Table Of ContentAnalysis of Reflective Cracks in Airfield
Pavements Using a 3-D Generalized Finite
Element Method
J.Garzon, C.A.Duarte† andW. Buttlar
DepartmentofCivilandEnvironmentalEngr.,
UniversityofIllinoisatUrbana-Champaign,
NewmarkLaboratory,
205NorthMathewsAvenue,
Urbana,IL61801,USA
{jgarzon2,caduarte,buttlar}@illinois.edu
†CorrespondingAuthor
RÉSUMÉ.
ABSTRACT. Predictionandsimulationofload-relatedreflectivecrackinginairfieldpavements
require three-dimensionalmodels in order to accurately capture the effects of gear loads on
crack initiation and propagation. In this paper, we demonstrate that the Generalized Finite
ElementMethod(GFEM)enablestheanalysisofreflectivecrackinginathree-dimensionalset-
tingwhilerequiringsignificantlylessuserinterventioninmodelpreparationthanthestandard
FEM.Assuch,itprovidessupportforthedevelopmentofmechanistic-baseddesignprocedures
forairfieldoverlaysthatareresistanttoreflectivecracking.
TwogearloadingpositionsofaBoeing777aircraftareconsideredinthisstudy.Thenumerical
simulationsshowthatreflectivecracksinairfieldpavementsaresubjectedtomixedmodebe-
haviorwithallthreemodespresent.Theyalsodemonstratethatundersomeloadingconditions,
thecracksexhibitsignificantchanneling.
MOTS-CLÉS:
KEYWORDS:Fracture;Reflectivecracks;Finiteelementmethod;Generalizedfiniteelementmethod;
Extendedfiniteelementmethod
RoadMaterialsandPavementDesign.VolumeX-n X/2009,pages1à15
◦
2 RoadMaterialsandPavementDesign.VolumeX-n X/2009
◦
1. Introduction
Veryoften,asphaltoverlaysareusedtorestoresmoothness,structure,andwater-
proofing benefits to existing airfield pavements. However, the controlling factor for
overlaylifespanisoftenreflectivecrackinginthenewoverlaycausedbystresscon-
centrationsinthevicinityofjointsandcracksintheunderlyingpavement.Reflective
crackingcanleadtoroughness,spalling,andmoistureinfiltrationatjointsandcracks,
which can greatly reduce the life expectancy of the overlay. Advanced spalling can
alsosignificantlyincreaseFODpotential.
Historically,reflectivecrackingisthoughttobedrivenbyboththermal(non-load
associated)andmechanicalgearloading(loadassociated)forces[BOZ02,KIM02].
Toolsarenowavailabletoaidthedesignerintheselectionofanappropriateasphalt
binder and mixture to resist thermally induced cracking. This includes both thermal
(top-down)cracking[AAS09b,AAS09a],andthermallyinducedreflectivecracking,
or bottom-up cracks, emanating from the vicinity of cracks and joints in the under-
lyingpavement[DAV10].However,recentresearchhasindicatedthatthesuccessful
predictionandabilitytodesignagainstreflectivecrackingliesintheabilitytounder-
standandaccountforload-relatedreflectivecrackingmechanisms[BAE08,DAV07].
Load-related reflective cracking mechanisms are more difficult to predict through
modelingandsimulation,asitisnecessarytostudythisphenomenoninthreedimen-
sions(3-D)inordertoaccuratelycapturetheeffectsofgearloadsoncrackinitiation
andpropagation.Previousresearchhasalsodemonstratedtheneedtodirectlyaccount
forthepresenceandpropagationofcracks,inordertoavoidmeshdependentnumeri-
calresults.Ina3-Dsetting,thismeansthatallmodesofcrackingmustbeconsidered,
i.e.,ModeI(opening),ModeII(shearing),andModeIII(tearing).Theneedfortrue
3-D modeling of reflective cracking complicates the development of computational
models using standard finite element methods. The Generalized or Extended Finite
ElementMethod[BAB94,BAB97,ODE98,DUA00,MO9˜9,SUK00,MO0˜2]adds
flexibility to the FEM while retaining its attractive features. A brief review of the
GeneralizedFEM(GFEM)ispresentedinSection3.
