Table Of ContentBig Data Meets Telcos:
A Proactive Caching
Perspective
Ejder Ba¸stu˘g(cid:5), Mehdi Bennis(cid:63), Engin Zeydan◦, Manhal Abdel Kader(cid:5), Alper
Karatepe◦, Ahmet Salih Er◦, and M´erouane Debbah(cid:5),†
(cid:5)LargeNetworksandSystemsGroup(LANEAS),CentraleSup´elec,Universit´eParis-Saclay,Gif-sur-Yvette,France
(cid:63)CentreforWirelessCommunications,UniversityofOulu,Finland
◦AveaLabs,Istanbul,Turkey
†MathematicalandAlgorithmicSciencesLab,HuaweiFranceR&D,Paris,France
[email protected],[email protected].fi,
{engin.zeydan,alper.karatepe,ahmetsalih.er}@avea.com.tr,
[email protected]@gmail.com
TheETSIWorkshop“FromResearchtoStandardization”
May102016,SophiaAntipolis,FRANCE.
L A N E A S
Large Networks and Systems Group
Introduction
Motivation
(cid:73) Mobile cellular networks are becoming increasingly complex [And+14]
(cid:73) Classical deployment/optimization techniques and solutions (i.e., cell
densification, acquiring more spectrum, etc.) are cost-ineffective and thus
seen as stopgaps
(cid:73) This calls for development of novel approaches that leverage recent
advances in storage/memory, context-awareness, edge/cloud computing,
and falls into framework of big data [BBD14]
(cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety
Based on these motivations, we focus on
Caching at the edge + enable big data!
In particular, our contributions:
(cid:73) Collect users’ mobile traffic data from a telecom operator
(cid:73) Characterize content popularity and size distributions
(cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof
users’ satisfaction and backhaul offloading
[And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014),
pp.1065–1082
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89 2/19
Introduction
Motivation
(cid:73) Mobile cellular networks are becoming increasingly complex [And+14]
(cid:73) Classical deployment/optimization techniques and solutions (i.e., cell
densification, acquiring more spectrum, etc.) are cost-ineffective and thus
seen as stopgaps
(cid:73) This calls for development of novel approaches that leverage recent
advances in storage/memory, context-awareness, edge/cloud computing,
and falls into framework of big data [BBD14]
(cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety
Based on these motivations, we focus on
Caching at the edge + enable big data!
In particular, our contributions:
(cid:73) Collect users’ mobile traffic data from a telecom operator
(cid:73) Characterize content popularity and size distributions
(cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof
users’ satisfaction and backhaul offloading
[And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014),
pp.1065–1082
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89 2/19
Introduction
Motivation
(cid:73) Mobile cellular networks are becoming increasingly complex [And+14]
(cid:73) Classical deployment/optimization techniques and solutions (i.e., cell
densification, acquiring more spectrum, etc.) are cost-ineffective and thus
seen as stopgaps
(cid:73) This calls for development of novel approaches that leverage recent
advances in storage/memory, context-awareness, edge/cloud computing,
and falls into framework of big data [BBD14]
(cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety
Based on these motivations, we focus on
Caching at the edge + enable big data!
In particular, our contributions:
(cid:73) Collect users’ mobile traffic data from a telecom operator
(cid:73) Characterize content popularity and size distributions
(cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof
users’ satisfaction and backhaul offloading
[And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014),
pp.1065–1082
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89 2/19
Introduction
Motivation
(cid:73) Mobile cellular networks are becoming increasingly complex [And+14]
(cid:73) Classical deployment/optimization techniques and solutions (i.e., cell
densification, acquiring more spectrum, etc.) are cost-ineffective and thus
seen as stopgaps
(cid:73) This calls for development of novel approaches that leverage recent
advances in storage/memory, context-awareness, edge/cloud computing,
and falls into framework of big data [BBD14]
(cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety
Based on these motivations, we focus on
Caching at the edge + enable big data!
In particular, our contributions:
(cid:73) Collect users’ mobile traffic data from a telecom operator
(cid:73) Characterize content popularity and size distributions
(cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof
users’ satisfaction and backhaul offloading
[And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014),
pp.1065–1082
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89 2/19
Introduction
Motivation
(cid:73) Mobile cellular networks are becoming increasingly complex [And+14]
(cid:73) Classical deployment/optimization techniques and solutions (i.e., cell
densification, acquiring more spectrum, etc.) are cost-ineffective and thus
seen as stopgaps
(cid:73) This calls for development of novel approaches that leverage recent
advances in storage/memory, context-awareness, edge/cloud computing,
and falls into framework of big data [BBD14]
(cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety
Based on these motivations, we focus on
Caching at the edge + enable big data!
In particular, our contributions:
(cid:73) Collect users’ mobile traffic data from a telecom operator
(cid:73) Characterize content popularity and size distributions
(cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof
users’ satisfaction and backhaul offloading
[And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014),
pp.1065–1082
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89 2/19
Introduction
Motivation
(cid:73) Mobile cellular networks are becoming increasingly complex [And+14]
(cid:73) Classical deployment/optimization techniques and solutions (i.e., cell
densification, acquiring more spectrum, etc.) are cost-ineffective and thus
seen as stopgaps
(cid:73) This calls for development of novel approaches that leverage recent
advances in storage/memory, context-awareness, edge/cloud computing,
and falls into framework of big data [BBD14]
(cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety
Based on these motivations, we focus on
Caching at the edge + enable big data!
