive capacity),
th
or<1(negativecapacity)tofinancetheinvestmentofexpertiseinnyear.
The payback period embodies the number of years that are required to offset the investment.
Thepaybackperiodofagiveninvestment(orproject)isacentraldeterminantofwhethertoproceed
withtheproject,aslongerpaybackperiodsarecharacteristicallynotdesirableforinvestmentpositions.
Theexaminationwasfoundedonthecalculationofnetpresentvalue(NPV)asthefundamentaltool
forchoosingtheoptimalinvestment. Thistechniquewasappliedtocorrelatethevalueoftheplant
withtheabilitytoproducealeveloffinancialflowthatwasadequateenoughtomeetaninvestor’s
expectationofremuneration. Thecalculationwasappliedintheclassicalformula: whereNCFarethe
cashflowsfromoperatingactivities;tisnyearsofinvestment;andristhediscountrate.
From the logistical standpoint, a transportation radius was calculated to cover all of the
biomassespresentinRietiandthesurroundingmunicipalities. Transportcostshavebeenestimated
in this way. Furthermore, additional charges were assessed, such as the average price Green
Sustainability2018,10,2140 6of15
Certification(€/MWh),hypothesisprice(€/MWh),concessions(€),andothercostsandexpenses(€),
whichinvolvemaintenance,oil,water,insurance,etc.
Theeconomicanalysishasalsomadeitpossibletoestimate: (i)thesocialimpact,intermsofnew
jobsandthusgrantingnewemploymentopportunitiesinRieti;and(ii)anenvironmentalinfluenceto
ensureadequatesustainabledevelopment,usingrenewableenergyresourcesfromthesurrounding
territorythatarenotoffossilorigin.
3. Results
3.1. BiomassAvailability
The proposal was the production of 24 MW of project thermal power and 4 MW of project
electricpower. Theresultingplantwasthenreviewedfromtheviewpointofthenormsprovidingfor
renewableenergy,environmentalconsistency,andemissionsintotheatmosphere.
Integrating the three databases (NFI, ISTAT, and the 2017 Energy Plan of Lazio Region),
the potentially available biomass was identified at the municipal scale. The territorial analysis
allowed detecting where the biomass is placed and its nearness to the bioenergy plant, with the
aim of optimizing even the logistical processes. Forest assortments derive primarily from conifer
wood(about1287tons). Thestudiedplantcanusedwastematerialfrompoplarcultivation(143tons),
beechtrees(143tons),deciduoustrees(excludingpoplarandchestnuttrees)(53tons),andcastanets
(884tons).Giventherelevantamountofbiomassavailable,itcanbestatedthatthebioenergymarketin
Rietiissufficientlycompetitive,particularlyattheregionalscalebutalsoatthenationallevel,sincethe
energyplantavailssufficientbiomasstoproperlyoperateovertime. Furthermore,theoperatorswho
willworkinthisplantwillenjoyacontinuousworkactivityovertime,alsoallowingnewemployment
opportunitiesintheprimarysector. Theterritorialanalysisofwheretoplacetheplantwascarriedout
withtheelaborationofstatisticaldataandGISprogramsprovidedbyESRI.Theanalysisbroughtto
lightafragmentedspatialrealityconsistedbymanyvillageslocatedinthemountainsintheprovince
ofRieti. Thissituationmakesclearthedeterminationoftwoindicativepeculiarities: (i)prevalently
mountainousterritory,withsomehillyparts;and(ii)inatotalof73municipalitiesintheprovince
of Rieti, only four municipalities (Rieti, Poggio Mirteto, Fara in Sabina, and Cittaducale) exceed
5000inhabitants,resultingfromatypicalmountaincontext.
Estimating the total amount of forestry biomass that is available and theoretically usable for
energypurposesintheprovinceofRieti,theanalysisexcludedmunicipalitieswithapercentageratio
amongtheforestareaandthemunicipalareathatwaslessthan20%. Forthem,biomassconcentrations
are inadequate to rationalize the cost-effectiveness of large-scale biomass energy use. Then, all of
thesurfaceswithresinouswoodlandswereremoved,partlysincetheyhaveaprotectionfunction,
andthereforemayonlyundergoslightoperations.Also,municipalitieswithatotalavailablebiomassof
lessthan1000t/yearhavebeenrejected.Thefinaldatafoundforeachmunicipalitypointedoutthatthe
totalquantityofbiomassavailablethroughouttheprovincialterritoryisapproximately238,000t/year.