In this paper, we demonstrate that the GFEM enables the analysis of reflective
crackingina3-Dsettingwhilerequiringsignificantlylessuserinterventioninmodel
preparation. As such, it provides support for the development of mechanistic based
designproceduresforairfieldoverlaysthatareresistanttoreflectivecracking.
2. FormulationofProblem
Inthispaper,weanalyzethreedimensionalreflectivecracksassuminglinearelas-
ticisotropicmaterialbehavior.Thissectionpresentsthestrongandweekformulations
for this class of problem. The solution methodology based on the Generalized FEM
(cf.Section3)is,however,applicabletoothermaterialmodels,suchasvisco-elastic
orvisco-plasticbehavior.
3-DAnalysisofReflectiveCracks 3
2.1. EquilibriumEquations
Considerathree-dimensionaldomainW withboundary¶ W decomposedas¶ W =
¶ W u ¶ W s with ¶ W u ¶ W s =0/. The domain geometry is arbitrary and may have
∪ ∩
cracks.Theequilibriumequations,constitutiveandkinematicrelationsaregivenby
sss +bbb = 000 inW (1)
▽·
sss = CCC:eee
eee = uuu
s
▽
wheresss istheCauchystresstensor,bbbarebodyforces,eee isthelinearstraintensor,
s
▽
isthesymmetricpartofthegradientoperatorandCCCistheHooke’stensor.Thematerial
propertiesareassumedconstantwithineachlayerofthepavement(cf.Figure7).
Theboundaryconditionsprescribedin¶ W areasfollows
uuu = uuu¯ on¶ W u
sss nnn = tt¯t on¶ W s
·
wherennnisanoutwardunitnormalvectoron¶ W anduuu¯ andtt¯t areprescribeddisplace-
mentsandtractions,respectively.
2.2. WeakForm
ThePrincipleofVirtualWorkfortheproblemdescribedaboveisgivenby
Finduuu H1(W )suchthat vvv H1(W )
∈ ∀ ∈
sss (uuu):eee (vvv)dxxx+h uuu vvvdsss= tt¯t vvvdsss+h uuu¯ vvvdsss (2)
ZW Z¶ W u · Z¶ W s · Z¶ W u ·
where H1(W ) is a Hilbert space defined on W and h is a penalty parameter. We use
thepenaltymethodtoimposedisplacementboundaryconditionsduetoitssimplicity
and generality. The computation of an approximation uuuh of the solution uuu using the
GeneralizedFEMisdescribedinthenextsection.
3. TheGeneralizedFiniteElementMethod
TheGeneralizedFEMcanberegardedasafiniteelementmethodwithshapefunc-
tionsbuiltusingtheconceptofapartitionofunity.Thismethodhasitsoriginsinthe
worksofBabuškaetal.[BAB94,BAB97,MEL96](underthenames“specialfinite
elementmethods”,“generalizedfinite elementmethod”and“finiteelementpartition
of unity method”) and Duarte and Oden [DUA95, DUA96b, DUA96c, DUA96a,
ODE98](underthenames“hpclouds"and"cloud-basedhpfiniteelementmethod”).
4 RoadMaterialsandPavementDesign.VolumeX-n X/2009
◦
Several meshfree methods proposed in recent years can also be viewed as special
casesofthepartitionofunitymethod.Detailsonthemathematicalformulationofthe
GFEM canbefoundin,e.g.,[MEL96,BAB97,DUA00,ODE98,STR01].Inthis
section,wesummarizethemainconceptsofthemethod.
The linear finite element shape functions j a , a =1,...,N, in a finite element
meshwithN nodesconstituteapartitionofunity,i.e.,
N
(cid:229) j a (xxx)=1
a =1
forallxxxinadomainW coveredbythefiniteelementmesh.Thisisakeypropertyused
inpartitionofunitymethodsand,inparticular,intheGFEM.
AGFEM shapefunctionf a i isbuiltfromtheproductofaFEshapefunctionj a
andanenrichmentfunctionLa i
f a i(xxx)=j a (xxx)La i(xxx) (nosummationona ), (3)
wherea isanodeinthefiniteelementmesh.Figure1illustratestheconstructionof
GFEMshapefunctions.
