Table Of ContentSSeSreeireriseie sIs SI ISSSSNSNN: :2 :2 121515353-31--10105056566 EEE
LLL
GGG
AAA &&&
MMM MMMooorrrgggaaannn CCClllaaayyypppoooooolll PPPuuubbbllliiissshhheeerrrsss
SSSyyynnnttthhheeeSSSiiSiSS L LLeeeccctttuuurrreeeSSS o oonnn c ccooommmpppuuuttteeerrr V VViiSiSSiioioonnn MMM
AAA
LLL
SSSeererireiieses sE E Eddditiitotoorrsrs:s :G: GGéérérararardrdd M MMeededdioiiononni,ii ,U, U Unnniviivveerersrsistiityty yo o fo fSf S oSououtuththeherernrnn C C Caalaillfiiofforornrnniaiia a
SSSvvevenenn D DDiciickckikniinnssosononn, ,U, U Unnniviivveerersrsistiityty yo o fo fTf T Toorororononntottoo
BBBaaaccckkkgggrrrooouuunnnddd
BBBaaaccckkkgggrrrooouuunnnddd S SSuuubbbtttrrraaaccctttiiiooonnn
SSSuuubbbtttrrraaaccctttiiiooonnn
ThThTheeoeororyry ya aannnddd P PPrraraacctctiticicecee
AAAhhmhmmeeded dE E Elgllgagamammmmmaala,l l,R, R Ruutugttgegreesrr sUs U Unninviivevreesrristsiyittyy
ThThTheeeooorrryyy aaannnddd PPPrrraaaccctttiiiccceee
BBBaacackckgkgrgorrouounundnd ds us sububtbrttarracactcitotiionon ni si i sas a aw w widiidedeleylly yu u suesseded dc c ocononcncecepeptp tft of foro rdr d edeteettecectcitotiionon no o fo fmf m moovovivniingng go o bobjbejejcectcstt sis ni in nv v ivdiidedeoeoso.s s.I .In In nt ht thehe el al lasatss tt
twttwwoo od dedececacadadedese sst htthehereerre eh hahasa ssb bebeeeenen na a al o lloto tto ofo ffd dedeveveveleollopopmpmmeenentn tti n iin nd dedeseissgiigngninniingng ga alagllgogoroirrtihitthmhmms ssf offoro rrb babacackckgkgrgorrouounundnd ds ussububtbrttarracac-c--
BBB
titotiionon,n ,a ,a sa sws w weelell llal a sa sws w widiidede eu u suesse eo o fo ftf ht theheseesse ea a lagllgogoroirrtihitthmhmms sis ni in nv v avarairroiiouousu sis mi immppoporotrrattanantn tat a papppplpilcliicacataitotiiononsn,s s,s ,us sucuchch ha a sa svs v ivsiiussuauala lsl us sururvrveveieli-ill-- AAA
CCC
lallanancncece, e,s ,ps spoporotrrstt svs v ivdiidedeoeo oa a nananalayllysyisssii,s s,m ,m mootoitotiionon nc c acapaptputturuerre, e,e ,e tecttc. c.V .V Vaarairroiiouousu sss ts sattataitstiitssitctiicacala lal a papppprporroaoacachchehese shs h ahavaveve eb b ebeeeenen np p rporropopoposoesseded dt ot to o KKK
GGG
mmmoododedele lsl csscecenenene eb babacackckgkgrgorrouounundndsd.s s.T .T Thhehe ec cocononcncecepeptp tot ofo fbf babacackckgkgrgorrouounundnd ds ussububtbrttarracactcitotiionon na alaslolsso oh hahasa ssb bebeeeenen ne exextxettenendndededed dt o tto od dedeteettecectc tt RRR
OOO
oobobjbejejcectcstt ssf r fforromomm v vivdiidedeoeoso ssc cacapaptputturuerreded df r fforromomm m mmoovovivniingng gc cacamammeerearrasa.s s.T .T Thhihsii ssb bobooookok kr erreveviveiiewewws sst h tthehe ec cocononcncecepeptp tat anandnd dp prparracactcitctiicece eo ofo ff UUU
NNN
bbabacackckgkgrgorrouounundnd d s ussububtbrttarracactcitotiionon.n .W . WWee e d didsiicsscucususss ss s esseveveverearrala ll t rttarradadidtiiitotiiononanala ll s tssattataitstiitssitctiicacala ll b babacackckgkgrgorrouounundnd d s ussububtbrttarracactcitotiionon n m mmoododedelesl,ls s, , DDD
S S S
iniincnclcullududidniingng gt ht thehe ew w widiidedeleylly yu u suesseded dp p aparaarramammeeterttirrciic cG G Gaauaususssissaiianan nm m mixiixtxutturuerre em m moododedelesl lsas a nandnd dn n ononon-n-p-paparaarramammeeterttirrciic cm m moododedelesl.ls s.W .W Wee ea a laslolsso o UUU
BBB
TTT
ddidsiicsscucususss sst h tthehe ei s iisssussueue eo ofo fsf hsshahadadodowoww s ussupupppprperresesssissoiionon,n ,w , wwhhihciichch hi s ii sse esesssessenentnitatiiala lfl o fforo rrh huhumummaanan nm mmootoitotiionon na anananalayllysyisssii ssa apapppplpilcliicacataitotiiononsn.s s. .