Forinstance,followingtheRegionalEnergyPlan,RietiandCittaducaleoccupymunicipalareasof
20,652hectaresand7095hectares,respectively,offeringabout24,906and8442t/year.
3.2. FeasibilityStudy
Duetoitsidealfeatures,theplantwasdesignatedinthemunicipalityofRieti,asthismunicipality
allowseconomicoptimization,greateravailableresources,localnearnessandcompactnessforusers,
andlowtransportcosts. Table1summarizesbiomassquantitiesthatcanbewithdrawnfromtheforest
sectorinahypothesisofadequateexploitationoftheresourcesthatarepresentinthemunicipalityof
Rieti,withatargetpricethatislowerthanthepriceoffirewood,butstilladequatetobeabletoexploit
thosebiomasseswithlowercommercialvalue,whichcurrentlyfindascarceifnotzerooutletonthe
market. Throughourelaboration,quantitiesofforestbiomassderivedfromthemunicipalterritory
definedthetotalproductionforeachkindofwoodforsupplyingtheplant(intons).
Sustainability2018,10,2140 7of15
Table1.BiomassvaluationfortheplantinthemunicipalityofRieti(intons).
WoodlandForests PoplarForests ChestnutTrees DeciduousTrees Total
5985 537 2956 886 10,693
Consideringaconservativeaveragedrymoisturecontentof30/35%[40,41],thetotalbiomass
theoreticallyavailableisapproximately160,000t/yearintermsofdrymatter.
Fromaneconomicviewpoint,themarketintheProvinceofRietiisaffectedbythedistributionof
thedifferentforests. Oakcoppiceisalwaysusedwhereithasagoodleveloffertilityandisgrownon
allsuitableslopes. Chestnutandbeechtreesareusedasfirewoodintheareaswheretheyaremost
present. Asfaraspricesareconcerned,€6–8/quintalforimposedwoodand€11–13/quintalforretail
woodcanbesupposed. Theimposedprice,dependingonthedifferentcuttingstations,isgenerally
composedbysoilcost(10–20€/ton),cutoperations(25–30€/ton),andwoodland(25–30€/ton)fora
totalfor60–80€/ton. Regardingtransportprocesses,10–20€/toncanbeconsideredintheshort-brief
range(sometensofkilometers),dependingonthelocalroadnetwork. Thesevaluesareallsubjectto
variationslinkedtoseasonaltrends. However,priceshaverarelyreachedvaluesthatcouldfavorthe
valorizationoftheindustrialenergysectorinthemarket. Atthepurchasepriceof50–60€/ton,itisnot
conceivabletoenterthefirewoodmarket. Thesupplyofbiomasspowerstationswithassortmentsthat
couldotherwisebeusedforthefirewoodmarketisrare;suchcaseshaveoccurredunderconditionsof
strongpricecontractionduetoseasonaltrends.
DataandassumptionsofhypotheticpricesofCVandenergyarereportedinTable2,assuminga
consumptionof12,000tonsofbiomass. Ananalysisontheinvestmentcostwascarriedoutwithan
overallinvestmentof€14million. Averageannualproductionisabout31,200,000kWh,resultingintoa
finalelectricenergy(EE)sellingpricethatisthesumoftheaveragepriceofGreenCertificationand
thehypothesisprice(GME)ofEE(166+54€/MWh).
Table2.Dataandassumptionsofcalorificvalue(CV)priceandenergypriceandresultingcostsand
consumption.EE:electricenergy;IRR:internalrateofreturn;NPV:netpresentvalue.
Variable Unit Value Variable Unit Value
Installedpower MW 4 Biomassquantityperyear ton 60,000
Investmentamount € 14,000,000 Transportationcost(in200km) €/ton 50
Averageannualproduction kWh 32,000,000 Staffcostperyear € 270,000
EEsellingprice €/MWh 166+54 AveragepriceGreenCertification €/MWh 166
Unitinvestment €/kW 3500 Hypothesisprice(GME)EE €/MWh 54
Unitinvestment €/kWh 0.45 Concessions € 286,138
Equity % 30 Othercosts € 390,000
Investmentrate € 1,304,000
Financingduration years 13
Financingrate % 4.01
Discountingrate(WACC) % 6.00
FinancedNPV € 665,286
IRR % 7.01
Payback year 14
The life of the present plant is about 15 years, considering the technical life of the plant
(andmaterialsused). Inaneconomicandfinancialanalysis,manyprecautionaryassumptionswere
adopted. A high leverage of 80% and a lease with a duration of 13 years, which is less than the
incentiveperiod,wereconsidered. Thepurchasepricesconsideredbelongtothehighestsegmentof
thepricesfoundonthemarket;moreover,thecostofbiomassfromgreenrecoveryhasbeensetat
60€/tons,whichishigherthantherealproductioncost.