(cid:0)
L
(cid:1)(cid:2)
i
(cid:1)
(cid:3)
(cid:1)
Figure1.ComputationofaGFEMshapefunction(bottomsurface).Thefiniteelement
shapefunctionj a isshownatthetop,whiletheenrichmentfunctionLa i isshownas
the middle surface. The resulting function at the bottom, f a i is the generalized FE
shapefunction.
Thisprocedureallowstheconstructionofshapefunctionswhichcanapproximate
wellthesolutionofaproblem.Featuressuchasdiscontinuitiesormaterialinterfaces
arerepresentedbyajudiciouschoiceofenrichmentfunctionsLa i(xxx),insteadoffinite
elementmesheswithelementfacesfittingthem.
3-DAnalysisofReflectiveCracks 5
Severalenrichmentfunctionscanbehierarchicallyaddedtoanynodea inafinite
elementmesh.Thus,ifD isthenumberofenrichmentfunctionsatnodea ,theGFEM
L
approximation,uuuh,ofafunctionuuucanbewrittenas
uuuh(xxx) = (cid:229)N (cid:229)DL uuua if a i(xxx)= (cid:229)N (cid:229)DL uuua ij a (xxx)La i(xxx)
a =1i=1 a =1i=1
= (cid:229)N j a (xxx)(cid:229)DL uuua iLa i(xxx)= (cid:229)N j a (xxx)uuuah(xxx)
a =1 i=1 a =1
where uuua i, a =1,...,N, i=1,...,DL, are nodal degrees of freedom and uuuha (xxx) is
a local approximation of uuu defined on w a = xxx W :j a (xxx)=0 , the support of
thepartitionofunityfunctionj a .Inthecaseof{afi∈niteelement6part}itionofunity,the
supportw a (oftencalledacloudorapatch)isgivenbytheunionofthefiniteelements
sharingavertexnode xxxa [DUA00]. The GFEM approximation uuuh isthe solutionof
thefollowingproblem
Finduuuh XXXh(W ) H1(W )suchthat, vvvh XXXh(W )
∈ ⊂ ∀ ∈
sss (uuuh):eee (vvvh)dxxx+h uuuh vvvhdsss= hhh¯ vvvhdsss+h uuu¯ vvvhdsss (4)
ZW Z¶ W u · Z¶ W s · Z¶ W u ·
where,XXXh(W )isasubspaceofH1(W )generatedbytheGFEMshapefunctionsdefined
in(3).
The local approximations uuuah, a = 1,...,N, belong to local spaces c a (w a ) =
smpeannt{oLriab}aDis=Li1sdfuenficnteiodnosnfothreaspuaprptiocrutlsawrlao,caal=spa1c,e..c.,aN(w.Ta )hedespeleencdtisoonnotfhteheloecnarlicbhe--
havior of the function uuu over the cloud w a . The case of 3-D fractures is discussed
below.
3.1. Enrichmentfunctionsfor3-Dcracks
Inthissection,enrichmentfunctionsfor3-Dcracksarebrieflydescribed.Further
details can be found in [PER09a]. Three types of enrichment functions are consid-
ered:
(i)Enrichmentforcloudsw a thatdonotintersectthecracksurface.
In this case, the elasticity solution uuu is continuous and can be approximated by
polynomial functions. Our implementation follows [ODE98, DUA00] and the en-
richments functions {La i}Di=L1 for a cloud associated with node xxxa =(xa ,ya ,za ) is
givenby
{La i}Di=L1=(cid:26)1,(x−haxa ),(y−haya ),(z−haza ),(x−ha2xa )2,(y−h2aya )2,...(cid:27) (5)
withha beingascalingfactor[ODE98,DUA00].
6 RoadMaterialsandPavementDesign.VolumeX-n X/2009
◦
(ii)Enrichmentforcloudscompletelycutbythecracksurface.