In particular, our contributions:
(cid:73) Collect users’ mobile traffic data from a telecom operator
(cid:73) Characterize content popularity and size distributions
(cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof
users’ satisfaction and backhaul offloading
[And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014),
pp.1065–1082
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89 2/19
Introduction
SomeRelevantWorks
(cid:73) Scaling laws for caching in content delivery networks [GPT12]
(cid:73) FemtoCaching architecture [Gol+13]
(cid:73) LivingOnTheEdge: Edge caching and content popularity learning
aspects [BBD14]
(cid:73) Deployment aspects of cache-enabled single-tier networks [Ba¸s+15]
(cid:73) Coded caching gains in physical layer [ZE15]
(cid:73) MDS and regenerating codes [BGL15][Ped+15]
[GPT12] SavvasGitzenisetal.“AsymptoticLawsforJointContentReplicationandDeliveryinWirelessNetworks”. In:IEEE
TransactionsonInformationTheory[Online]arXiv:1201.309559.12(Dec.2012),pp.2760–2776
[Gol+13] NeginGolrezaeietal.“Femtocachinganddevice-to-devicecollaboration:Anewarchitectureforwirelessvideodistribution”. In:
IEEECommunicationsMagazine51.4(2013),pp.142–149
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89
[Ba¸s+15] EjderBa¸stu˘getal.“Cache-enabledSmallCellNetworks:ModelingandTradeoffs”. In:EURASIPJournalonWireless
CommunicationsandNetworking1(Feb.2015),p.41
[ZE15] JingjingZhangandPetrosElia.“FundamentalLimitsofCache-AidedWirelessBC:InterplayofCoded-CachingandCSIT
Feedback”. In:[Online]arXiv:1511.03961(2015)
[BGL15] ValerioBioglioetal.“OptimizingMDSCodesforCachingattheEdge”. In:[Online]arXiv:1508.05753(2015)
[Ped+15] JesperPedersenetal.“RepairSchedulinginWirelessDistributedStoragewithD2DCommunication”. In:[Online]
arXiv:1504.06231(2015)
3/19
Introduction
SomeRelevantWorks
(cid:73) Scaling laws for caching in content delivery networks [GPT12]
(cid:73) FemtoCaching architecture [Gol+13]
(cid:73) LivingOnTheEdge: Edge caching and content popularity learning
aspects [BBD14]
(cid:73) Deployment aspects of cache-enabled single-tier networks [Ba¸s+15]
(cid:73) Coded caching gains in physical layer [ZE15]
(cid:73) MDS and regenerating codes [BGL15][Ped+15]
[GPT12] SavvasGitzenisetal.“AsymptoticLawsforJointContentReplicationandDeliveryinWirelessNetworks”. In:IEEE
TransactionsonInformationTheory[Online]arXiv:1201.309559.12(Dec.2012),pp.2760–2776
[Gol+13] NeginGolrezaeietal.“Femtocachinganddevice-to-devicecollaboration:Anewarchitectureforwirelessvideodistribution”. In:
IEEECommunicationsMagazine51.4(2013),pp.142–149
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89
[Ba¸s+15] EjderBa¸stu˘getal.“Cache-enabledSmallCellNetworks:ModelingandTradeoffs”. In:EURASIPJournalonWireless
CommunicationsandNetworking1(Feb.2015),p.41
[ZE15] JingjingZhangandPetrosElia.“FundamentalLimitsofCache-AidedWirelessBC:InterplayofCoded-CachingandCSIT
Feedback”. In:[Online]arXiv:1511.03961(2015)
[BGL15] ValerioBioglioetal.“OptimizingMDSCodesforCachingattheEdge”. In:[Online]arXiv:1508.05753(2015)
[Ped+15] JesperPedersenetal.“RepairSchedulinginWirelessDistributedStoragewithD2DCommunication”. In:[Online]
arXiv:1504.06231(2015)
3/19
Introduction
SomeRelevantWorks
(cid:73) Scaling laws for caching in content delivery networks [GPT12]
(cid:73) FemtoCaching architecture [Gol+13]
(cid:73) LivingOnTheEdge: Edge caching and content popularity learning
aspects [BBD14]
(cid:73) Deployment aspects of cache-enabled single-tier networks [Ba¸s+15]
(cid:73) Coded caching gains in physical layer [ZE15]
(cid:73) MDS and regenerating codes [BGL15][Ped+15]
[GPT12] SavvasGitzenisetal.“AsymptoticLawsforJointContentReplicationandDeliveryinWirelessNetworks”. In:IEEE
TransactionsonInformationTheory[Online]arXiv:1201.309559.12(Dec.2012),pp.2760–2776
[Gol+13] NeginGolrezaeietal.“Femtocachinganddevice-to-devicecollaboration:Anewarchitectureforwirelessvideodistribution”. In:
IEEECommunicationsMagazine51.4(2013),pp.142–149
[BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications
Magazine52.8(Aug.2014),pp.82–89
[Ba¸s+15] EjderBa¸stu˘getal.“Cache-enabledSmallCellNetworks:ModelingandTradeoffs”. In:EURASIPJournalonWireless
CommunicationsandNetworking1(Feb.2015),p.41
[ZE15] JingjingZhangandPetrosElia.“FundamentalLimitsofCache-AidedWirelessBC:InterplayofCoded-CachingandCSIT
Feedback”. In:[Online]arXiv:1511.03961(2015)
[BGL15] ValerioBioglioetal.“OptimizingMDSCodesforCachingattheEdge”. In:[Online]arXiv:1508.05753(2015)
[Ped+15] JesperPedersenetal.“RepairSchedulinginWirelessDistributedStoragewithD2DCommunication”. In:[Online]
arXiv:1504.06231(2015)
3/19
Description:Ejder Bastu˘g , Mehdi Bennis⋆, Engin Zeydan◦, Manhal Abdel Kader , Alper Large Networks and Systems Group (LANEAS), CentraleSupélec,