Theannualoperatinghourswere7800,whichwerelowerthantheoperatinghoursofplantswith
similartechnicalcharacteristics. ThesalesvaluesofenergyandGreenCertificateswere86€/MWh
and80€/MWh,respectively,andremainedconstantover15years;thesearecautiousvaluesthatare
lowerthanthemarketaveragesofrecentyears. Inaddition,theshortsupplychainfuelatfullcapacity
Sustainability2018,10,2140 8of15
Sustainability 2018, 10, x FOR PEER REVIEW 8 of 15
wassetat77%oftheneeds,leavingalargemarginfortheimprovementofthismodel. Thehypothesis
full capacity was set at 77% of the needs, leaving a large margin for the improvement of this model.
isbasedon(i)thenoveltyofthesupplychainmechanismand(ii)thepresumeddifficultyofcrossing
The hypothesis is based on (i) the novelty of the supply chain mechanism and (ii) the presumed
supplyanddemandwiththelocalagriculturalandforestryworld.
difficulty of crossing supply and demand with the local agricultural and forestry world.
Ancillary consumption reaches 18% of production, since only 83% of annual production
Ancillary consumption reaches 18% of production, since only 83% of annual production
contributestoincentivizedrevenue,while17%isforauto-consumptiontoauxiliarycover,without
contributes to incentivized revenue, while 17% is for auto-consumption to auxiliary cover, without
contributingtorevenue. Theresultingreturnonequity(inpercentageterms)canbeincorporatedin
contributing to revenue. The resulting return on equity (in percentage terms) can be incorporated in
thefundamentalconceptinfinanceoftheWACC.Analyzingtheresultsoftheeconomicandfinancial
the fundamental concept in finance of the WACC. Analyzing the results of the economic and
accounts,theinvestmentexhibitedpositiveprofitabilityratesabovethebanks'lendingrateof6.5%.
financial accounts, the investment exhibited positive profitability rates above the banks' lending rate
TheNPVisreducedtozeroinaboutsixyears,untilreachingavalueofapproximately€665,286atthe
of 6.5%. The NPV is reduced to zero in about six years, until reaching a value of approximately
endofthe15thyear. TheIRRisof7.01%,whilethepaybackperiodis14years. Thetotalreturnis
€665,286 at the end of the 15th year. The IRR is of 7.01%, while the payback period is 14 years. The
approximately19%: plantswithhigheroutputswouldentailinvestmentsthatcouldnotbetakenup
total return is approximately 19%: plants with higher outputs would entail investments that could
bytheincreasedelectricefficiency. Aneconomicandfinancialexaminationrevealedtherealfeasibility
not be taken up by the increased electric efficiency. An economic and financial examination revealed
otfhteh reepall afneat,siebnilvitiysa ogfi nthgea prleatnut,r nenovnisiangvinesgt ma reenttuornf 8o%n .inBvieosmtmaessntq oufa 8n%tit. yBipoemraysesa qruwaanstitays spuemr yeedatro
6w0,0a0s 0a,s0s0u0mtoends t.o5 060€,/00to0n,00is0 tthoencs.o 5st0, €o/ftownh iisc hth1e0 caorset,r eolfa wtehdictoh t1r0a nasrep orertlactoesdt st,oi ftrtahnesspuoprtp clyosrtasn, gife thisea
msuaxpipmlyu mraonfg2e0 0isk ma .mOathxeimroupme raotfi n2g0c0o sktms(.e .Og.t,hmera inopteenraanticneg, ociol,swtsa t(eer.,gi.n, smuraainncteen,eatncc.)e,a roeile,s twimataetre,d
aitn€s3u9r0a,n0c0e0,. etc.) are estimated at €390,000.