Inthiscase,thecracksurfacedividesw a intotwosub-domains,w a+ andw a− such
thatw a =w a+ w a−.Theenrichmentsfunctionsaretakenas
∪
{La i}Di=L1=(cid:26)H,H (x−haxa ),H (y−haya ),H (z−haza ),H (x−ha2xa )2,H (y−h2aya )2,...(cid:27)
(6)
wherethefunctionH (xxx)denotesadiscontinuousfunctiondefinedby
H(xxx)= 1 ifxxx∈w a+ (7)
(cid:26) 0 otherwise
These discontinuous functions can approximate discontinuities of the elasticity
solutionuuuinsideafiniteelement.
(iii)Enrichmentforcloudsthatintersectthecrackfront.
Terms from the asymptotic expansion of the elasticity solution near crack fronts
are used as enrichment functions in clouds that intersect the crack front. Their de-
scriptionismoreelaboratedthanthepreviousonesandwerefertheinterestedreader
toreferences[PER09a,DUA00,DUA01].
With the above enrichments, the finite element mesh is not required to fit crack
surfacessincethediscontinuitiesandsingularitiesareapproximatedbytheenrichment
functions,nottheFEMmesh.ThisisincontrastwiththeFEMandgreatlyfacilitate
the solution of fracture mechanics problems in complex 3-D domains such as those
foundinairfieldpavements.ThisfeatureoftheGFEMisillustratedinFigures2and
11.
3-DAnalysisofReflectiveCracks 7
Figure2.Three-dimensionalcrackinapavement.Thecrackcanbeinsertedintoan
existingfiniteelementmeshwithoutrequiringmodificationsontheFEmeshoriginally
designedtorepresentanuncrackedpavement.Thecrackisapproximatedbydiscon-
tinuousenrichmentfunctions,nottheFEMmesh.
8 RoadMaterialsandPavementDesign.VolumeX-n X/2009
◦
4. Inclinedellipticalcrack
ThisexampleisaimedatverifyingtheGFEMmethodologyinamixedmodefrac-
ture case. The problem consists of an inclined elliptical crack of dimensions a/c=
9/15embeddedinacubeofedgesizeb,asillustratedinFigure3.Inordertoreduce
the finite domain effect on the solution, the relation c/b=3/40 is set. The Young’s
modulususedinthisexampleisE =1.0whilethePoisson’sratioissetton =0.25.
Thecracksurfacehasaninclinationa =30 withrespecttothehorizontalaxis.The
◦
domainissubjectedtoauniformtensiletractions =1intheverticaldirection.Figure
3showsthemodelandtheinitialcoarsemeshuse◦dinthisexample.Inthediscretiza-
tion of the solution, localized mesh refinement on elements that intersect the crack
frontisappliedalongwithnodalenrichments.Polynomialenrichmentoforder p=3
(cf.Eq.(5))isappliedovertheentiredomain,discontinuousstepfunctionenrichment
(cf. Eq. (6)) is applied at the nodes of the elements that are cut by the crack surface
andtheasymptoticsolutionenrichmentisusedatelementscutbythecrackfront.The
ratio of the element size, L, to crack length, a, for elements along the crack front is
0.054<L/a<0.088afterthemeshrefinementisapplied.
