Table Of ContentArtificialIntelligence-basedSmartPowerSystems
IEEEPress
445HoesLane
Piscataway,NJ08854
IEEEPressEditorialBoard
SarahSpurgeon,EditorinChief
JónAtliBenediktsson AndreasMolisch DiomidisSpinellis
AnjanBose SaeidNahavandi AhmetMuratTekalp
AdamDrobot JeffreyReed
Peter(Yong)Lian ThomasRobertazzi
Artificial Intelligence-based Smart Power Systems
Edited by
Sanjeevikumar Padmanaban
DepartmentofElectricalEngineering,InformationTechnology,andCybernetics,
UniversityofSouth-EasternNorway,Porsgrunn,Norway
Sivaraman Palanisamy
WorldResourcesInstitute(WRI)India,Bengaluru,India
Sharmeela Chenniappan
DepartmentofElectricalandElectronicsEngineering,AnnaUniversity,Chennai,India
Jens Bo Holm-Nielsen
DepartmentofEnergyTechnology,AalborgUniversity,Aalborg,Denmark
Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.
PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.
PublishedsimultaneouslyinCanada.
Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,
mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStates
CopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriate
per-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,or
onthewebatwww.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,
JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat
http://www.wiley.com/go/permission.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,they
makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookandspecifically
disclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby
salesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You
shouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitorany
othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.Further,readersshould
beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.
Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto
special,incidental,consequential,orotherdamages.
Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomerCareDepartment
withintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317)572-4002.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailableinelectronic
formats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.
LibraryofCongressCataloging-in-PublicationDataAppliedfor:
HardbackISBN:9781119893967
CoverDesign:Wiley
CoverImage:©EkaterinaGoncharova/GettyImages
Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India
v
Contents
EditorBiography xv
ListofContributors xvii
1 IntroductiontoSmartPowerSystems 1
SivaramanPalanisamy,ZahiraRahiman,andSharmeelaChenniappan
1.1 ProblemsinConventionalPowerSystems 1
1.2 DistributedGeneration(DG) 1
1.3 WideAreaMonitoringandControl 2
1.4 AutomaticMeteringInfrastructure 4
1.5 PhasorMeasurementUnit 6
1.6 PowerQualityConditioners 8
1.7 EnergyStorageSystems 8
1.8 SmartDistributionSystems 9
1.9 ElectricVehicleChargingInfrastructure 10
1.10 CyberSecurity 11
1.11 Conclusion 11
References 11
2 ModelingandAnalysisofSmartPowerSystem 15
MadhuPalati,SagarSinghPrathap,andNageshHalasahalliNagaraju
2.1 Introduction 15
2.2 ModelingofEquipment’sforSteady-StateAnalysis 16
2.2.1 LoadFlowAnalysis 16
2.2.1.1 GaussSeidelMethod 18
2.2.1.2 NewtonRaphsonMethod 18
2.2.1.3 DecoupledLoadFlowMethod 18
2.2.2 ShortCircuitAnalysis 19
2.2.2.1 SymmetricalFaults 19
2.2.2.2 UnsymmetricalFaults 20
2.2.3 HarmonicAnalysis 20
2.3 ModelingofEquipmentsforDynamicandStabilityAnalysis 22
2.4 DynamicAnalysis 24
2.4.1 FrequencyControl 24
2.4.2 FaultRideThrough 26
2.5 VoltageStability 26
2.6 CaseStudies 27
2.6.1 CaseStudy1 27
2.6.2 CaseStudy2 28
2.6.2.1 ExistingandProposedGenerationDetailsintheVicinityofWindFarm 29
vi Contents
2.6.2.2 PowerEvacuationStudyfor50MWGeneration 30
2.6.2.3 WithoutInterconnectionoftheProposed50MWGenerationfromWindFarmon66kVLevelof220/66kV
Substation 31
2.6.2.4 ObservationsMadefromTable2.6 31
2.6.2.5 WiththeInterconnectionofProposed50MWGenerationfromWindFarmon66kVlevelof220/66kV