TThheerreeffoorree,, tthhee ccoonnssttrruuccttiioonn ooff tthhee ppllaanntt pprrooppoosseedd iiss ccoonnccrreettee aanndd pprrooffiittaabbllee ffrroomm aann eeccoonnoommici c
aannddfi fninaanncciaialls sttaannddppooiinntt.. FFuurrtthheerrmmoorree,, tthhee ccoorree bbuussiinneessss hhaass aann EEBBIITTDDAA ((eeaarrnnininggs sbbeefoforer einintetreersets,t ,
tataxxeess,,d deepprreecciaiatitoionn,,a anndda ammoorrttiizzaattiioonn)) ooff oovveerr 3300%% ((FFiigguurree 33)).. AA ccoommppaarraabbllee ttrreenndd wwaass aalslsoo oobbsseervrveedd
foforrt htheed deebbtts seerrvviicceec coovveerraaggee rraattiioo ((DDSSCCRR)).. TThhee ppaayybbaacckk ppeerriioodd eemmbbooddiieess 1144 yyeeaarrss rreeqquuirireedd toto oofffsfeset t
ththeei ninvveesstmtmeennt.t.
EBITDA
1,856,436
2,000,000 1,744,585
1,629,353 1,510,638 1,388,335
1,500,000 1,262,335 1,132,527
998,795
1,000,000
500,000
-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
EBITDA % TURNOVER
40.0%
31.8%
29.9%
27.9%
30.0% 25.9% 23.8%
21.6% 19.4% 17.1%
20.0%
10.0%
0.0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure3.Cont.
Sustainability2018,10,2140 9of15
Sustainability 2018, 10, x FOR PEER REVIEW 9 of 15
DSCR (Debt Service Cover Ratio)
1.42
1.50 1.26
1.18 1.10
1.02
1.00 0.93
0.84
0.50
0.00 0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pay back
2,000,000 (1,285,711) 665,286
259,669
(1,925,228)
-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(2,000,000)
(4,000,000) (2,635,171) (711,518)(197,877)
(6,000,000) (3,421,002)
(5,244,080)
(6,294,240) (4,288,558)
(8,000,000)
(7,446,169)
(10,000,000) (8,707,484)
(12,000,000) (10,086,325)
(11,456,192)
(14,000,000)
Figure 3. Results for earnings before interest, taxes, depreciation and amortization (EBITDA), its
Figure 3. Results for earnings before interest, taxes, depreciation and amortization (EBITDA),
turnover, debt service coverage ratio (DSCR), and payback.
itsturnover,debtservicecoverageratio(DSCR),andpayback.
The staff costs is €270,000. The plant will be operated continuously (24 h in three 8-h periods).
Thestaffcostsis€270,000. Theplantwillbeoperatedcontinuously(24hinthree8-hperiods).
By law, the boiler requires a licensed operator on a rotating basis; three specialized workers are
Bylaw,theboilerrequiresalicensedoperatoronarotatingbasis;threespecializedworkersareneeded,
needed, and considering holidays and illnesses, a total of five licensed workers are needed to
and considering holidays and illnesses, a total of five licensed workers are needed to operate the
operate the boiler. Biomass handling and minor maintenance is carried out by a non-specialist
boopileerra.tBoiro pmears sshhifatn. dTlhinisg saenrvdems ain toortaml oaifn ftievnea nnocne-isspceacriraileisdt ooupterbaytoarsn.o An- sstpaencdiaalridst boupseirnaetsosr cpoesrt spheirf t.