ThestressintensityfactorsformodesI,II,andIII ofaninclinedellipticalcrack
embedded in an infinite domain are used as references. These SIFs are given by
[TAD00]
s sin2g √p a a 2 14
KIinf. = ◦ E(k) (cid:20)sin2q +(cid:16)c(cid:17) cos2q (cid:21)
s sing cosg √p ak2 k 1
KIiInf. = − ◦ 1 (cid:20)B′cosw cosq +Csinw sinq (cid:21)
a 2 4
sin2q + cos2q
(cid:20) (cid:16)c(cid:17) (cid:21)
s sing cosg √p a(1 n )k2 1 k
KIiInIf. = ◦ − 1 (cid:20)Bcosw sinq −C′sinw cosq (cid:21)
a 2 4
sin2q + cos2q
(cid:20) (cid:16)c(cid:17) (cid:21)
whereB,C,K(k)andE(k)aredefinedas
B=(k2 n )E(k)+n kK(k), C=(k2 n k2)E(k) n k2K(k),
′ ′ ′
− − −
K(k)= p2 dj , E(k)= p2 1 k2sin2j dj ,
Z0 1 k2sin2j R0 q −
q −
andk2=1 k2, k =a/c andq is a parametric angle representing a point A onthe
′ ′
crackfront−(cf.Figure3).Fortheexamplesolvedinthissection,g =p /2 a =p /3
andw =0. −
The extracted stress intensity factors for mode I, II, and III using the GFEM
methodologyarepresentedinFigure4.Theseresultsarecomparedwiththeanalytical
3-DAnalysisofReflectiveCracks 9
(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)
(cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:3)(cid:9)(cid:11)(cid:12)(cid:13)(cid:10)(cid:14)(cid:3)(cid:9)(cid:15)(cid:10)(cid:16)(cid:17)(cid:3)(cid:17)(cid:18)(cid:16)(cid:19)(cid:20)
(cid:22) (cid:2)(cid:2) (cid:3)(cid:3)
(cid:21)
(cid:22) (cid:9)
(cid:26)(cid:16)(cid:27)(cid:24)(cid:18)(cid:15)(cid:25)
(cid:22)
(cid:22)
(cid:22)
(cid:23)(cid:10)(cid:16)(cid:19)(cid:17)(cid:24)(cid:18)(cid:15)(cid:25)
Figure3. Cubesubjectedtotopandbottomuniformtensiletractionsandrepresenta-
tionofinclinedellipticalcrack.
0.8
0.6
0.4
F
SI
d
e
zaliz 0.2
m
or
N
0
KI inf.
-00.22 KKIIIIIIIiinnff..
KI GFEM
KII GFEM
KIII GFEM
--00.44
0 50 100 150 200 250 300 350
Parametric Angle (deg.)
(cid:28)
Figure4.StressintensityfactorsformodesI,II,andIII.
10 RoadMaterialsandPavementDesign.VolumeX-n X/2009
◦
solutionforaninfinitedomainandexcellentagreementcanbeobservedbetweenthe
twosolutionsforallthreemodes.
5. AnalysisofReflectiveCracksinAirfieldPavements
Sincethepurposeofthisstudyistoanalyzeratherthandesignatypicalpavement
sectionofanairport thatservesthe Boeing777aircraftwas selectedtobe modeled.
ThemodelgeometryandpavementcrosssectionsfortheunderlyingPCCarearbitrar-
ilyselectedasthestandardsectionofrunway4L-22RatO’HareAirport.
Athree-dimensionalfiniteelementmeshwascreatedtorepresenttheairportpave-
mentanditslayers.Also,atwo-dimensionalfiniteelementmeshwascreatedtorep-
resentthegeometryofthecracksurface.Bymodelingthe3-Dpavementmeshandin-
sertingthe2-Dcracksurfacemeshjustabovetheconcretejoint,areflectivecracking
studyinasphaltoverlaywasperformedwithTheGeneralizedFiniteElementMethod
describedintheprevioussection.ModesI,IIandIIIstressintensityfactorsarecom-
putedalongthecrackfrontinordertoinvestigatethethree-dimensional,mixedmode
crackdrivingmechanismsinatypicalairfieldpavement.
5.1. ModelGeometry
ThepavementmodelencompasseshalfoftwoadjacentslabsandonePCCjointas
illustratedbytheshadedregioninFigure5.Thesimulatedairfieldpavementiscom-
posedofan20cmasphaltoverlay;23cmconcreteslabs,eachwithplandimensions
of 6 m 5.7 m (PCC), and;an 28 cmcement treatedbase (CTB). A saw cutof 13
×
mmwidthismodeledinthePCClayer.
Thedimensionsofthecracksurfaceare2.54cmofhightand5cmofdepth.The
curvedportionofthecrackhasaradiusof2.54cmandstartsandthemidpointofits
depth.Figure6showsthegeometryofthecracksurface.
5.7 m
66mm
Figure 5.Airfield pavement analyzed. The shaded square represents the portion of
pavementmodeledinthisstudy.
Description:centrations in the vicinity of joints and cracks in the underlying pavement (i) Enrichment for clouds ωα that do not intersect the crack surface. Three Dimensional Structural Mechanics Problems », Computers and Structures, vol.