RRR
AAA
TTThhihsii ssb bobooookok kd didsiicsscucususssessese ssa apapppprporroaoacachchehese ssa anandnd dt r ttarradadedeoeoffoffsff ssf o fforo rrb babacackckgkgrgorrouounundnd dm mmaaianiintnettenenananancncece. e.T .T Thhihsii ssb bobooookok ka alaslolsso or e rreveviveiiewewws ss CCC
TTT
mmmaananyny yo o fo ftf ht thehe er er recececenentn tdt d edeveveveleollopopmpmmeenentnstt sis ni in nb b abacackckgkgrgorrouounundnd ds us sububtbrttarracactcitotiionon np p aparaarradadidgiigmgmm. .R .R Reecececenentn tat a dadvdvavanancncecese sis ni in nd d edeveveveleollopop-p-- III
OOO
NNN
iniingng ga alagllgogoroirrtihitthmhmms ssf offoro rrb babacackckgkgrgorrouounundnd ds ussububtbrttarracactcitotiionon nf r fforromomm m mmoovovivniingng gc cacamammeerearrasa ssa araerre ed dedesecsscrcirrbiibebeded,d ,i ,n iincnclcullududidniingng gm mmootoitotiionon-n--
ccocomommppepenensnassataitotiionon-n-b-babasaesseded da apapppprporroaoacachchehese sas anandnd dm mmootoitotiionon-n-s-essegegmgmmeenentnattataitotiionon-n-b-babasaesseded da apapppprporroaoacachchehese.ss..
AAAhhhmmmeeeddd E EElllgggaaammmmmmaaalll
AAABBBOOOUUUTTT S SYSYYNNNTTTHHHEEESSISISISS
ThThThisi issv vovoloululmummee ei s i issa a ap prpirnriintnetteded dv veveresrrisosiionon no ofo faf a aw wwoorokrrk kt h tthahata tat apappppepeaearasrr ssi n iin nt h tthehe eS SySynyntnhtthehseeisssi iss
MMM
DDDigiigigtiaittala lL l LiLbiibrbarrararyry yo ofo fEf EEnngngigniineneeereeirrniingng ga anandnd dC CoComommppuputuettree rrS ScSicecinieencnecc.e e. S. SySynyntnhttheheseisssi sis L LLeecectcutturuerrese ss OOO
pprporrovovidvidiede ce oc cononcnicsciesis,e e,o ,o roirgrigiigninianal alp lp rperreseessenentnattataitotioinonsn sos o fo fif mi mimppoporotrarttanantn trt er reseesseaearacrrhcch ha an andnd dd d edeveveveloelolpopmpmmeenentn tt RRR
GGG
tottopopipcicsic,s s,p ,p upubublbilsilhsisheheded dq q uquiucickicklkyl,yl y,i ,ni ni nd d idgigiigtiatital ala la nandnd dp p rpirnrinitn tft of foromrrmmaatast.ts s.F .F oForo rmr m mooroerre ei ni nifnofforomrrmmaataitotioinon n AAA
NNN
vvivsiisitsi tiwt w wwwwww.wm..mmoorogrrgaganancnclcallayaypypopoooolo.lcl..cocomomm
&&&
CCC
MMMOOORRRGGGAAANNN&&&CCCLLLAAAYYYPPPOOOOOOLLL P PPUUUBBBLLLIISISSHHHEEERRRSSS IISISBSBNBN:N: : 9 9797878-8-1-1-1-6-62627270705905-9509-40-0404404000400-000-90-099 LALALA SSSyyynnnttthhheeeSSSiiSiSS L LLeeeccctttuuurrreeeSSS o oonnn c ccooommmpppuuuttteeerrr V VViiSiSSiioioonnn
YYY
PPP
wwwwwwwww..m.mmooorrgrggaaannncccllalayayypppooooooll.l.c.cocoommm OOO
999778781816162627277005054544440409099 OOO
LLL GGGéérérararardrdd M M Meededdioiiononni i&i & & S S Svvevenenn D D Diciickckikniinnssosononn, ,S, S eSererireiiese ssE EEddidtiiottororsrss
Background Subtraction
eoryandPractice
Synthesis Lectures on
Computer Vision
Editor
GérardMedioni,UniversityofSouthernCalifornia
SvenDickinson,UniversityofToronto
SynthesisLecturesonComputerVisioniseditedbyGérardMedionioftheUniversityofSouthern
CaliforniaandSvenDickinsonoftheUniversityofToronto.eseriespublishes50-to150page
publicationsontopicspertainingtocomputervisionandpatternrecognition.