Tohpisersaetrovre soaf t€o3t0a,l0o0f0 fipveer nyoena-rs pwecaisa laisstsuompeerda.t oArsn. Aadsmtainndisatrrdatbivues irnoelses icso setnpveisraogpeedr aftoorr tohfe€ 3o0r,d0i0n0aprye r
ymeaarnwagaesmasesnutm oefd t.hAe nbaudsminiensiss,t rhaatinvdelirnogle iinsceonmviinsagg eadndfo routhtgeooirndgi nianrvyomiceasn,a wgehmoesen taonfntuhaelb cuossint eisss ,
h€a4n0d,0li0n0g. Tinhceo mplianngt awnidll obue tcghoaiinrgedin bvyo iac echs,iewf hmoasenaagnenru, ael.gc.o, satni sen€g40in,0e0e0r. wTihthe pexlapnetriwenilcleb einc thhaei rseedctboyr,a
cahti eaf cmoasnt aogf e€r8,0e,.0g0.,0a pneern ygeianre.e Orwrdiitnhaerxyp aenrdie necxetrianotrhdeinsaercyto mr,aaitnatecnoastnocef €w80il,l0 b0e0 penertryuesater.dO tord tihnea rsyamaned
esxutrpapolriderin fairrmyms tahinroteungahn cspeewciiflilcb ceoennttrraucsttse tdhtaot trheegusalamtee tshuep lpislite orffi rrempsettihtirvoeu ginhtesrpveecnifiticocnosn atrnadc ttshtehira t
retigmuilnagte, athned ltihset omfertehpoedtist iovfe inintetrevrvenentitoino nins athned etvheenirt otifm exintrga,oarnddintahrey mmeatihnotednsaonfcein. terventioninthe
eventofextraordinarymaintenance.
4. Discussion
4. Discussion
Using renewable sources in the energy sector requires agreeing to meet the energetic demand
whilUe sriensgpreecntienwg atbhlee esnovuirrcoensminentht e[4e4n,4e5r]g. yAsgercotoenrerregqyu idreisstraigctrse ecihnagratcotemriezeet ath teanengiebrlgee tcihcadnecme afonrd
wchenilterarle rsepaelcittiiensg inth Ietaelyn vtoiwroanrmd esnutst[a4i4n,a4b5i]l.ityA agnrode hniegrhgeyr denisvtirriocntsmcehnatraalc qteurailziteya, wtaitnhg tihbele pcuhrapnocsee ofof r
csetnrternagltrheeanliitniegs lioncaItla sloyctioow-eacordnosmusitca sintraubcitluitryesa nudsihngig nheewre tnevcihrnoonlmogeinetsa [l1q1u].a Bliitoy,mwaistsh utthielizpautiropno sceano f
sstruepnpgothrte rnuinragl ldoecvaellsoopcmioe-nect o[4n6o]m. Tiches tdruegctrueere osfu ssuisntgainneawbiltietyc honf othloeg aiegsro[1e1n]e.rBgyio smuapspslyu tcihliaziantsio mnucsatn
subep pevoartluruatreadl,d aesv weleolpl mase tnhte[i4r 6n]e.tTwhoerdkes gorfe peroofdsuucsttiaoinn apbriolciteyssoefst h[1e3a].g roenergysupplychainsmustbe
evaluaBtaesde,da sonw tehllesaes tphreeimrniseetsw, tohrek sproefspernot dwuocrtiko nfopcurosceeds soens a[1 f3o]r.est biomass plant that represents a
comBpalesxe dacotnivtihtye stehaptr einmvioslevse,st hteerprirteosreianlt pwlaonrkninfogc, ulsoegdisotinc aacftoivreitsyt, bsiuoimtaabsles pmlaanntagthematernetp roefs ethnet s
aecnoemrgpyl epxroadcuticvtiitoyn tphlaatnitn, vaonldv eas vtaesrtr ictoomriamleprlcainaln ainchgi,elvoegmisetinct adcetdivicitayt,edsu tiota tbhlee pmuarnchaagseem oefn etnoefrgthye
efnueerlg. yThper opdroupctoisoend pmlaondte,la enxdpoasveads tthcaotm thme etarcnigailbalec hfeieavseibmileitnyt odf etdhiec aptleadntt ois tlhinekpedu rtcoh tahsee aobfielintye rtgoy
find fuel in the neighboring area (province of Rieti, Central Italy). Generally, the plant's profit can be
Sustainability2018,10,2140 10of15
fuel. The proposed model exposed that the tangible feasibility of the plant is linked to the ability
to find fuel in the neighboring area (province of Rieti, Central Italy). Generally, the plant's profit
can be active only in case of the purchase of fuel in the short supply chain [47,48]. In the present
case,theresultsrevealedthatthestudiedplantcanbesustainableovertime,owingtotherelevant
incidence of forest biomass in the province of Rieti, which emerged thanks to territorial analysis.