Substation 31
2.6.2.6 NormalConditionwithoutConsideringContingency 32
2.6.2.7 ContingencyAnalysis 32
2.6.2.8 WiththeInterconnectionofProposed60MWGenerationfromWindFarmon66kVLevelof220/66kV
Substation 33
2.7 Conclusion 34
References 34
3 MultilevelCascadedBoostConverterFedMultilevelInverterforRenewableEnergy
Applications 37
MarimuthuMarikannu,VijayalakshmiSubramanian,ParanthaganBalasubramanian,JayakumarNarayanasamy,
NishaC.Rani,andDeviVigneshwariBalasubramanian
3.1 Introduction 37
3.2 MultilevelCascadedBoostConverter 40
3.3 ModesofOperationofMCBC 42
3.3.1 Mode-1SwitchS IsON 42
A
3.3.2 Mode-2SwitchS IsON 42
A
3.3.3 Mode-3-Operation–SwitchS IsON 42
A
3.3.4 Mode-4-Operation–SwitchS IsON 42
A
3.3.5 Mode-5-Operation–SwitchS IsON 42
A
3.3.6 Mode-6-Operation–SwitchS IsOFF 42
A
3.3.7 Mode-7-Operation–SwitchS IsOFF 42
A
3.3.8 Mode-8-Operation–SwitchS IsOFF 43
A
3.3.9 Mode-9-Operation–SwitchS IsOFF 44
A
3.3.10 Mode10-Operation–SwitchS isOFF 45
A
3.4 SimulationandHardwareResults 45
3.5 ProminentStructuresofEstimatedDC–DCConverterwithPrevailingConverter 49
3.5.1 VoltageGainandPowerHandlingCapability 49
3.5.2 VoltageStress 49
3.5.3 SwitchCountandGeometricStructure 49
3.5.4 CurrentStress 52
3.5.5 DutyCycleVersusVoltageGain 52
3.5.6 NumberofLevelsinthePlannedConverter 52
3.6 PowerElectronicConvertersforRenewableEnergySources(ApplicationsofMLCB) 54
3.6.1 MCBCConnectedwithPVPanel 54
3.6.2 OutputResponseofPVFedMCBC 54
3.6.3 H-BridgeInverter 54
3.7 ModesofOperation 55
3.7.1 Mode1 55
3.7.2 Mode2 55
3.7.3 Mode3 56
3.7.4 Mode4 56
3.7.5 Mode5 56
3.7.6 Mode6 56
3.7.7 Mode7 58
3.7.8 Mode8 58
3.7.9 Mode9 59
3.7.10 Mode10 59
Contents vii
3.8 SimulationResultsofMCBCFedInverter 60
3.9 PowerElectronicConverterforE-Vehicles 61
3.10 PowerElectronicConverterforHVDC/Facts 62
3.11 Conclusion 63
References 63
4 RecentAdvancementsinPowerElectronicsforModernPowerSystems-ComprehensiveReview
onDC-LinkCapacitorsConcerningPowerDensityMaximizationinPowerConverters 65
NaveenkumarMarati,ShariqAhammed,KathirvelKaruppazaghi,BalrajVaithilingam,GyanR.Biswal,
PhaneendraB.Bobba,SanjeevikumarPadmanaban,andSharmeelaChenniappan
4.1 Introduction 65
4.2 ApplicationsofPowerElectronicConverters 66
4.2.1 PowerElectronicConvertersinElectricVehicleEcosystem 66
4.2.2 PowerElectronicConvertersinRenewableEnergyResources 67
4.3 ClassificationofDC-LinkTopologies 68
4.4 BriefingonDC-LinkTopologies 69
4.4.1 PassiveCapacitiveDCLink 69
4.4.1.1 FilterTypePassiveCapacitiveDCLinks 70
4.4.1.2 FilterTypePassiveCapacitiveDCLinkswithControl 72
4.4.1.3 InterleavedTypePassiveCapacitiveDCLinks 74
4.4.2 ActiveBalancinginCapacitiveDCLink 75
4.4.2.1 SeparateAuxiliaryActiveCapacitiveDCLinks 76
4.4.2.2 IntegratedAuxiliaryActiveCapacitiveDCLinks 78
4.5 ComparisononDC-LinkTopologies 82
4.5.1 ComparisonofPassiveCapacitiveDCLinks 82
4.5.2 ComparisonofActiveCapacitiveDCLinks 83
4.5.3 ComparisonofDCLinkBasedonPowerDensity,Efficiency,andRippleAttenuation 86
4.6 FutureandResearchGapsinDC-LinkTopologieswithBalancingTechniques 94
4.7 Conclusion 95
References 95
5 EnergyStorageSystemsforSmartPowerSystems 99
SivaramanPalanisamy,LogeshkumarShanmugasundaram,andSharmeelaChenniappan
5.1 Introduction 99
5.2 EnergyStorageSystemforLowVoltageDistributionSystem 100
5.3 EnergyStorageSystemConnectedtoMediumandHighVoltage 101
5.4 EnergyStorageSystemforRenewablePowerPlants 104
5.4.1 RenewablePowerEvacuationCurtailment 106
5.5 TypesofEnergyStorageSystems 109
5.5.1 BatteryEnergyStorageSystem 109
5.5.2 ThermalEnergyStorageSystem 110
5.5.3 MechanicalEnergyStorageSystem 110
5.5.4 PumpedHydro 110
5.5.5 HydrogenStorage 110
5.6 EnergyStorageSystemsforOtherApplications 111
5.6.1 ShiftinEnergyTime 111
5.6.2 VoltageSupport 111
5.6.3 FrequencyRegulation(Primary,Secondary,andTertiary) 112
5.6.4 CongestionManagement 112
5.6.5 BlackStart 112