BackgroundSubtraction:eoryandPractice
AhmedElgammal
2014
Vision-BasedInteraction
MatthewTurkandGangHua
2013
CameraNetworks:eAcquisitionandAnalysisofVideosoverWideAreas
AmitK.Roy-ChowdhuryandBiSong
2012
DeformableSurface3DReconstructionfromMonocularImages
MathieuSalzmannandPascalFua
2010
Boosting-BasedFaceDetectionandAdaptation
ChaZhangandZhengyouZhang
2010
Image-BasedModelingofPlantsandTrees
SingBingKangandLongQuan
2009
Copyright©2015byMorgan&Claypool
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin
anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations
inprintedreviews,withoutthepriorpermissionofthepublisher.
BackgroundSubtraction:eoryandPractice
AhmedElgammal
www.morganclaypool.com
ISBN:9781627054409 paperback
ISBN:9781627054416 ebook
DOI10.2200/S00613ED1V01Y201411COV006
APublicationintheMorgan&ClaypoolPublishersseries
SYNTHESISLECTURESONCOMPUTERVISION
Lecture#6
SeriesEditors:GérardMedioni,UniversityofSouthernCalifornia
SvenDickinson,UniversityofToronto
SeriesISSN
Print2153-1056 Electronic2153-1064
Background Subtraction
eoryandPractice
Ahmed Elgammal
RutgersUniversity
SYNTHESISLECTURESONCOMPUTERVISION#6
M
&C Morgan &cLaypool publishers
ABSTRACT
Background subtraction is a widely used concept for detection of moving objects in videos. In
the last two decades there has been a lot of development in designing algorithms for back-
groundsubtraction,aswellaswideuseofthesealgorithmsinvariousimportantapplications,such
as visual surveillance, sports video analysis, motion capture, etc. Various statistical approaches
have been proposed to model scene backgrounds. e concept of background subtraction also
has been extended to detect objects from videos captured from moving cameras. is book re-
viewstheconceptandpracticeofbackgroundsubtraction.Wediscussseveraltraditionalstatistical
backgroundsubtractionmodels,includingthewidelyusedparametricGaussianmixturemodels
andnon-parametricmodels.Wealsodiscusstheissueofshadowsuppression,whichisessential
for humanmotionanalysisapplications.isbookdiscussesapproaches andtradeoffsfor back-
groundmaintenance.isbookalsoreviewsmanyoftherecentdevelopmentsinbackgroundsub-
traction paradigm. Recent advances in developing algorithms for background subtraction from
moving cameras are described, including motion-compensation-based approaches and motion-
segmentation-basedapproaches.
Forlinkstothevideostoaccompanythisbook,pleasesee
https://sites.google.com/a/morganclaypool.com/backgroundsubtraction/.
KEYWORDS
background subtraction, segmentation, visual surveillance, gaussian mixure model,
kerneldensityestimation,movingobjectdetection,shadowdetection,figure-ground
segmentation, motion segmentation, motion compensation, layered scene segmen-
tation
vii
To my wife for her emotional support,
to my parents for all what they have given me,
and to my kids for the joy they bring to my life.
– Ahmed