Thetransportationcoststhatresultedwerenotsoexcessiveduetotheclosenessofthelocationofthe
proposedplanttobiomasssourceregions. Theenergyplantconsideredcanbenefitfromdifferent
wastematerial,e.g.,poplarcultivation(143tons),beechtrees(143tons),deciduoustrees(excluding
poplarandchestnuttrees)(53tons),andcastanets(884tons). Inthisway,italsoallowstheenergy
planttocontinuouslyoperate,alsoensuringthatitsoperators(initiallyaboutsevenpeople,including
fiveoperators,anadministrativeperson,andachiefengineerwithexperienceinthebioenergysector)
worktoendlesslystrengthentheemploymentconditionsintheagriculturalsector[49–51].
ElectricpowerisproducedthroughaRankinecycleusingwaterasworkingfluid[52].Thechoice
is driven by the assumption that this is a cost-effective and reliable technology, which has reached
quite a mature industrial level [53,54]. Indeed, the fuel procurement process is the driving factor
for the establishment of the plant, since it is the real and actual innovating factor of the whole
process[47].Consideringlessconsolidatedenergy-producingtechnologies,e.g.,pyrolysisorgasification,
wouldhighlyincreasetheriskofalackofcost-effectivenessforthemodel,makingitimpracticable[48,55].
The threshold of 10 MW (or 50 MW thermal) signifies a limit line between suppliers, mainly
boilergroupsandaccessories. Thecostoftheboilerisabout50%ofthetotalcostoftheinstallation;
consequently,itsimpactonthereturnoninvestmentissignificant. Thedomesticmarketforsuppliers
ofboilersbelow50MWisfragmented,consistingofafewfirmsthatoffersteamgenerationsystems
fromotherindustrialsectors,e.g.,steamgenerationforprocessespoweredbycellulosicnon-wood
fuels. Abovethethresholdof50thermalMW,largenationalandinternationalfirmshaveanextensive
experienceinboilers,supportingtheenergyproductionofelectricity. Manyofthemalsoactasgeneral
contractors, since the boiler is the most essential component of this energy system. Furthermore,
themarketforlargeboilersisunquestionablymorestructuredandcompetitive,allowingcoststhatare
lesslinkedtothedifferentproductsectorsforwhichtheboilersareused[3,4]. Themodelofthepresent
workrequiresthatenergyfuelmustbesuppliedtotheneighboringterritoryasterritorialcapacity
involvestheinstallablepower[9,56–58]. Thepresentstudywasfocusedondrawingupthebiomass
supplyplan,whichisstrictlylinkedtothelocalterritory. Thefluctuatingmarkettrendaffectingthe
entire agricultural sector requires planning activity [59,60]. Therefore, the energy potential of the
investigatedterritory, theprovince, andthemunicipalityofRieticanbeconsideredaninteresting
casestudy.
Environmentally,theimpactoftheproposedplantwasmeasuredexclusivelyonatmospheric
emissions,astheplantisplacedinindustrialareaswithoutlandscapeornaturalisticvalue[61,62].
Theemissionslevelsoftheplantarewellbelowthoserequiredbylaw(theLegislativeDecreeofMarch
2006setsoutprovisionsconcerningbiomasscombustionplantsandtherelativeatmosphericemissions),
representingafurtherpositiveelementforobtainingtheproductionauthorization. Generally,thelaws
onrenewableenergyrewardthesekindsofplants;theyprovideenergyefficiencyrewards. Fromthe
environmentalpointofview,theplantisfullyconsistentwithlocalandnationallaws,sinceemissions
thatconcernthepresentplantarelargelyunderlegalthresholdsthankstotheuseofforestbiomass
as energy fuel, the enhanced combustion capacity of modern boilers, and the gas treatment that
itenvisages.
Fromaneconomicandfinancialviewpoint,ananalysisoftheinvestmentcostwascarriedout
withanoverallinvestmentof€14million. TheNPVisreducedtozeroinaboutsixyears,untilreaching
a value of approximately €5 million at the end of the 15th year. The total return is approximately
19%: plantswithhigheroutputswouldentailinvestmentsthatcouldnotbetakenupbytheincreased
electricefficiency. Aneconomicandfinancialexaminationtofindouttherealfeasibilityoftheplant
wascarriedout,envisagingareturnoninvestmentof8%.
Description:Abstract: Studying and modeling plants for producing electric power The costs of generating energy from agroforestry biomass are certainly dimension; (iii) limits imposed by forest management rules, which in some cases prevent examining the experiences of small-scale local installations [38,39].