5.7 Conclusion 112
References 113
viii Contents
6 Real-TimeImplementationandPerformanceAnalysisofSupercapacitorforEnergyStorage 115
ThamatapuEswararao,SundaramElango,UmashankarSubramanian,KrishnamohanTatikonda,
GarikaGantaiahswamy,andSharmeelaChenniappan
6.1 Introduction 115
6.2 StructureofSupercapacitor 117
6.2.1 MathematicalModelingofSupercapacitor 117
6.3 BidirectionalBuck–BoostConverter 118
6.3.1 FPGAController 119
6.4 ExperimentalResults 120
6.5 Conclusion 123
References 125
7 AdaptiveFuzzyLogicControllerforMPPTControlinPMSGWindTurbineGenerator 129
RaniaMoutchou,AhmedAbbou,BouazzaJabri,SalahE.Rhaili,andKhalidChigane
7.1 Introduction 129
7.2 ProposedMPPTControlAlgorithm 130
7.3 WindEnergyConversionSystem 131
7.3.1 WindTurbineCharacteristics 131
7.3.2 ModelofPMSG 132
7.4 FuzzyLogicCommandfortheMPPTofthePMSG 133
7.4.1 Fuzzification 134
7.4.2 FuzzyLogicRules 134
7.4.3 Defuzzification 134
7.5 ResultsandDiscussions 135
7.6 Conclusion 139
References 139
8 ANovelNearestNeighborSearching-BasedFaultDistanceLocationMethodforHVDC
TransmissionLines 141
AleenaSwetapadma,ShobhaAgarwal,SatarupaChakrabarti,andSohamChakrabarti
8.1 Introduction 141
8.2 NearestNeighborSearching 142
8.3 ProposedMethod 144
8.3.1 PowerSystemNetworkUnderStudy 144
8.3.2 ProposedFaultLocationMethod 145
8.4 Results 146
8.4.1 PerformanceVaryingNearestNeighbor 147
8.4.2 PerformanceVaryingDistanceMatrices 147
8.4.3 NearBoundaryFaults 148
8.4.4 FarBoundaryFaults 149
8.4.5 PerformanceDuringHighResistanceFaults 149
8.4.6 SinglePoletoGroundFaults 150
8.4.7 PerformanceDuringDoublePoletoGroundFaults 151
8.4.8 PerformanceDuringPoletoPoleFaults 151
8.4.9 ErrorAnalysis 152
8.4.10 ComparisonwithOtherSchemes 153
8.4.11 AdvantagesoftheScheme 154
8.5 Conclusion 154
Acknowledgment 154
References 154
Contents ix
9 ComparativeAnalysisofMachineLearningApproachesinEnhancingPowerSystem
Stability 157
Md.I.H.Pathan,MohammadS.Shahriar,MohammadM.Rahman,Md.SanwarHossain,NadiaAwatif,and
Md.Shafiullah
9.1 Introduction 157
9.2 PowerSystemModels 159
9.2.1 PSSIntegratedSingleMachineInfiniteBusPowerNetwork 159
9.2.2 PSS-UPFCIntegratedSingleMachineInfiniteBusPowerNetwork 160
9.3 Methods 161
9.3.1 GroupMethodDataHandlingModel 161
9.3.2 ExtremeLearningMachineModel 162
9.3.3 NeurogeneticModel 162
9.3.4 MultigeneGeneticProgrammingModel 163
9.4 DataPreparationandModelDevelopment 165
9.4.1 DataProductionandProcessing 165
9.4.2 MachineLearningModelDevelopment 165
9.5 ResultsandDiscussions 166
9.5.1 EigenvaluesandMinimumDampingRatioComparison 166
9.5.2 Time-DomainSimulationResultsComparison 170
9.5.2.1 RotorAngleVariationUnderDisturbance 170
9.5.2.2 RotorAngularFrequencyVariationUnderDisturbance 171
9.5.2.3 DC-LinkVoltageVariationUnderDisturbance 173
9.6 Conclusions 173
References 174
10 AugmentationofPV-WindHybridTechnologywithAdroitNeuralNetwork,ANFIS,andPI
ControllersIndeedPrecociousDVRSystem 179
JyotiShukla,BasantaK.Panigrahi,andMonikaVardia
10.1 Introduction 179
10.2 PV-WindHybridPowerGenerationConfiguration 180
10.3 ProposedSystemsTopologies 181
10.3.1 StructureofPVSystem 181
10.3.2 TheMPPTsTechnique 183
10.3.3 NNPredictiveControllerTechnique 183
10.3.4 ANFISTechnique 184
10.3.5 TrainingData 186
10.4 WindPowerGenerationPlant 187
10.5 PitchAngleControlTechniques 189
10.5.1 PIController 189
10.5.2 NARMA-L2Controller 190
10.5.3 FuzzyLogicControllerTechnique 192
10.6 ProposedDVRsTopology 192
10.7 ProposedControllingTechniqueofDVR 193
10.7.1 ANFISandPIControllingTechnique 193
10.8 ResultsoftheProposedTopologies 196
10.8.1 PVSystemOutputs(MPPTTechniquesResults) 196
10.8.2 MainPVSystemoutputs 196
10.8.3 WindTurbineSystemOutputs(PitchAngleControlTechniqueResult) 198
10.8.4 ProposedPMSGWindTurbineSystemOutput 199
10.8.5 PerformanceofDVR(ControllingTechniqueResults) 203
10.8.6 DVRsPerformance 203
10.9 Conclusion 204
References 204